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Abstract
This paper is concerned with a chemotaxis system with singular sensitivity and
logistic source,

⎧
⎪⎨

⎪⎩

ut =�u – χ1∇ · ( uw∇w) +μ1u –μ1uα , x ∈ Ω , t > 0,

υt =�v – χ2∇ · ( υw∇w) +μ2υ –μ2υ
β , x ∈ Ω , t > 0,

wt =�w – (u + υ)w, x ∈ Ω , t > 0,

under the homogeneous Neumann boundary conditions and for widely arbitrary
positive initial data in a bounded domain Ω ⊂ R

n (n≥ 1) with smooth boundary,
where χi , μi > 0 (i = 1, 2) and α, β > 1. It is proved that there exists a global classical

solution if max{χ1,χ2} <
√

2
n ,min{μ1,μ2} > n–2

n ,α = β = 2 for n ≥ 2 or any χi > 0

(i = 1, 2), μi > 0 (i = 1, 2), α, β > 1 for n = 1.

MSC: 35K55; 35Q92
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1 Introduction
The chemotaxis system describes a part of the life cycle of cellular slime molds with
chemotaxis. In more detail, slime molds move towards higher concentration of the chemi-
cal substance when they plunge into hunger. After the pioneering work of Keller–Segel [8],
in a variety of work the classical Keller–Segel model and its variations were investigated.

Particularly, for the chemotaxis system with a consumption mechanism,

⎧
⎨

⎩

ut = �u – ∇ · (uφ(υ)∇υ),

υt = �υ – uυ,
(1.1)

in the case of φ(υ) = 1, it is well known that for all suitably regular initial data (u0, v0)
an associated Neumann-type initial-boundary value problem, posed in a smooth n-
dimensional domain, admits a global bounded classical solution if n = 2 and an asymp-
totically smooth weak solution for n = 3 [20]. When φ(υ) = χ

υ
, it has been shown in [28]

that the system possesses a global generalized solution with υ → 0 in Lp(Ω) as t → 0 in
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the two-dimensional case. A prototypical variant of model (1.1) in which a logistic source
function f (u) is considered in the first equation, ut = �u – ∇ · (uφ(υ)∇υ) + f (u), has also
been investigated in the past years. When φ(υ) is a constant and f (u) = κu – μu2, [11]
established the existence of a global bounded classical solution for suitably large μ and
proved that for any μ > 0 there exists a weak solution in the three-dimensional case. When
φ(υ) = χ

υ
and f (u) = κu – μu2, for any n-dimensional domain (n ≥ 2), there exists a global

classical solution to (1.1) provided that 0 < χ <
√

2
n , μ > n–2

n [10]. When φ(s) ∈ C1(0,∞)
satisfying φ(s) → ∞ as s → 0, for the more general logistic source f (u) = ru – μuk

(r,μ > 0, k > 1), it has been shown in [31] that the problem (1.1) possesses a unique pos-
itive global classical solution provided k > 1 with n = 1 or k > 1 + n

2 with n ≥ 2. Besides
the above work, global solutions for the corresponding variant of (1.1) such as coupled
chemotaxis–fluid system have also been investigated (see e.g. [17, 18, 24, 25, 27] and the
references therein) by many authors.

In recent years, multi-species chemotaxis systems have been studied (see e.g. [1, 4, 12,
13, 15, 16, 21]). For instance, the following two-species chemotaxis model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = �u – χ1∇ · (u∇w), x ∈ Ω , t > 0,

υt = �υ – χ2∇ · (υ∇w), x ∈ Ω , t > 0,

wt = �w – βw + α1u + α2υ, x ∈ Ω , t > 0,
∂u
∂v = ∂υ

∂v = ∂w
∂v = 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), υ(x, 0) = υ0(x), w(x, 0) = w0(x), x ∈ Ω ,

(1.2)

has been researched by some authors, where χ1, χ2, β , α1, α2 are positive constants.
[12] proved that, for any mi > 0 (i = 1, 2), there exists radially symmetric initial data
(u0,υ0, w0) ∈ (C0(Ω))2 × W 1,∞(Ω) with m1 =

∫

Ω
u0, m2 =

∫

Ω
υ0 such that the correspond-

ing solution blows up in finite time when Ω is a ball in R
n (n ≥ 3). In radial symmetric situ-

ation, Espejo Arenas et al. [4] proved that there is simultaneous blow-up for both chemo-
tactic species in the ball BR(0) of R2. In higher dimensions, blow-up of the parabolic–
elliptic counterpart of (1.2) has been studied by Biler et al. [1].

A more general form of two-species chemotaxis model has been studied by Mizukami
and Yokota. They considered the two-species chemotaxis model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = �u – ∇ · (uφ1(w)∇w) + μ1u(1 – u), x ∈ Ω , t > 0,

υt = �υ – ∇ · (υφ2(w)∇w) + μ2υ(1 – υ), x ∈ Ω , t > 0,

wt = d�w + h(u,υ, w), x ∈ Ω , t > 0,
∂u
∂ν

= ∂υ
∂ν

= ∂w
∂ν

= 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), υ(x, 0) = υ0(x), w(x, 0) = w0(x), x ∈ Ω ,

(1.3)

where d ≥ 0, μi > 0 (i = 1, 2), φi ∈ C1+θ ([0,∞)) ∩ L1(0,∞) (i = 1, 2) for some θ > 0. They
proved in [14] that there exists an exact pair (u,υ, w) of nonnegative functions which is
uniformly bounded.
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Inspired by the above-mentioned work, in this paper, we study the initial-boundary value
problem of a chemotaxis system with singular sensitivity and logistic source as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = �u – χ1∇ · ( u
w∇w) + μ1u – μ1uα , x ∈ Ω , t > 0,

υt = �υ – χ2∇ · ( υ
w∇w) + μ2υ – μ2υ

β , x ∈ Ω , t > 0,

wt = �w – (u + υ)w, x ∈ Ω , t > 0,
∂u
∂ν

= ∂υ
∂ν

= ∂w
∂ν

= 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), υ(x, 0) = υ0(x), w(x, 0) = w0(x), x ∈ Ω ,

(1.4)

in a bounded domain Ω ⊂R
n (n ∈N) with smooth boundary ∂Ω , where χ1,χ2,μ1,μ2 are

positive constants, α > 1,β > 1 and ν is the outward normal vector to ∂Ω . The functions
u = u(x, t) and υ = υ(x, t) denote, respectively, the unknown population density of the two
species, and w = w(x, t) represents the concentration of the chemoattractant. In contrast
to the study of [14], we will consider a singular sensitivity χi

w , which is suggested by the
Weber–Fechner law of stimulus perception (see [9]) and supported by experimental ([7])
and theoretical ([29]) evidence. Moreover, the exponents α and β do not necessarily be 2.
We shall establish the global existence of this system.

Throughout this paper, we suppose that the initial data u0,υ0, w0 satisfy

⎧
⎪⎪⎨

⎪⎪⎩

u0 ∈ C0(Ω), u0 ≥ 0 and u0 	≡ 0 in Ω ,

v0 ∈ C0(Ω), v0 ≥ 0 and v0 	≡ 0 in Ω ,

w0 ∈ W 1,∞(Ω), w0 > 0 in Ω .

(1.5)

Our main results read as follows.

Theorem 1.1 Let Ω ⊆ R
n (n ≥ 2) be a bounded domain with smooth boundary. Assume

that

max{χ1,χ2} <
√

2
n

, min{μ1,μ2} >
n – 2

n
, α = β = 2.

Then for any initial data (u0,υ0, w0) as in (1.5) there is a global classical solution (u,υ, w)
to (1.4).

Theorem 1.2 Let Ω ⊆ R be an open, bounded interval, χi > 0 (i = 1, 2), μi > 0 (i = 1, 2)
and α, β > 1. Then for any initial data (u0,υ0, w0) as in (1.5) there exists a global classical
solution (u,υ, w) to (1.4).

In the present paper, we shall modify the method in [10, 31] to obtain global existence
of the solution. Precisely speaking, we first try to derive the lower bound estimate of w,
via building the upper bound estimated of z := – ln( w

‖w0‖L∞(Ω)
), and then obtain estimates

for ‖u‖Lp(Ω) and ‖υ‖Lp(Ω) for some p > 1, p > n
2 .

Before we go to the details of our analysis, let us point out that the global existence,
boundedness and stabilization of (weak) solutions to the two-species chemotaxis–fluid
system have also been established (see e.g. [2, 5, 6, 12, 19]).
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2 Some preliminaries
We begin with the local existence of classical solutions to the system (1.4), the proof of
which is standard. Refer to, e.g., [30], Lemma 2.1, for the details.

Lemma 2.1 Let Ω ⊆ R
n (n ≥ 1) be a bounded, smooth domain. Then, for any u0, υ0, w0

satisfying (1.5), there exist Tmax ∈ (0, +∞] and a unique pair of functions (u,υ, w) with

u ∈ C0(Ω × [0, Tmax)
) ∩ C2,1(Ω × (0, Tmax)

)
,

υ ∈ C0(Ω × [0, Tmax)
) ∩ C2,1(Ω × (0, Tmax)

)
,

w ∈ C0(Ω × [0, Tmax)
) ∩ C2,1(Ω × (0, Tmax)

) ∩ L∞
loc

(
[0, Tmax); W 1,∞(Ω)

)
,

solving (1.4) in the classical sense with u,υ, w > 0 in Ω × (0, Tmax) and if Tmax < ∞, then

∥
∥u(·, t)

∥
∥

L∞(Ω) +
∥
∥υ(·, t)

∥
∥

L∞(Ω) +
∥
∥w(·, t)

∥
∥

W 1,∞(Ω) → ∞

as t → Tmax.

The following mass-preserving property, which is also frequently used in the study of
some other chemotaxis systems (see e.g. [22, 23] and the references therein), can be easily
obtained.

Lemma 2.2 If (1.5) holds, then the solution of (1.4) satisfies

∥
∥u(·, t)

∥
∥

L1(Ω) ≤ m1,
∥
∥υ(·, t)

∥
∥

L1(Ω) ≤ m2, t ∈ [0, Tmax), (2.1)

for some m1 > 0, m2 > 0.

Proof As α > 1, we can easily obtain from the first equation in (1.4) by using Hölder’s
inequality that

d
dt

∫

Ω

u dx = μ1

∫

Ω

u dx – μ1

∫

Ω

uα dx

≤ μ1

∫

Ω

u dx –
μ1

|Ω|α–1

(∫

Ω

u dx
)α

, t ∈ (0, Tmax),

which yields the left-hand inequality of (2.1) by the Bernoulli inequality ([3], Lemma 1.2.4).
The right-hand inequality of (2.1) can be quickly proved in the same way. �

Also for w the differential equation directly entails some decay properties, as follows.

Lemma 2.3 For every p ∈ [1,∞), the map (0, Tmax) � t �→ ‖w(·, t)‖p
Lp(Ω) is monotone de-

creasing. In particular, ‖w(·, t)‖Lp(Ω) ≤ ‖w0‖LP(Ω) for all t ∈ [0, Tmax).

Proof It is easy to see from the third equation in (1.4) that

d
dt

∫

Ω

wp = p
∫

Ω

wp–1wt
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= p
∫

Ω

wp–1�w – p
∫

Ω

wpu – p
∫

Ω

wpυ

= –p(p – 1)
∫

Ω

wp–2|∇w|2 – p
∫

Ω

wpu – p
∫

Ω

wpυ ≤ 0,

due to u,υ, w > 0. �

Lemma 2.4 ‖w(·, t)‖L∞(Ω) ≤ ‖w0‖L∞(Ω) for every t ∈ [0, Tmax).

Proof The consequence can be obtained by the comparison theorem (Theorem B.1 of
[10]). �

Lemma 2.5 Let z := – ln( w
‖w0‖L∞(Ω)

). Then we have z ≥ 0 and zt = �z – |∇z|2 + u + υ on
Ω × (0, Tmax).

Proof According to Lemma 2.4, we know w
‖w0‖L∞(Ω)

≤ 1 for (x, t) ∈ (Ω × (0, Tmax)) and thus
z ≥ 0. Moreover, on Ω × (0, Tmax),

zt = –
‖w0‖L∞(Ω)wt

w‖w0‖L∞(Ω)
= –

wt

w
,

∇z = –
‖w0‖L∞(Ω)∇w
w‖w0‖L∞(Ω)

= –
∇w
w

,

which entails

�z = ∇ · ∇z = ∇ ·
(

–
∇w
w

)

= –
�w
w

+
|∇w|2

w2 = –
�w
w

+ |∇z|2.

Together with wt = �w – (u + v)w this proves

zt = –
wt

w
= –

�w
w

+ u + υ = �z – |∇z|2 + u + υ (2.2)

on Ω × (0, Tmax). �

Accordingly, the pair (u,υ, z) solves the PDE system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = �u + χ1∇ · (u∇z) + μ1u – μ1uα , x ∈ Ω , t > 0,

υt = �υ + χ2∇ · (υ∇z) + μ2υ – μ2υ
β , x ∈ Ω , t > 0,

zt = �z – |∇z|2 + u + υ, x ∈ Ω , t > 0,
∂u
∂ν

= ∂υ
∂ν

= ∂z
∂ν

= 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), υ(x, 0) = υ0(x),

z(x, 0) = z0(x) := – ln w0
‖w0‖L∞(Ω)

, x ∈ Ω .

(2.3)

For solution (u,υ, z) of the system (2.3), we present the following proposition.

Lemma 2.6 For any T ≤ Tmax, T < ∞, if there are a constant C = C(T) > 0 and some p ≥ 1,
satisfying p > n

2 , with ‖u(·, t)‖Lp + ‖υ(·, t)‖Lp ≤ C on (0, T), then z is bounded on Ω × (0, T).



Huang et al. Journal of Inequalities and Applications        (2019) 2019:234 Page 6 of 17

Proof By the variation-of-constants formula, z can be represented as

z(·, t) = et�z0 +
∫ t

0
e(t–s)�(

u(·, s) + υ(·, s) – |∇z|2)ds

≤ et�z0 +
∫ t

0
e(t–s)�u(·, s) ds +

∫ t

0
e(t–s)�υ(·, s) ds, t ∈ (0, T),

for –|∇z(·, s)|2 ≤ 0 immediately implies e(t–s)�(–|∇z(·, s)|2) ≤ 0. With this representation
and semigroup estimates as in [26], Lemma 1.3, we obtain c1 > 0 such that for all t ∈ (0, T)

∥
∥z(·, t)

∥
∥

L∞(Ω)

≤ ∥
∥et�z0

∥
∥

L∞(Ω) +
∫ t

0

∥
∥e(t–s)�u(·, s)

∥
∥

L∞(Ω) ds +
∫ t

0

∥
∥e(t–s)�υ(·, s)

∥
∥

L∞(Ω) ds

≤ ‖z0‖L∞(Ω) +
∫ t

0
c1

(
1 + (t – s)– n

2p
)∥
∥u(·, s)

∥
∥

Lp(Ω) ds

+
∫ t

0
c1

(
1 + (t – s)– n

2p
)∥
∥υ(·, s)

∥
∥

Lp(Ω) ds

≤ ‖z0‖L∞(Ω) + 2c1C
∫ T

0

(
1 + (t – s)– n

2p
)

ds < ∞,

since p > n
2 implies that – n

2p > –1 and thus finiteness of the integral. �

From the above lemma, we can obtain the following estimate for w.

Lemma 2.7 For any T ≤ Tmax, T < ∞, if there are a constant C = C(T) > 0 and some p ≥ 1,
p > n

2 , with ‖u(·, t)‖Lp +‖υ(·, t)‖Lp ≤ C on (0, T), then there are d = d(T) > 0, such that w ≥ d
and in particular 1

w ≤ 1
d on Ω × (0, T).

Proof By Lemma 2.6 there are C = C(T) > 0 with z ≤ C on Ω × (0, T). From the definition
z := – ln( w

‖w0‖L∞(Ω)
), we directly obtain w ≥ ‖w0‖L∞(Ω)e–C =: d > 0 on Ω × (0, T). �

3 Global existence for n-dimensional case (n ≥ 2)
Now we deal with the global solutions of (1.4) when n ≥ 2,α = β = 2.

Lemma 3.1 Let T ∈ (0, Tmax], T < ∞, r, p ∈ [1,∞] and suppose

1
2

+
n
2

(
1
p

–
1
r

)

< 1.

Then there is C > 0 such that for all t ∈ (0, T) we have

∥
∥∇w(·, t)

∥
∥

Lr (Ω) ≤ C
(

1 + sup
s∈(0,t)

∥
∥u(·, s)

∥
∥

Lp(Ω) + sup
s∈(0,t)

∥
∥υ(·, s)

∥
∥

Lp(Ω)

)
.

Proof First let p ≤ r.
Due to the variation-of-constants formula, for all t ∈ (0, T) we have

∥
∥∇w(·, t)

∥
∥

Lr (Ω) ≤ ∥
∥∇et�w0

∥
∥

Lr (Ω) +
∫ t

0

∥
∥∇e(t–s)�(

(u + υ)w
)∥
∥

Lr(Ω) ds
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and the semigroup estimates of [26], Lemma 1.3, entail the existence of c1 > 0 and λ > 0
such that

∥
∥∇et�w0

∥
∥

Lr (Ω) ≤ c1

and

∥
∥∇e(t–s)�(

(u + υ)w
)∥
∥

Lr (Ω)

≤ c1
(
1 + (t – s)– 1

2 – n
2 ( 1

p – 1
r ))e–λ(t–s)∥∥(u + υ)w

∥
∥

Lp(Ω)

≤ c1
(
1 + (t – s)– 1

2 – n
2 ( 1

p – 1
r ))e–λ(t–s)‖u + υ‖Lp(Ω)‖w‖L∞(Ω)

≤ c1
(
1 + (t – s)– 1

2 – n
2 ( 1

p – 1
r ))e–λ(t–s)(‖u‖Lp(Ω) + ‖υ‖Lp(Ω)

)‖w0‖L∞(Ω)

hold for all t ∈ (0, T), s ≤ t, where in the last step we have employed Lemma 2.4. Together
this results in

∥
∥∇w(·, t)

∥
∥

Lr (Ω)

≤ c1 + c1‖w0‖L∞(Ω)

(
sup

s∈(0,t)

∥
∥u(·, s)

∥
∥

Lp(Ω) + sup
s∈(0,t)

∥
∥υ(·, s)

∥
∥

Lp(Ω)

)

×
∫ t

0

(
1 + (t – s)– 1

2 – n
2 ( 1

p – 1
r ))e–λ(t–s) ds

for all t ∈ (0, T) and hence in the claim, because the integral
∫ ∞

0 (1 + (t – s)– 1
2 – n

2 ( 1
p – 1

r )) ×
e–λ(t–s) ds is finite.

For p > r the claim follows from the previous considerations together with Hölder’s in-
equality. For some c2, c3 we have

∥
∥∇w(·, t)

∥
∥

Lr (Ω)

≤ c2
∥
∥∇w(·, t)

∥
∥

Lp(Ω)

≤ c3

(
1 + sup

s∈(0,t)

∥
∥u(·, s)

∥
∥

Lr (Ω) + sup
s∈(0,t)

∥
∥υ(·, s)

∥
∥

Lr (Ω)

)

≤ c3

(
1 + sup

s∈(0,t)

∥
∥u(·, s)

∥
∥

Lp(Ω)|Ω| p–r
rp + sup

s∈(0,t)

∥
∥υ(·, s)

∥
∥

Lp(Ω)|Ω| p–r
rp

)

≤ C
(

1 + sup
s∈(0,t)

∥
∥u(·, s)

∥
∥

Lp(Ω) + sup
s∈(0,t)

∥
∥υ(·, s)

∥
∥

Lp(Ω)

)

for all t ∈ (0, T). �

The following lemma asserts that boundedness of ‖u(·, t)‖Lp(Ω) and ‖υ(·, t)‖Lp(Ω) for
some p > n

2 is sufficient to guarantee boundedness of the solution.

Lemma 3.2 Suppose that the initial data u0, υ0 and w0 satisfy (1.5). Let T ∈ (0, Tmax],
T < ∞, p ≥ 1. If the first and second components of the solution satisfy

sup
t∈(0,T)

(∥
∥u(·, t)

∥
∥

Lp(Ω) +
∥
∥υ(·, t)

∥
∥

Lp(Ω)

)
< ∞,
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for some p > n
2 , then

sup
t∈(0,T)

(∥
∥u(·, t)

∥
∥

L∞(Ω) +
∥
∥υ(·, t)

∥
∥

L∞(Ω) +
∥
∥w(·, t)

∥
∥

W 1,∞
)

< ∞.

Proof For each fixed p > n
2

np
(n – p)+

=

⎧
⎨

⎩

∞ if p ≥ n,
np

(n–p) > n if n
2 < p < n,

it is possible to find p0 > 1 fulfilling

n < p0 <
np

(n – p)+
, (3.1)

which enables us to choose k > 1 such that

n < kp0 <
np

(n – p)+
. (3.2)

Applying the variation-of constants formula for u and c1 := supu>0(u – u2)

u(·, t) = et�u0 – χ1

∫ t

0
e(t–s)�∇ ·

(

u
∇w
w

)

ds + μ1

∫ t

0
e(t–s)�(

u – u2)ds

≤ et�u0 – χ1

∫ t

0
e(t–s)�∇ ·

(

u
∇w
w

)

ds + μ1c1T

we get

∥
∥u(·, t)

∥
∥

L∞(Ω) ≤ ∥
∥et�u0

∥
∥

L∞(Ω) + χ1

∫ t

0

∥
∥
∥
∥e(t–s)�∇ ·

(

u
∇w
w

)∥
∥
∥
∥

L∞(Ω)
ds + μ1c1T

for all t ∈ (0, T). In view of the smooth estimates for the Neumann heat semigroup ([26],
Lemma 3.1), we obtain c2 satisfying

∥
∥u(·, t)

∥
∥

L∞(Ω)

≤ ‖u0‖L∞(Ω) + c2χ1

∫ t

0

(
1 + (t – s)– 1

2 – n
2p0

)
∥
∥
∥
∥u

∇w
w

∥
∥
∥
∥

Lp0 (Ω)
ds + μ1c1T (3.3)

for all t ∈ (0, T). Here by Hölder’s inequality, the interpolation inequality, (2.1), Lemma
3.1, and (3.2), we can find c3 such that

∥
∥
∥
∥u

∇w
w

∥
∥
∥
∥

Lp0 (Ω)
≤ 1

d
‖u‖Lk′p0 (Ω)‖∇w‖Lkp0 (Ω)

≤ 1
d

‖u‖a
L∞(Ω)‖u‖1–a

L1(Ω)‖∇w‖Lkp0

≤ 1
d

m1–a
1 c3‖u‖a

L∞(Ω),
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where k′ = k
k–1 , a = 1 – 1

k′p0
∈ (0, 1). Inserting this into (3.3), it follows that

sup
t∈(0,T)

∥
∥u(·, t)

∥
∥

L∞(Ω) ≤ ‖u0‖L∞(Ω) + c4 sup
t∈(0,T)

∥
∥u(·, t)

∥
∥a

L∞(Ω) + μ1c1T

for all T ∈ (0, Tmax] with

c4 =
1
d

m1–a
1 χ1c2c3

∫ ∞

0

(
1 + (t – s)– 1

2 – n
2p0

)
ds

is finite thanks to the left-hand side of (3.1).
Arguing similarly, we see that

sup
t∈(0,T)

∥
∥υ(·, t)

∥
∥

L∞(Ω) ≤ ‖υ0‖L∞(Ω) + c6 sup
t∈(0,T)

∥
∥υ(·, t)

∥
∥a

L∞(Ω) + μ2c5T

for all T ∈ (0, Tmax]. The boundedness assertion concerning ‖w‖W 1,∞(Ω) results from
Lemma 2.4 and Lemma 3.1. Hence we complete the proof. �

We are in need of estimates of ‖u‖Lp(Ω) and ‖υ‖Lp(Ω) for some p > n
2 . The estimates will

be based on the following observation.

Lemma 3.3 For all p, q ∈R, on (0, Tmax) we have

d
dt

∫

Ω

upwq

≤ –(p – 1)p
∫

Ω

up–2wq|∇u|2 +
(
p(p – 1)χ1 – 2pq

)
∫

Ω

up–1wq–1∇u · ∇w

+
(
pqχ1 – q(q – 1)

)
∫

Ω

upwq–2|∇w|2 + pμ1

∫

Ω

upwq – (μ1p + q)
∫

Ω

up+1wq, (3.4)

d
dt

∫

Ω

υpwq

≤ –(p – 1)p
∫

Ω

υp–2wq|∇υ|2 +
(
p(p – 1)χ2 – 2pq

)
∫

Ω

υp–1wq–1∇υ · ∇w

+
(
pqχ2 – q(q – 1)

)
∫

Ω

υpwq–2|∇w|2 + pμ2

∫

Ω

υpwq – (μ1p + q)
∫

Ω

υp+1wq. (3.5)

Proof A direct calculation shows that

d
dt

∫

Ω

upwq

= p
∫

Ω

up–1utwq + q
∫

Ω

upwq–1wt

= p
∫

Ω

up–1wq�u – pχ1

∫

Ω

up–1wq∇ ·
(

u
∇w
w

)

+ p
∫

Ω

up–1(μ1
(
u – u2))wq

+ q
∫

Ω

upwq–1�w – q
∫

Ω

up+1wq – q
∫

Ω

upwqυ

≤ –p
∫

Ω

∇(
up–1wq) · ∇u + pχ1

∫

Ω

u
w

∇(
up–1wq)
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× ∇w + pμ1

∫

Ω

upwq – μ1p
∫

Ω

up+1wq

– q
∫

Ω

∇(
upwq–1) · ∇w – q

∫

Ω

up+1wq

= –p(p – 1)
∫

Ω

up–2wq|∇u|2 – pq
∫

Ω

up–1wq–1∇u · ∇w

+ p(p – 1)χ1

∫

Ω

up–1wq–1∇u · ∇w + pqχ1

∫

Ω

uqwq–2|∇w|2 + pμ1

∫

Ω

upwq

– μ1p
∫

Ω

up+1wq – pq
∫

Ω

up–1wq–1∇u · ∇w

– q(q – 1)
∫

Ω

upwq–2|∇w|2 – q
∫

Ω

up+1wq

= –p(p – 1)
∫

Ω

up–2wq|∇u|2 +
(
p(p – 1)χ1 – 2pq

)
∫

Ω

up–1wq–1∇u · ∇w

+
(
pqχ1 – q(q – 1)

)

×
∫

Ω

upwq–2|∇w|2 + pμ1

∫

Ω

upwq – (μ1p + q)
∫

Ω

up+1wq

on (0, Tmax). In the same way, we obtain (3.5). �

Next, we transform (3.4), (3.5) into bounds on
∫

Ω
upwq,

∫

Ω
υpwq, where we will, in fact,

use a negative exponent q.

Lemma 3.4 If p > 1 and r > 0 satisfy p ∈ (1, 1
max{χ2

1 ,χ2
2 } ) and r ∈ (r–, min{r+, min{μ1,μ2}p}),

where

r± =
p – 1

2
(
1 ±

√

1 – pχ2
i
)

(i = 1, 2),

and T ∈ (0, Tmax], T < ∞, then there is C = C(T) > 0 such that

∫

Ω

upw–r ≤ C,
∫

Ω

υpw–r ≤ C on (0, T).

Proof Inserting q = –r in Lemma 3.3, on (0, Tmax) we obtain

d
dt

∫

Ω

upw–r

≤ –p(p – 1)
∫

Ω

up–2w–r|∇u|2 +
(
p(p – 1)χ1 + 2pr

)
∫

Ω

up–1w–r–1∇u · ∇w

–
(
prχ1 + r(r + 1)

)
∫

Ω

upw–r–2|∇w|2 + pμ1

∫

Ω

upw–r + (r – μ1p)
∫

Ω

up+1w–r .

By Young’s inequality, the second term can be estimated by

∣
∣
∣
∣

(
p(p – 1)χ1 + 2pr

)
∫

Ω

up–1w–r–1∇u · ∇w
∣
∣
∣
∣

≤ p(p – 1)
∫

Ω

up–2w–r|∇u|2 +
(p(p – 1)χ1 + 2pr)2

4p(p – 1)

∫

Ω

upw–r–2|∇w|2
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on (0, Tmax). Thus, on (0, Tmax) we have

d
dt

∫

Ω

upw–r ≤
(

(p(p – 1)χ1 + 2pr)2

4p(p – 1)
–

(
prχ1 + r(r + 1)

)
)∫

Ω

upw–r–2|∇w|2

+ pμ1

∫

Ω

upw–r + (r – μ1p)
∫

Ω

up+1w–r .

By the choice of r, r – μ1p < 0 and (p(p–1)χ1+2pr)2

4p(p–1) – (prχ1 + r(r + 1)) < 0, because

r ∈ (r–, r+) �⇒ r2 – (p – 1)r +
p(p – 1)2χ2

1
4

< 0

�⇒ p(p – 1)χ2
1 + 4prχ1 +

4r2p
p – 1

< 4prχ1 + 4r2 + 4r

�⇒ (χ1 + 2r
p–1 )2p(p – 1)

4(prχ1 + r(r + 1))
< 1

�⇒ (p(p – 1)χ1 + 2pr)2

4(prχ1 + r(r + 1))
< p(p – 1)

�⇒ (p(p – 1)χ1 + 2pr)2

4p(p – 1)
–

(
prχ1 + r(r + 1)

)
< 0,

we can conclude that

d
dt

∫

Ω

upw–r ≤ pμ1

∫

Ω

upw–r

on (0, Tmax) and hence

∫

Ω

up(·, t)w–r(·, t) ≤ epμ1t
∫

Ω

up
0w–r

0

for every t ∈ (0, Tmax). Thus for every T ∈ (0, Tmax] with T < ∞ there is C1 := epμ1T ×
∫

Ω
up

0w–r
0 , such that

∫

Ω

up(·, t)w–r(·, t) ≤ C1

for all t ∈ (0, T). In the same way, we see that

∫

Ω

υp(·, t)w–r(·, t) ≤ C2

for all t ∈ (0, T). �

Aided by Lemma 3.4, we now can find a bound for ‖u(·, t)‖Lp(Ω) and ‖υ(·, t)‖Lp(Ω).

Lemma 3.5 Let p ∈ (1, 1
max{χ2

1 ,χ2
2 } ) be such that min{μ1,μ2}p > p–1

2 and let T ∈ (0, Tmax),
T < ∞. Then there is C = C(T) > 0 satisfying ‖u(·, t)‖Lp(Ω) ≤ C, ‖υ(·, t)‖Lp(Ω) ≤ C for all
t ∈ (0, T).
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Proof Let r± be the constants as in Lemma 3.4, that is,

r± =
p – 1

2
(
1 ±

√

1 – pχ2
i
)

(i = 1, 2).

Due to p < 1
max{χ2

1 ,χ2
2 } , apparently we have 1 – pχ2

i > 0 and thus r– < r+. Moreover, since

min{μ1,μ2}p > p–1
2 , r– < p–1

2 , it is ensured that r– < min{μ1,μ2}p. Accordingly, there is
some r ∈ (r–, min{r+, min{μ1,μ2}p}). For such a number r by Lemma 3.4 there is c1 > 0
satisfying

∫

Ω

up(·, t)w–r(·, t) ≤ c1 for all t ∈ (0, T).

For t ∈ (0, T) it now holds true that

∥
∥u(·, t)

∥
∥

Lp(Ω) =
(∫

Ω

up(·, t)w–r(·, t)wr(·, t)
) 1

p
≤

(∫

Ω

up(·, t)w–r(·, t)
∥
∥wr∥∥

L∞(Ω)

) 1
p

≤ ‖w0‖
r
p
L∞(Ω)

(∫

Ω

up(·, t)w–r(·, t)
) 1

p
≤ ‖w0‖

r
p
L∞(Ω)c

1
p
1 =: C1,

because by Lemma 2.4, for every t ∈ (0, Tmax) we have ‖w(·, t)‖L∞(Ω) ≤ ‖w0‖L∞(Ω).
Arguing similarly, we can obtain ‖υ(·, t)‖Lp(Ω) ≤ C2 for all t ∈ (0, T). �

We can now use this to show global existence.

Proof of Theorem 1.1 Because max{χ1,χ2} <
√

2
n , the interval ( n

2 , 1
max{χ2

1 ,χ2
2 } ) is nonempty.

Since moreover
n
2 –1
2· n

2
= n–2

2n < min{μ1,μ2}, it is possible to find p ∈ ( n
2 , 1

max(χ2
1 ,χ2

2 ) ) such that
p–1
2p < min{μ1,μ2}, i.e. min{μ1,μ2}p > p–1

2 . By Lemma 3.5 for every such p and every T ∈
(0, Tmax], T < ∞ there is C(T) > 0 with

∥
∥u(·, t)

∥
∥

LP(Ω) ≤ C(T) for t ∈ (0, T).

If we suppose that T were finite, we could, herein, choose T = Tmax and from Lemma 3.2
infer that

sup
t∈(0,Tmax)

(∥
∥u(·, t)

∥
∥

L∞(Ω) +
∥
∥υ(·, t)

∥
∥

L∞(Ω) +
∥
∥w(·, t)

∥
∥

W 1,∞
)

< ∞

in blatant contradiction to Lemma 2.1. �

4 The one-dimensional case
Now we deal with the global solutions of (1.4) when n = 1, α, β >1.

Lemma 4.1 For α, β > 1, n = 1 and T ∈ (0, Tmax], T < ∞, there exists C > 0 such that

w ≥ w(t) := ‖w0‖L∞(Ω)e–C(1+t), (x, t) ∈ Ω × (0, T). (4.1)
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Proof We know from (2.2) that

z = et�z0 –
∫ t

0
e(t–s)�|∇z|2 ds +

∫ t

0
e(t–s)�(u + υ) ds

≤ et�z0 +
∫ t

0
e(t–s)�(u + υ) ds (4.2)

by the order preserving of the Neumann heat semigroup {et�}t≥0. For α, β > 1 and n = 1,
we have from (4.2)

‖z‖L∞(Ω)

≤ ∥
∥et�z0

∥
∥

L∞(Ω) +
∫ t

0

∥
∥e(t–s)�(u – u)

∥
∥

L∞(Ω) ds +
∫ t

0

∥
∥e(t–s)�u

∥
∥

L∞(Ω) ds

+
∫ t

0

∥
∥e(t–s)�(υ – υ)

∥
∥

L∞(Ω) ds +
∫ t

0

∥
∥e(t–s)�υ

∥
∥

L∞(Ω) ds

≤ ‖z0‖L∞(Ω) +
m1

|Ω| t +
m2

|Ω| t + k1

∫ t

0

(
1 + (t – s)– 1

2
)
e–λ(t–s)‖u – u‖L1(Ω) ds

+ k1

∫ t

0

(
1 + (t – s)– 1

2
)
e–λ(t–s)‖υ – υ‖L1(Ω) ds

≤ ‖z0‖L∞(Ω) +
m1

|Ω| t +
m2

|Ω| t + 2k1m1

∫ t

0

(
1 + (t – s)– 1

2
)
e–λ(t–s) ds

+ 2k1m2

∫ t

0

(
1 + (t – s)– 1

2
)
e–λ(t–s) ds

≤ C(1 + t), (4.3)

where u := 1
|Ω|

∫

Ω
u dx, υ := 1

|Ω|
∫

Ω
υ dx, λ denotes the first nonzero eigenvalue of –� in

Ω under the homogeneous Neumann boundary conditions. The estimates (4.3) with z :=
– ln( w

‖w0‖L∞(Ω)
) yield (4.1). �

There is just a more easy case of getting an Lp-estimate of u, υ with some p > 1 directly
by the L1-estimate.

Lemma 4.2 For any T ≤ Tmax, T < ∞. Let n = 1, α,β > 1 and p > 1. Then there exists C > 0
such that

‖u‖Lp(Ω) ≤ C
(

1 + t +
∫ t

0

(
eC(1+s)

‖w0‖L∞(Ω)

) 2(p+α–1)
α–1

ds
) 1

p
, t ∈ (0, T), (4.4)

‖υ‖Lp(Ω) ≤ C
(

1 + t +
∫ t

0

(
eC(1+s)

‖w0‖L∞(Ω)

) 2(p+β–1)
β–1

ds
) 1

p
, t ∈ (0, T). (4.5)

Proof Due to the variation-of-constants formula and the semigroup estimates of [26],
Lemma 1.3, we have the existence of k1 > 0 and λ > 0 such that

∥
∥∇w(·, t)

∥
∥

Lp(Ω)
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≤ ‖∇w0‖Lp(Ω) + k1

∫ t

0

(
1 + (t – s)–1+ 1

2p
)
e–λ(t–s)∥∥(u + υ)w

∥
∥

L1(Ω) ds

≤ ‖∇w0‖Lp(Ω) + k1‖w0‖L∞(Ω)m1

∫ ∞

0

(
1 + (t – s)–1+ 1

2p
)
e–λ(t–s) ds

+ k1‖w0‖L∞(Ω)m2

∫ ∞

0

(
1 + (t – s)–1+ 1

2p
)
e–λ(t–s) ds

≤ c1 (4.6)

holding for all t ∈ (0, T), s ≤ t.
By Young’s inequality with Lemma 4.1 and (4.6), we have

1
p

d
dt

∫

Ω

up dx

=
∫

Ω

up–1
(

�u – χ1∇ ·
(

u
∇w
w

)

+ μ1u – μ1uα

)

dx

= –(p – 1)
∫

Ω

up–2|∇u|2 dx + χ1(p – 1)
∫

Ω

up–1 ∇u · ∇w
w

dx

+ μ1

∫

Ω

up dx – μ1

∫

Ω

up+α–1 dx

≤ p – 1
4

∫

Ω

up |∇w|2
w2 dx + μ1

∫

Ω

up dx – μ1

∫

Ω

up+α–1 dx

≤ p – 1
4‖w0‖L∞(Ω)e–2C(1+t)

∫

Ω

up|∇w|2 dx + μ1

∫

Ω

up dx – μ1

∫

Ω

up+α–1 dx

≤ c2

(
1

‖w0‖L∞(Ω)e–C(1+t)

) 2(p+α–1)
α–1

∫

Ω

|∇w| 2(p+α–1)
α–1 dx + c3

≤ c4

((
1

‖w0‖L∞(Ω)e–C(1+t)

) 2(p+α–1)
α–1

c
2(p+α–1)

α–1
1 + 1

)

, t ∈ (0, T),

then

∫

Ω

up dx ≤
∫

Ω

up
0 dx + c4pt + c4pc

2(p+α–1)
α–1

1

∫ t

0

(
1

‖w0‖L∞(Ω)e–C(1+s)

) 2(p+α–1)
α–1

ds

≤ C
(

1 + t +
∫ t

0

(
1

‖w0‖L∞(Ω)e–C(1+s)

) 2(p+α–1)
α–1

ds
)

, t ∈ (0, T).

In the same way, we can easily get (4.5). �

We can now use this to show global existence.

Proof of Theorem 1.2 When n = 1 with α,β > 1. We have from Lemma 4.1, Lemma 4.2
with p = 2

‖∇w‖L∞(Ω)

≤ ‖∇w0‖L∞(Ω) + k1

∫ t

0

(
1 + (t – s)– 3

4
)
e–λ(t–s)∥∥

(
(u + υ)w

)∥
∥

L2(Ω) ds
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≤ ‖∇w0‖L∞(Ω) + k1C‖w0‖L∞(Ω)

(

1 + t +
∫ t

0

(
eC(1+s)

‖w0‖L∞(Ω)

) 2(α+1)
α–1

ds
) 1

2

×
∫ ∞

0

(
1 + (t – s)– 3

4
)
e–λ(t–s) ds

+ k1C‖w0‖L∞(Ω)

(

1 + t +
∫ t

0

(
eC(1+s)

‖w0‖L∞(Ω)

) 2(β+1)
β–1

ds
) 1

2

×
∫ ∞

0

(
1 + (t – s)– 3

4
)
e–λ(t–s) ds

≤ ‖∇w0‖L∞(Ω) + 2k1C‖w0‖L∞(Ω)

(

1 + t +
∫ t

0

(
eC(1+s)

‖w0‖L∞(Ω)

) 2(γ +1)
γ –1

ds
) 1

2

×
∫ ∞

0

(
1 + (t – s)– 3

4
)
e–λ(t–s) ds

≤ c5

(

1 + t +
∫ t

0

(
eC(1+s)

‖w0‖L∞(Ω)

) 2(γ +1)
γ –1

ds
) 1

2
, t ∈ (0, T), (4.7)

where γ := min{α,β}, λ denotes the first nonzero eigenvalue of –� in Ω under the homo-
geneous Neumann boundary conditions. By the variation-of-constants formula for u and
the order preserving of the Neumann heat semigroup {et�}t≥0 with the positivity of u, we
know

u(·, t)

= et�u0 – χ1

∫ t

0
e(t–s)�∇ ·

(

u
∇w
w

)

ds + μ1

∫ t

0
e(t–s)�(

u – uα
)

ds

≤ et�u0 – χ1

∫ t

0
e(t–s)�∇ ·

(

u
∇w
w

)

ds + μ1

∫ t

0
e(t–s)�u ds, t ∈ (0, T). (4.8)

Furthermore, according to [26], Lemma 3.1, with (4.8), (2.1), Lemma 2.4, Lemma 4.1, (4.4)
and (4.7), we get for p = 2

‖u‖L∞(Ω)

≤ ‖u0‖L∞(Ω) + k2χ1

∫ t

0

(
1 + (t – s)– 3

4
)
e–λ(t–s)

∥
∥
∥
∥u

∇w
w

∥
∥
∥
∥

L2(Ω)
ds

+ μ1k2

∫ t

0

(
1 + (t – s)– 1

2
)
e–λ(t–s)‖u – ū‖L1(Ω) ds +

μ1m1

|Ω| t

≤ ‖u0‖L∞(Ω)

+ k2χ1
1

‖w0‖L∞(Ω)e–C(1+t)

∫ t

0

(
1 + (t – s)– 3

4
)
e–λ(t–s)‖u‖L2(Ω)‖∇w‖L∞(Ω) ds

+ 2μ1k2m1

∫ ∞

0

(
1 + (t – s)– 1

2
)
e–λ(t–s) ds +

μ1m1

|Ω| t

≤ c6

(

1 +
1

‖w0‖L∞(Ω)e–C(1+t)

)(

1 + t +
∫ t

0

(
eC(1+s)

‖w0‖L∞(Ω)

) 2(γ +1)
γ –1

ds
)

,

t ∈ (0, T), (4.9)
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where γ := min{α,β}, u := 1
|Ω|

∫

Ω
u dx, λ denotes the first nonzero eigenvalue of –� in Ω

under the homogeneous Neumann boundary conditions.
In the same way, we see that

‖υ‖L∞(Ω)

≤ c7

(

1 +
1

‖w0‖L∞(Ω)e–C(1+t)

)(

1 + t +
∫ t

0

(
eC(1+s)

‖w0‖L∞(Ω)

) 2(γ +1)
γ –1

ds
)

,

t ∈ (0, T). (4.10)

Combining Lemma 2.4, (4.7), (4.9), (4.10) with Lemma 2.1, we complete the proof of The-
orem 1.2. �
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