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Abstract
This paper focuses on the issue of detecting the multiple change points for linear
processes under negatively super-additive dependence (NSD). We propose a
CUSUM-type method in the multiple variance change model and establish the weak
convergence rate of the change points estimation. To carry out this method, we give
a multiple variance-change iterative (MVCI) algorithm. Additionally, some simulations
are implemented to substantiate the validity of the CUSUM-type method.
Comparison with some best methods indicates that the CUSUM-type change point
estimation is computationally competitive and superior in terms of the mean squared
error (MSE).
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1 Introduction
As a common feature of ‘big data’, change point arises in many areas such as signal process-
ing (Basseville [1]), finance (Chen and Gupta [2]), ecology (Hawkins [3]), disease outbreak
watch (Sparks et al. [4]), and neuroscience (Ratnam et al. [5]; Lena et al. [6]) and has been
much investigated in the last few decades. To detect change point and estimate its lo-
cation, there has emerged a number of approaches including least squares (LS, Bai [7]),
Bayesian method (Fearnhead [8]), maximum likelihood (Zou et al. [9]), and some non-
parametric methods (Matteson and James [10]; Haynes et al. [11]). The cumulative sum
(CUSUM) method, based on the LS estimation, is a very attractive one for detecting the
variance change in a sequence because it avoids some assumptions about the underlying
error distribution function and is computed simply (Gombay et al. [12]). For independent
sequences, Gombay et al. [12] constructed the CUSUM statistic to detect and estimate
the change of variance. Wang and Wang [13] used the CUSUM test to detect the vari-
ance change in a linear process with long memory errors. Zhao et al. [14] considered the
ratio test for variance change in a linear process. Qin et al. [15] investigated the strong
convergence rate of the CUSUM estimator of the variance change in linear processes.

However, most of the references above assume the change point number in a sequence is
one, which is a serious restriction when applied to practical problems. For multiple change
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point detection, Inclán and Tiao [16] employed the cumulative sums of squares to detect
the multiple changes of variance in the uncorrelated sequences. Lavielle [17] obtained the
convergence rate for multiple change detection for strongly mixing and strongly depen-
dent processes. Li and Zhao [18] gave the convergence rate for multiple change-points es-
timation of moving-average processes. More recently, Haynes et al. [11] proposed a com-
putationally efficient nonparametric approach for change point detection, and Laurentiu
et al. [19] offered the Bayesian loss-based approach to analyze change point problem. But
both of them require the information of the underlying error distribution function, which
may lead to the complexity of computation.

In this contribution, we consider the following multiple variance change model:

Yt = μ + σiet , t∗
i–1 ≤ t ≤ t∗

i , 1 ≤ i ≤ r, (1)

where r is the known number of change points, μ and σi (1 ≤ i ≤ r) are parameters, t∗
i ,

1 ≤ i ≤ r, t∗
0 = 0, t∗

r+1 = n are the true change locations with t∗
i = [τin], where [x] denotes

the integer part of x, τ = (τ ∗
1 , τ ∗

2 , . . . , τ ∗
r ) are the change points, and et is linear processes

given as follows:

et =
∞∑

j=0

ajεt–j, (2)

where aj is an array of real numbers satisfying
∑∞

j=0 a2
j < ∞, {εm, m ∈ Z} are stationary

random variables.
Under the independent or dependent assumptions of {εm, m ∈ Z}, the convergence rates

of the single change point estimators have been established for the linear processes (2). We
refer to Bai [7] and Qin et al. [15] for independence case, to Li and Zhao [18] for linear
negative quadrant dependence, and to Wang and Wang [13] for long range dependence.
In this article, we will consider the multiple variance change model, and simultaneously
{εm, m ∈ Z} are negatively super-additive dependence (NSD) whose definition is based on
the super-additive functions.

Definition 1 (Hu [20]) A function φ is called super-additive if

φ(x ∨ y) + φ(x ∧ y) ≥ φ(x) + φ(y)

for all x, y ∈ Rn, where “∨” is componentwise maximum and “∧” represents component-
wise minimum.

Definition 2 (Hu [20]) A random vector (X1, X2, . . . , Xn) is said to be NSD if

Eφ(X1, X2, . . . , Xn) ≤ Eφ
(
X∗

1 , X∗
2 , . . . , X∗

n
)
, (3)

where {X∗
m, 1 ≤ m ≤ n} are independent random variables that have the same marginal

distribution with {Xm, 1 ≤ m ≤ n} for each i, and φ is a super-additive function such that
the expectations in (3) exist.



Yu et al. Journal of Inequalities and Applications        (2019) 2019:216 Page 3 of 16

Definition 3 (Wang et al. [21]) A sequence of random variables (X1, X2, . . . , Xn, . . .) is
called NSD if, for all n ≥ 1, (X1, X2, . . . , Xn) is NSD.

NSD has received considerable attention since it includes the well-known negative asso-
ciation (see Christofides and Vaggelatou [22]). Eghbal et al. [23] explored the strong law of
large numbers and the rate of convergence for NSD sequences with the existence of high
order moments. Shen et al. [24] and Wu et al. [25] got the almost sure and complete con-
vergence, respectively, for NSD random variables. Wang et al. [26] investigated the com-
plete convergence, and Yu et al. [27] established the central limit theorem for weighted
sums of NSD random variables. Moreover, NSD samples have been introduced to various
models; for example, under NSD errors, Yu et al. [27] considered the M-test problem of
regression parameters in a linear model; Wang et al. [28] studied the strong consistency
and weak consistency of the LS estimators in an EV regression model, and Yu et al. [29]
obtained the convergence rates of the wavelet thresholding estimators in a nonparametric
regression model.

The aim of this study is to detect the multiple change points for linear processes under
NSD. We propose the CUSUM-type change point estimator in model (1) and establish
the weak convergence rate of the estimator with the mean parameter μ estimated by its
LS estimator. Moreover, some simulations are implemented by R Software to compare the
CUSUM-type estimator with some methods. The result indicates that the CUSUM-type
change point estimator is broadly comparable with those obtained by the typical methods.

The remainder of this paper is organized as follows. In Sect. 2, we describe the CUSUM-
type multiple change point estimation and give the weak convergence rate of this estima-
tor. Also, we give a multiple variance-change iterative (MVCI) algorithm to evaluate the
estimator. In Sect. 3, some simulations are presented to show the performances of the
estimator. Finally, the proofs of the main results are given in Sect. 4.

2 Estimation and main results
Let Ỹj = Yj – μ̂n, where μ̂n = 1

n
∑n

t=1 Yt is the LS estimator of the mean μ. Assume that

An,r =
{

(t0, t1, . . . , tr+1), t0 = 0 < t1 < · · · < tr < tr+1 = n
}

is a set of allowable r-partitions. We further consider the following set of allowable r-
partitions:

Aδn
n,r =

{
(t0, t1, . . . , tr+1) : ti – ti–1 ≥ nδn

}
,

where δn is a non-increasing non-negative sequence satisfying δn → 0 and nδn → ∞.
For each ti, 1 ≤ i ≤ r + 1, we define

R(ti) =
(ti – ti–1)(ti+1 – ti)

(ti+1 – ti–1)2

∣∣∣∣∣
1

ti – ti–1

ti∑

t=ti–1+1

Ỹ 2
t –

1
ti+1 – ti

ti+1∑

t=ti+1

Ỹ 2
t

∣∣∣∣∣.

Denote τ̂
δn = t̂

δn /n, the CUSUM-type multiple change point estimator is given by

τ̂
δn = arg max

t∈Aδn
n,r

1
n

r+1∑

i=1

R(ti). (4)
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To derive our results, we list several conditions as follows.
(A1) {εm, m ∈ Z} are stationary NSD random variables with Eεm = 0 and

Var(εm) = σ 2 < ∞.
(A2) For all l ≥ 1, we have

∑
m:|l–m|≥u |Cov(εl, εm)| → 0, as u → ∞.

(A3) Eε4
m < ∞ holds for all m ≥ 1.

(A4)
∑∞

j=0 |aj| < ∞.

Remark 1 Conditions (A1) and (A2) are easily satisfied (see Yu et al. [29]). (A3) is often ap-
plied to obtain the convergence rate of change point estimator (e.g., Qin et al. [15]; Shi et al.
[30]). Condition (A4) is weaker than Bai [11], which requires

∑∞
j=0 j|aj| < ∞. Furthermore,

condition (A4) implies that
∑∞

j=0 a2
j < ∞ and

∑∞
j=0 a4

j < ∞.

Theorem 1 Assume that conditions (A1)–(A4) hold. Then, for all 1 ≤ j ≤ r, we have

τ̂
δn
j → τ ∗

j , in probability.

When the mean μ is known, Qin et al. [15] established the strong convergence of the
CUSUM estimator. It is obvious that Theorem 1 is still true when μ is known, and we will
give the following corollary without proof.

Corollary 1 If the mean is known (μ = 0), conditions (A1)–(A4) hold, then we have the
same conclusion of Theorem 1.

Under assumptions (A1)–(A4), we can further establish the convergence rate of the
CUSUM-type multiple change point estimator τ̂

δn .

Theorem 2 Let M(n) be a natural number sequence with M(n) → ∞. Then, under the
conditions of Theorem 1, we further have

τ̂
δn
j – τ ∗

j = o
(
M(n)/n

)
, in probability.

To implement the CUSUM-type multiple change-point method, we also give the multi-
ple variance-change iterative (MVCI) algorithm based on Qin et al. [15] and Shi et al. [30]
as follows:

Step 1. Choose η ≥ 1, compute μ̂n and {Ỹ 2
t }.

Step 2. Set i = 1, m = 0, and l = [nδn]. Divide the sample into L subintervals Ij with the
equal interval length l.

Step 3. For each subinterval Ij, j = 1, 2, . . . , L, find t̂(i)
j = arg maxt∈(1+m,m+l) R(tj).

Step 4. Compute the set � = {R(t̂(i)
j )}, and select r change locations which correspond to

r maximum values of R(t̂(i)
j ) in the set �.

Step 5. For the selected r change locations t̂(i)
j , j = 1, . . . , r, find t̂(i+1)

j =
arg maxt∈(t̂(i)

j –2M(l),t̂(i+1)
j +2M(l)) R(tj).

Step 6. Set l = 4M(l) and m = t̂(i)
j – 2M(l).

Step 7. If ‖t̂
(i+1) – t̂

(i)‖∞ < η, then proceed to Step 8, otherwise set i = i + 1, go back to
Step 3.

Step 8. t̂MVCI = t̂
(i) and τ̂MVCI = t̂

(i)/n.
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3 Simulation studies
We present a set of simulation studies to illustrate the availability of the CUSUM-type
MVCI algorithm via R packages. Additionally, we implement some available competitors
including segment neighborhood (SN), pruned exact linear time (PELT), binary segmenta-
tion (BS), and wild binary segmentation (WBS) to compare the performance of the MVCI
algorithm.

In model (1), we take r = 4, μ = 0, σ1 = 2, σ2 = 4, σ3 = 8, σ4 = 4, σ5 = 2, and suppose
the true change locations t∗

1 = 100, t∗
2 = 200, t∗

3 = 300, t∗
4 = 400, we model the NSD se-

quence {εm, m ∈ Z} as a multivariate mixture of normal distribution with joint distribu-
tion N(0, 0, 1, 4; –0.5). The sample size is taken to be n = 500 and the weight functions are
satisfied aj = 2–j, j ∈ Z. Figure 1 displays the simulated sequence of Yt , 1 ≤ t ≤ 500, and
the true change locations.

To carry out the SN (Auger and Lawrence [31]), PELT (Killick et al. [32]), BS (Killick and
Eckley [33]), we use the penalty likelihood method, which can be implemented by change-
point package in (Killick [34]). As to WBS (Killick and Eckley [33]), we utilize package
wbsts (Korkas, Karolos, and Piotr [35]) in our model with the threshold λn = C

√
2log1/2n,

where C = 1. We assume the parameter δn = n–1/2 in the MVCI algorithm. The mean
squared error (MSE) of the CUSUM-type variance change point estimator of τ ∗ is defined
as MSE = 1

r
∑r

i=1 (τ̂i – τ ∗
i )2, and the performances of the above methods are described in

Table 1 (all of the simulations are run for 100 replicates).
Table 1 presents the average MSEs of the MVCI, SN, PELT, BS, and WBS methods.

Generally, the first change point is overestimated and the rest change points are underesti-
mated. When the sample size is large (n = 500), all of the methods can estimate the change
points availably, but the MVCI method is superior in terms of the average MSE. This also

Figure 1 The simulated time sequence of Yt , the red vertical lines are true change locations

Table 1 Comparison of the MVCI algorithm with SN,PELT, BS, and WBS methods

τ ∗
i n SN PELT BS WBS MVCI

0.2 500 0.222 0.222 0.218 0.210 0.210
0.4 500 0.410 0.398 0.392 0.406 0.396
0.6 500 0.590 0.590 0.594 0.590 0.592
0.8 500 0.784 0.792 0.796 0.792 0.790

MSE 23.5× 10–5 16.3× 10–5 11.0× 10–5 7.5× 10–5 7.0× 10–5
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indicates that the CUSUM-type variance-change method is computationally competitive
with some of best change point estimation methods.

4 Proof of the theorems
Throughout the proof, let C be a general positive constant and c0, c1, c2, C0, C1, . . . , C4 be
some positive constants. Denote x+ = xI(x ≥ 0) and x– = –xI(x < 0). In the following we
will state some lemmas which are needed.

Lemma 1 (Hu [20]) An NSD random sequence {Xm, m ≥ 1} possesses the following prop-
erties.

(P1) For any x1, x1, . . . , xn,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤
n∏

m=1

P(Xm ≤ xm).

(P2) {–X1, –X2, . . . , –Xn} is also NSD.
(P3) Let f1, f2, . . . be a sequence of non-decreasing Borel functions, then {fn(Xn), n ≥ 1} is

still an NSD random sequence.

Lemma 2 (Wang et al. [21]) Suppose that {Xm, m ≥ 1} is an NSD random sequence with
EXm = 0 and E|Xm|α < ∞ for some α ≥ 2, then for all n,

E

(
max

1≤k≤n

∣∣∣∣∣

k∑

m=1

Xm

∣∣∣∣∣

α)
≤ C

{ n∑

m=1

E|Xm|α +

( n∑

m=1

EX2
m

)α/2}
.

Lemma 3 Suppose that {Xm, m ≥ 1} is an NSD random sequence with conditions (A1)–
(A2) hold, {am, 1 ≤ m ≤ n, n ≥ 1} is a sequence of real numbers satisfying

∑∞
m=1 a2

m < ∞.
Then

σ 2
n = Var

( ∞∑

m=1

amεn–m

)
≤ Cσ 2.

Proof For a pair of NSD random variables X, Y , by property (P1) in Lemma 1, we have

H(x, y) = P(X ≤ x, Y ≤ y) – P(X ≤ x)P(Y ≤ y) ≤ 0.

The covariance of X and Y is verified to be negative by

Cov(X, Y ) = E(XY ) – E(X)E(Y ) =
∫ ∫

H(x, y) dx dy ≤ 0. (5)

Then, for u ≥ 1,

∑

l,m=1,|l–m|≥u

∣∣alam Cov(Xl, Xm)
∣∣

≤
∑

l=1

∑

m=l+u

(
a2

l + a2
m
)∣∣Cov(Xl, Xm)

∣∣
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≤
∑

l=1

a2
l

∑

m=l+u

∣∣Cov(Xl, Xm)
∣∣ +

∑

m=u+1

a2
m

m–u∑

l=1

∣∣Cov(Xl, Xm)
∣∣

≤
∑

l=1

a2
l

∑

|m–l|≥u

∣∣Cov(Xl, Xm)
∣∣

≤ sup
l

∑

m=1,|l–m|≥u

|Cov(Xl, Xm)|
(∑

m=1

a2
m

)
.

Hence, by condition (A2), for a fixed small ε > 0, there exists a positive integer u = uε such
that

∑

l,m=1,|l–m|≥u

∣∣alam Cov(Xl, Xm)
∣∣ ≤ ε.

Set K = [1/ε] and Ym =
∑u(m+1)

l=um+1 alXl , m = 0, 1, . . . , n,

Υm =

{
l : 2Km ≤ l ≤ 2Km + K ,

∣∣Cov(Yl, Yl+1)
∣∣ ≤ 2

K

2Km+K∑

l=2Km

Var(Ym)

}
.

Define h0 = 0, hm+1 = min{h : h > hm, h ∈ Υm}, and put

Zm =
hm+1∑

l=hm+1

Yl, m = 0, 1, . . . , n,

Λm =
{

u(hm + 1) + 1, . . . , u(hm+1 + 1)
}

.

Note that

Zm =
∑

l∈Λm

alXl, m = 0, 1, . . . , n.

It is easy to see that #Λm ≤ 3Ku, where # stands for the cardinality of a set. From Lemma 2,
it follows that

σ 2
n = E

∑

m=1

Z2
m +

∑

1≤m<l≤n

∣∣Cov(Zm, Zl)
∣∣

=
∑

m=1

E
( ∑

l∈Λm

alXl

)2

+
∑

1≤m<l≤n,|m–l|=1

∣∣Cov(Zm, Zl)
∣∣

+
∑

1≤m<l≤n,|m–l|>1

∣∣Cov(Zm, Zl)
∣∣

≤
∑

m=1

a2
mE

( ∑

l∈Λm

Xl

)2

+
∑

m=1

∣∣Cov(Yhm , Yhm+1 )
∣∣

+
∑

1≤m<l≤n,|m–l|≥u

|amal|
∣∣Cov(Zm, Zl)

∣∣

≤
∑

m=1

∑

l∈Λm

a2
l E(Xl)2 +

1
K

∑

m=1

Var(Yhm ) + ε
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≤
∑

m=1

∑

l∈Λm

a2
l E(Xl)2 +

u
K

∑

m=1

∑

l∈Λm

a2
l E(Xl)2 + ε

≤
∑

m=1

E(amXm)2 +
Cu
K

∑

m=1

E(amXm)2 + ε = Cσ 2,

which completes the proof of Lemma 3. �

Lemma 4 Suppose that et is linear processes under NSD random sequence with conditions
(A1)–(A4) hold, let σ 2

ε = E(e2
t ). Then

E

( k∑

t=1

(
e2

t – σ 2
ε

)
)2

≤ Ck.

Proof According to Lemma 3, we obtain

σ 2
ε = E

( ∞∑

j=0

ajεt–j

)2

≤ Cσ 2 < ∞.

Obviously, there exists a positive number c0 such that

e2
t – σ 2

ε =
∞∑

j=0

a2
j
(
ε2

t–j – c0σ
2) + 2

∑

0≤s<l<∞
asalεt–sεt–l.

Hence

E
(
e2

t – σ 2
ε

)2 = E

[ ∞∑

s=0

a2
s
(
ε2

t–s – c0σ
2)

]2

+ 4E
( ∑

0≤s<l<∞
asalεt–sεt–l

)2

+ 4E

([ ∞∑

l=0

a2
l
(
ε2

t–l – c0σ
2)

][ ∑

0≤s<l<∞
asalεt–sεt–l

])

= E

[ ∞∑

s=0

a4
s
(
ε2

t–s – c0σ
2)2

]
+ 2E

[ ∑

0≤s<l<∞
a2

l a2
s
(
ε2

t–l – c0σ
2)

](
ε2

t–s – c0σ
2)

+ 4E
([ ∑

0≤s′<l′<∞
as′al′εt–s′εt–l′

][ ∑

0≤s′<l′<∞
as′al′εt–s′εt–l′

])

+ 4E

([ ∞∑

j=0

∑

0≤s<l<∞
a2

j asal
(
ε2

t–s – c0σ
2)εt–sεt–l

])

≤ E
(
ε2

j – c0σ
2)2

∞∑

s=0

a4
s + 4

∑

0≤s<l<∞
a2

s a2
l E

(
ε2

t–sε
2
t–l

)

=: H1 + H2.

By conditions (A3) and (A4), we obtain

H1 ≤ C
(
Eε4

t – 2c0σ
2Eε2

t + c2
0σ

4) < +∞. (6)
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Decomposing εt as εt = ε+
t – ε–

t , from properties (P2) and (P3) in Lemma 1, one can
see that ε+

t , ε–
t , (ε–

t )2 and (ε+
t )2 are NSD random sequences. From formula (5), we have

E(XY ) ≤ E(X)E(Y ), then

H2 = 4
∑

0≤s<l<∞
a2

s a2
l E

((
ε+

t–s – ε–
t–s

)2(
ε+

t–l – ε–
t–l

)2)

≤ 4
∑

0≤s<l<∞
a2

s a2
l E

([(
ε+

t–s
)2 +

(
ε–

t–s
)2] · [(ε+

t–l
)2 +

(
ε–

t–l
)2])

≤ 16
∑

0≤s<l<∞
a2

s a2
l σ

4 < ∞. (7)

Combining (6) and (7), we get

E
(
e2

t – σ 2
ε

)2 < ∞. (8)

Now we consider the cross term. For any t < j, one can see that

E
[(

e2
t – σ 2

ε

)(
e2

j – σ 2
ε

)]

= E

[ ∞∑

s=0

a2
s
(
ε2

t–s – σ 2) + 2
∑

0≤s<l<∞
asalεt–sεt–l

]

·
[ ∞∑

s′=0

a2
s′
(
ε2

j–s′ – c0σ
2) + 2

∑

0≤s′<l′<∞
as′al′εt–s′εj–l′

]

= E

{ ∞∑

s=0

a2
s
(
ε2

t–s – c0σ
2) ·

∞∑

s̃=0

a2
s
(
ε2

t–s – σ 2)

+ 2
∞∑

s=0

a2
s
(
ε2

t–s – c0σ
2) ∑

0≤s′<l′<∞
as′al′εt–s′εj–l′

}

+ 2E

{ ∞∑

s′=0

a2
s′
(
ε2

t–s′ – c0σ
2) ∑

0≤s<l<∞
asalεt–sεt–l

}

+ 4E
{ ∑

0≤s<l<∞
asalεt–sεt–l

∑

0≤s′<l′<∞
asalεj–s′εj–l′

}

=
∞∑

s=0

∞∑

s′=0

a2
s a2

s′E
{(

ε2
t–s – c0σ

2)(ε2
t–s′ – c0σ

2)}

+ 2
∑

s=0

∑

0≤s′<l′<∞
a2

s as′al′E
{(

ε2
t–s – c0σ

2)ε2
j–s′

}
ε2

j–l′

+ 2
∞∑

s′=0

∑

0≤s<l<∞
a2

s′asalE
{(

ε2
t–s′ – c0σ

2)εt–sεt–l
}

+ 4
∑

0≤s<l<∞

∑

0≤s′<l′<∞
asalas′al′E{εt–sεt–lεj–s′εj–l′ }.
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Let s′ = j – t + s, l′ = j – t + l, similar to the proof of inequality (8), we have

E
[(

e2
t – σ 2

ε

)(
e2

j – σ 2
ε

)]

=
∞∑

s=0

a2
s a2

j–t+sE
(
ε2

t–s – c0σ
2)2 + 4

∑

0≤s<l<∞
asalaj–t+saj–t+lE(εt–sεt–l)2 < ∞.

Hence

∑

1≤t<j≤k

∣∣E
[(

e2
t – σ 2

ε

)(
e2

j – σ 2
ε

)]∣∣

=
∑

1≤t<j≤k

∣∣∣∣∣E
(
ε2

t – c0σ
2)2

∞∑

s=0

a2
s a2

j–t+s + 4σ 2
∑

0≤s<l<∞
asalaj–t+saj–t+l

∣∣∣∣∣

≤ Cσ 4
k–1∑

t=1

k∑

j=t+1

∞∑

s=0

a2
s a2

j–t+s + 4σ 4
k–1∑

t=1

k∑

j=t+1

∑

0≤s<l<∞
|asalaj–t+saj–t+l|

= C

{ k–1∑

t=1

∞∑

s=0

a2
s

k∑

j=t+1

a2
j–t+s +

k–1∑

t=1

∑

0≤s<l<∞
|asal|

k∑

j=t+1

|aj–t+saj–t+l|
}

≤ C

{
k

( ∞∑

s=0

a2
s

)2

+ k

( ∞∑

s=0

as

)2( ∞∑

u=0

a2
u

)}
≤ Ck. �

Lemma 5 Let Y1, Y2, . . . , Yn be a sample from model (1), assume that Ỹt = Yt – μ̂n, μ̂n =
1
n
∑n

t=1 Yt , if assumptions (A1)–(A4) hold, then for any ε > 0,

P

(
max

1≤k≤n

1
k

∣∣∣∣∣

k∑

t=1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣ > ε

)
≤ C√

n
.

Proof Note that

k∑

t=1

Ỹ 2
t =

k∑

t=1

σ 2
i e2

t – 2(μ̂n – μ)
k∑

t=1

σ 2
i e2

t + k(μ̂n – μ)2,

where et = (Yt – μ)/σi, then

P

(
max

1≤k≤n

1
k

∣∣∣∣∣

k∑

t=1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣ > ε

)

≤ P

(
max

1≤k≤n

σ 2
i

k

∣∣∣∣∣

k∑

t=1

(
e2

t – Ee2
t
)
∣∣∣∣∣ >

ε

3

)
+ P

(∣∣(μ̂n – μ)2 – E(μ̂n – μ)2∣∣ >
ε

3

)

+ P

(
max

1≤k≤n

σ 2
i

k

∣∣∣∣∣2(μ̂n – μ)
k∑

t=1

e2
t – 2E(μ̂n – μ)

k∑

t=1

e2
t

∣∣∣∣∣ >
ε

3

)

=: J1 + J2 + J3.
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Applying Lemma 4, it is easy to see that J1 ≤ C/
√

n. From Markov’s inequality, J2 is
bounded by

J2 = P

(
σ 2

i

∣∣∣∣∣

(
1
n

n∑

t=1

et

)2

– E

(
1
n

n∑

t=1

et

)2∣∣∣∣∣ >
ε

3

)

≤ 3σ 2
i

ε
E

∣∣∣∣∣

(
1
n

n∑

t=1

et

)2

– E

(
1
n

n∑

t=1

et

)2∣∣∣∣∣

≤ 6σ 2
i

ε
E

(
1
n

n∑

t=1

et

)2

≤ C
n

.

Now, we will show that J3 ≤ C/
√

n. By Cauchy–Schwarz’s inequality, it follows

max
1≤k≤n

E

∣∣∣∣∣(μ̂n – μ)
1
k

k∑

t=1

σiet

∣∣∣∣∣

≤ σ 2
i max

1≤k≤n

(
E

(
1
n

n∑

t=1

et

)2)1/2

max
1≤k≤n

(
E

(
1
k

k∑

t=1

et

)2)1/2

≤ C√
n

.

Therefore

P

(
max

1≤k≤n

1
k

∣∣∣∣∣2(μ̂n – μ)
k∑

t=1

σiet

∣∣∣∣∣ >
ε

6

)

≤ P

(
max

1≤k≤n

∣∣∣∣∣

( k∑

t=1

et

)2

+
1
k

( k∑

t=1

e2
t

)∣∣∣∣∣ >
ε

6σ 2
i

)

≤ P

(
max

1≤k≤n

( k∑

t=1

et

)2

>
ε

12σ 2
i

)
+ P

(
max

1≤k≤n

1
k

( k∑

t=1

e2
t

)
>

ε

12σ 2
i

)

≤ c1√
n

+
c2

n
≤ C√

n
.

Thus the proof of Lemma 5 is completed. �

Proof of Theorem 1 Let δ0 = (σ 2
i – σ 2

i–1)
∑∞

j=0 a2
j , for ti ≤ t∗

i , we have

ER(ti)

=
(ti – ti–1)(ti+1 – ti)

(ti+1 – ti–1)2

∣∣∣∣∣E
{

1
ti – ti–1

ti∑

t=ti–1+1

Ỹ 2
t –

1
ti+1 – ti

ti+1∑

t=ti+1

Ỹ 2
t

}∣∣∣∣∣

=
(ti – ti–1)(ti+1 – ti)

(ti+1 – ti–1)2

∣∣∣∣∣E
{

1
ti – ti–1

ti∑

t=ti–1+1

Ỹ 2
t –

1
ti+1 – ti

t∗i∑

t=ti+1

Ỹ 2
t –

1
ti+1 – ti

ti+1∑

t=t∗i +1

Ỹ 2
t

}∣∣∣∣∣

=
(ti – ti–1)(ti+1 – ti)

(ti+1 – ti–1)2

∣∣∣∣∣σ
2
i–1

∞∑

j=0

a2
j –

t∗
i – ti

ti+1 – ti
σ 2

i–1

∞∑

j=0

a2
j –

ti+1 – t∗
i

ti+1 – ti
σ 2

i

∞∑

j=0

a2
j

∣∣∣∣∣



Yu et al. Journal of Inequalities and Applications        (2019) 2019:216 Page 12 of 16

=
(ti – ti–1)(ti+1 – ti)

(ti+1 – ti–1)2
(ti+1 – t∗

i )
ti+1 – ti

|δ0|

=
(ti – ti–1)(ti+1 – t∗

i )
(ti+1 – ti–1)2 |δ0|.

Similarly, for ti ≥ t∗
i ,

ER(ti)

=
(ti – ti–1)(ti+1 – ti)

(ti+1 – ti–1)2

∣∣∣∣∣E
{

1
ti – ti–1

t∗i∑

t=ti–1+1

Ỹ 2
t +

1
ti – ti–1

ti∑

t=t∗i +1

Ỹ 2
t –

1
ti+1 – ti

ti+1∑

t=t∗i +1

Ỹ 2
t

}∣∣∣∣∣

=
(ti – ti–1)(ti+1 – ti)

(ti+1 – ti–1)2

∣∣∣∣∣
t∗
i – ti

ti+1 – ti
σ 2

i–1

∞∑

j=0

a2
j +

ti – t∗
i

ti – ti–1
σ 2

i

∞∑

j=0

a2
j – σ 2

i

∞∑

j=0

a2
j

∣∣∣∣∣

=
(ti+1 – ti)(t∗

i – ti–1)
(ti+1 – ti–1)2 |δ0|.

Note that ER(ti) is increasing for ti ≤ t∗
i decreasing while ti ≥ t∗

i , thus the maximum of
ER(ti) is

∣∣ER
(
t∗
i
)∣∣ =

(ti+1 – t∗
i )(t∗

i – ti–1)
(ti+1 – ti–1)2 |δ0|.

By direct calculation, it follows

∣∣ER
(
t∗
i
)∣∣ –

∣∣ER(ti)
∣∣ ≥ (t∗

i – ti–1) ∧ (ti+1 – t∗
i )

(ti+1 – ti–1)2

∣∣ti – t∗
i
∣∣|δ0| ≥ C0

n
∣∣ti – t∗

i
∣∣ = C0

∣∣τi – τ ∗
i
∣∣.

In order to prove Theorem 1, it is desired to show that, for any ε > 0,

P
(∥∥τ̂ – τ ∗∥∥∞ ≥ ε

) → 0.

Since R(ti) = R(ti) – ER(ti) + (ER(ti) – R(ti
∗)) + R(ti

∗) and |R(ti
∗) – ER(ti

∗)| ≤
maxt∈Aδn

n,r
|R(ti) – ER(ti)|, then

∣∣R(ti)
∣∣ –

∣∣R
(
ti

∗)∣∣ ≤ ∣∣R(ti) – ER(ti)
∣∣ +

∣∣R
(
ti

∗) – ER
(
ti

∗)∣∣ + ER(ti) – ER
(
ti

∗)

≤ 2 max
t∈Aδn

n,r

∣∣R(ti) – ER(ti)
∣∣ + ER(ti) – ER

(
ti

∗).

Define Λn,r = {t ∈ Aδn
n,r ,‖t – t∗‖∞ ≥ nε}, then

P
(∥∥τ̂ – τ ∗∥∥∞ ≥ ε

) ≤ P

(
max

t∈Λn,r

r∑

i=1

{∣∣R(ti)
∣∣ –

∣∣R
(
t∗
i
)∣∣} ≥ 0

)

≤ P

(
2 max

t∈Λn,r

r∑

i=1

{∣∣R(ti) – ER(ti)
∣∣} –

r∑

i=1

C0
∥∥τ̂ – τ ∗∥∥∞ ≥ 0

)

≤ P
(

max
1≤i≤r

∣∣R(ti) – ER(ti)
∣∣ ≥ δ

)
, (9)
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where δ = C0ε/2 is an arbitrarily small positive number. According to the definition of
ER(ti), one can see that

max
1≤i≤r

∣∣R(ti) – ER(ti)
∣∣

= max
1≤ti–1<ti<ti+1≤n

(ti – ti–1)(ti+1 – ti)
(ti+1 – ti–1)2

∣∣∣∣∣

{
1

ti – ti–1

ti∑

t=ti–1+1

(
Ỹ 2

t – EỸ 2
t
)

–
1

ti+1 – ti

ti+1∑

t=ti+1

(
Ỹ 2

t – EỸ 2
t
)
}∣∣∣∣∣

≤ max
1≤ti–1<ti≤n

1
ti – ti–1

∣∣∣∣∣

ti∑

t=ti–1+1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣

+ max
1≤ti<ti+1≤n

1
ti+1 – ti

∣∣∣∣∣

ti+1∑

t=ti+1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣. (10)

From (9) and (10), the proof of Theorem 1 will be completed by showing

P

(
max

1≤ti–1<ti≤n

1
ti – ti–1

∣∣∣∣∣

ti∑

t=ti–1+1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣ > δ

)
→ 0, n → ∞, (11)

and

P

(
max

1≤ti<ti+1≤n

1
ti+1 – ti

∣∣∣∣∣

ti+1∑

t=ti+1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣ > δ

)
→ 0, n → ∞. (12)

Since Eq. (12) can be proved similarly as (11), we only consider Eq. (11), thus the proof
of Theorem 1 is finished by taking k = ti – ti–1 in Lemma 5. �

Proof of Theorem 2 Let θ be a constant in the interval (0, 1). Denote DM(n)
n,r = {t ∈ Aδn

n,r ,
nθ > ‖t – t∗‖∞ > M(n)}. By Theorem 1, we have

P
(∥∥τ̂ – τ ∗∥∥∞ > M(n)/n

) ≤ P
(∥∥τ̂ – τ ∗∥∥∞ ≥ θ

)
+ P

(
θ >

∥∥τ̂ – τ ∗∥∥∞ > M(n)/n
)

≤ ε + P

(
max

t∈DM(n)
n,r

r∑

i=1

{∣∣R(ti)
∣∣ –

∣∣R
(
t∗
i
)∣∣} ≥ 0

)
.

Without loss of generality, we assume that δ0 < 0. In view of the fact that |x| ≥ |y| is
equivalent to (i) x – y ≥ 0 and x + y ≥ 0, or (ii) x – y ≤ 0 and x + y ≤ 0, then

P

(
max

t∈DM(n)
n,r

r∑

i=1

{∣∣R(ti)
∣∣ –

∣∣R
(
t∗
i
)∣∣} ≥ 0

)

≤ P

(
max

t∈DM(n)
n,r

r∑

i=1

{
R(ti) – R

(
t∗
i
)} ≥ 0

)
+ P

(
max

t∈DM(n)
n,r

r∑

i=1

{
R(ti) + R

(
t∗
i
)}

< 0

)

≤ P

(
max

t∈DM(n)
n,r ,ti<t∗i

r∑

i=1

{
R(ti) – R

(
t∗
i
)} ≥ 0

)
+ P

(
max

t∈DM(n)
n,r ,ti≥t∗i

r∑

i=1

{
R(ti) – R

(
t∗
i
)} ≥ 0

)
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+ P

(
max

t∈DM(n)
n,r

r∑

i=1

{
R(ti) + R

(
t∗
i
)}

< 0

)

=: T1 + T2 + T3.

For ti < t∗
i , we have

∣∣R(ti) – ER(ti) –
(
R
(
t∗
i
)

– ER
(
t∗
i
))∣∣

≤ C1|ti – t∗
i |

(ti+1 – ti–1)2

∣∣∣∣∣

ti∑

t=ti–1+1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣ +

C2|ti – t∗
i |

(ti+1 – ti–1)2

∣∣∣∣∣

ti+1∑

t=t∗i +1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣

+
C3

ti+1 – ti–1

∣∣∣∣∣

t∗i∑

t=ti–1+1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣ +

C4

ti+1 – ti–1

∣∣∣∣∣

t∗i∑

t=ti–1+1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣.

Since δ0 < 0, ER(ti) ≥ 0, then for 1 ≤ i ≤ r,

T1 ≤ P

(
⋃

t∈DM(n)
n,r ,ti<t∗i

{ r∑

i=1

∣∣R(ti) – ER(ti) –
(
R
(
t∗
i
)

– ER
(
t∗
i
))∣∣ ≥

r∑

i=1

(
ER

(
t∗
i
)

– ER(ti)
)
})

≤ P

(
⋃

t∈DM(n)
n,r ,ti<t∗i

{ r∑

i=1

∣∣R(ti) – ER(ti) –
(
R
(
t∗
i
)

– ER
(
t∗
i
))∣∣

≥
r∑

i=1

C0
(
t∗
i – ti

)
/(ti+1 – ti–1)

})

≤ P

(
max

nδn≤ti–ti–1≤n

1
ti+1 – ti–1

∣∣∣∣∣

ti∑

t=ti–1+1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣ ≥ C1

)

+ P

(
max

nδn≤ti–ti–1≤n

1
ti+1 – ti–1

∣∣∣∣∣

ti+1∑

t=t∗i +1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣ ≥ C2

)

+ P

(
max

M(n)≤t∗i –ti≤θn

1
t∗
i – ti

∣∣∣∣∣

t∗i∑

t=ti–1+1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣ ≥ C3

)

+ P

(
max

M(n)≤t∗i –ti≤θn

1
t∗
i – ti

∣∣∣∣∣

t∗i∑

t=ti–1+1

(
Ỹ 2

t – EỸ 2
t
)
∣∣∣∣∣ ≥ C4

)

=: Q1 + Q2 + Q3 + Q4.

In the view of nδn → ∞ and M(n) → ∞, Lemma 5 yields

Qi → 0, i = 1, 2, 3, 4.

Thus T1 → 0. We can treat T2 analogously as T1, hence T2 → 0.
To complete the proof of Theorem 2, it is sufficient to show T3 → 0. Since R(ti) + R(t∗

i ) ≤
0 implies that R(ti) – ER(ti) + R(t∗

i ) – ER(t∗
i ) ≤ –ER(ti) – ER(t∗

i ) ≤ –ER(t∗
i ), we obtain

R(ti) – ER(ti) ≤ –ER
(
t∗
i
)
/2 or R

(
t∗
i
)

– ER
(
t∗
i
) ≤ –ER

(
t∗
i
)
/2. (13)
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According to ER(t∗
i ) ≥ 0 (δ0 < 0), inequality (13) implies that

∣∣R(ti) – ER(ti)
∣∣ ≥ ER

(
t∗
i
)
/2 or

∣∣R
(
t∗
i
)

– ER
(
t∗
i
)∣∣ ≥ ER

(
t∗
i
)
/2.

Hence

T3 ≤ P

(
⋃

t∈DM(n)
n,r

r∑

i=1

{∣∣R(ti) – ER(ti)
∣∣ ≥ ER

(
t∗
i
)
/2

}
)

+ P

(
⋃

t∈DM(n)
n,r

r∑

i=1

{∣∣R
(
t∗
i
)

– ER
(
t∗
i
)∣∣ ≥ ER

(
t∗
i
)
/2

}
)

≤ 2P

(
⋃

t∈DM(n)
n,r

r∑

i=1

∣∣R(ti) – ER(ti)
∣∣ ≥ ER

(
t∗
i
)
/2

)

≤ 2rP
(

max
1≤i≤r

∣∣R(ti) – ER(ti)
∣∣ ≥ ER

(
t∗
i
)
/2

)
.

Combining (4), (5), (6), and (7), we get

P
(

max
1≤i≤r

∣∣R(ti) – ER(ti)
∣∣ ≥ ER

(
t∗
i
)
/2

)
→ 0.

Thus T3 → 0. This completes the proof of Theorem 2. �

5 Conclusions
In this study, we consider the multiple variance change model and develop a CUSUM-type
methodology for change points estimation. We assume the errors from linear processes
under NSD. The weak convergence rate of the change points estimation has been estab-
lished. Recently, Qin et al. [15] and Shi et al. [30] concentrated on the strong convergence
of the CUSUM-type estimator, we believe that the proposed estimation in this paper also
has the strong convergent property. Additionally, investigating the change points estima-
tion with the unknown number of the change points is an interesting topic, and this is our
next work.
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