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1 Introduction and preliminaries

In [12], Ky Fan’s inequality is gesmmmlized by Levinson for 3-convex functions as follows:

Theorem A Let f: I = (892a) = R w.th fO(t) > 0. Let x; € (0,t) and py > 0. Then

L(f) =0, (1)

where
1~ n 1 n 1 n
fl(f\ P prf(Zoz — %) _f<P_ pr(Zot _xp)) P prf(xp)
L n oo n oo
1 n
+f(P_ prx,O)- (2)
n ot

Working with the divided differences, the assumptions of differentiability on f can be weak-
ened.

In [18], Popoviciu noted that (1) is valid on (0, 24) for 3-convex functions, while in [2],

Bullen gave a different proof of Popoviciu’s result and also the converse of (1).

Theorem B (a) Let f : I = [a,b] — R be a 3-convex function and x,,y, € [a,b] for n =
1,2,...,k such that

max{x; ..o} <min{y;...yk}, X1 +y1="-- =Xk + Yk (3)
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and p, > 0. Then

where

1 & 1< 1 & 1 &
fz(f()) = P—k ;ppf(yp) _f(P_k ;1%3@) - P_k ;ppf(xp) +f<P_k ;ppxp)' (5)

(b) Iff is continuous and p, > 0, (4) holds for all x,, y, satisfying (3), then f is 3-c/ nvex.

In [17], Pecari¢ weakened assumption (3) and proved that inequality (Jd sti. holds, re.,

the following result holds:

Theorem C Letf : I = [a,b] — R be a 3-convex function, px > Cfar_‘let for k=1,...,n, xx,

Vi be such that xi + yi = 26, Xx + Xp_i1 < 2¢ and % <2 0w (4) holds.
In [15], Mercer made a notable work by replacing the ¢c. "an of symmetric distribu-

tion of points x; and y; with symmetric variances of points'¢; and y;. The second condition

is a weaker condition.

Theorem D Let f be a 3-convex funciion on [« "h1/px be positive such that Y ;_, px = 1.
Also let xy, yx satisfy (3) and

n n \2 / n 2
pr (xp - prxy = PR ppyp) . (6)
p=1 p=1 / 1
Then (1) holds.

On theather haid, the error function ex(t) can be represented in terms of the Green’s

functi€ ZGz +(£.5) of the boundary value problem
(1) 20,
20 (a1)=0, 0=<i=<p,
2Nay)=0, p+l<i<n-1,

er(t) = / ” Gen(t,s)f " (s)ds, t€[a,b],

1

where
Gonltrs) - — L L") - @) (ar - s)" Y, a1 <s<t -
F, ) = . .
! =D - (" -a) (@ -9, t<s<an.

The following result holds in [1]:
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Theorem E Let f € C"[a, ], and let Pr be its two-point right focal’ interpolating polyno-
mial. Then, fora <a) <a; <band0<p<n-2,

f(t) = Pe(t) + er(t)
»

- wa@(ﬂl)

i!
i=0

n-p-2 / j , .
(t—a P (ay — ary™ (p+1+))
! ;( P+ L1+ — i) )f Ha)

+ / ” GEn(t,s)f " (s) ds, 8)

ai

where Gg,,(t,s) is the Green’s function, defined by (7).

Let f € C"[a, b], and let Pr be its ‘two-point right focal’ inte] Mating p\ .ynomial for
a <aj <ay <b. Then, for n =3 and p = 0, (8) becomes

(f_ai-
f©) =f(ar) + (¢ - a))fVlaz) + (t — a1)(a1 - a2)fP(az ‘ ;Zl’—f(z)(az)

+ / ” G1(t,s)f®(s)ds, (9)

ai

where

(a1 —s)% a1 <s<t

Gi(t,s) = (10)

—(t—a)(a~s)+ “t-a1)’, t<s<a.

For n=3and p = 1, (8] »ecomes

2 ar
SO =fla) £ lf(”(az)+¥f(2)(az)+/ Gy(t, )V (s)ds, (11)

ai

where

slai -9+ (t-a))ar—-s), a1<s<g

«s) = (12)

-3t -a)?, t<s<as.

T'he presented work is organized as follows: In Sect. 2, Levinson’s inequality for 3-convex
function is generalized by using two Green’s functions defined by (10) and (12). In Sect. 3,
Cebysev, Griiss, and Ostrowski-type new bounds are found for the functionals involving
data points of two types. In Sect. 4, the main results are applied to information theory via
f-divergence, Rényi divergence, Rényi entropy, Shannon entropy, and Zipf—Mandelbrot
law.

2 Main results
First we give an identity involving Jensen’s difference of two different data points. Then we
give an equivalent form of identity by using the Green’s function defined by (10) and (12).
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Theorem 1 Let f € C3[¢1, 8] such that f:1=[{1,8] — R, (p1,...,px) €ERY, (q1, ..., qm) €
R” suchthaty_,_ p,=1and} )" qo = 1. Alsolet xp, yo, Y ) Pp¥ps Doy doYo € 1. Then

m 2 n m 2
) - [z (zqug) —prxi+<2ppxp) }f%)
0=1 p=1 p=1

9}
+ / J(Gr(-,9))f®(s) ds, (13)
s
where
= quf(ya) _f(z %3’9) - prf(xp) +f<prxp) )
o=1 o=1 p=1 p=1
and

J(Gi(+,9)) ZqQGk(yQ s) — Gk(z%yg’ )

0=1 o=1
= > PoGr(x,,5) + Gi (prxo,S), (15)
p=1 p=1

for Gi(-,s) (k = 1,2) defined in (10) andA12) res, ‘stively.

Proof (i) For k = 1.
Using (9) in (14), we have

](f(')):ZqQ[f W)+ (g - o)f¢ (§2)+(YQ )& = )P ()
o=1

A2 2
G 5 @)+ / ¥ 610050 ds]

&

- |_f(§1) + (Z doYo — §1>]m(§2) + (Z doYo ~ Cl)(h - ) P(5)
a

o=1

+(Z€’lq+y"_§l)f2)§)+/ Gl(Zq@yg)/ }
a

->p [f(;l) + (5 = Cf V(@) + (&, — 0)(&1 = )P (5)
p=1

¥ (xp - ;‘l)2

1O (ey) + / ® Gip ) ds}
P 2 0 1\Wp»

+ |:f(C1) + (prxp - 51)/(1)(42) + (prxp - (1)((1 - §2y(2)(§2)

p=1 p=1

n _ 2
+ Mf(z)(g2)+/ G (prx/)’ ) (s)ds:|.
I3
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J(F() =f(&) + (Z GoYo — §1)f(1)(§2) + (Z%J’Q - §1)(§1 - ) (&)
o=1

o=1

m 2 _ 2 m &
. (Zg:l 9oY, & Z;; 190Y0 + Cl )f (C2) qu / 2 Gl(ygfs)f@)(s) ds
i-1 &1

-f(&) - (quyg - §1)f(1)(§2) - (Z 9oYo — Cl)(h - 0)f?(2)

o=1

~ (i1 do¥e)® =281 30 doYo + 2P (5)
2

193 m
- / Gi (quyg,s)f@(s) ds
1

o=1

—f(&1) - (prxp - Cl)/(l)(é“z) - (prxp - a)(a -2

(Zp 1pp -2 Zp Py + LD (6)
2 _L

1(x,,8)f P (s) ds

p=1

f(a)+<2ppxp—;l)f (¢2) + (prx —cl)(cl &) ?(2)
p=1

. ((22:117/)7%)2 -24 Zqu_p + {7 @ (C2)

P
—

+/§1 G1<pr O,S) \dd,
= %[Zq Vg_ (quyg) Zp,ox + (ZPMp) :|,/ (§2
o=1 o051
- 9}
+ ) v ’f Gl(yg,s)fe)(s)ds_/ G, <quy9, ) (s)ds

o S st

n

19}
_Ljpp/ Gl(xp,s)f(3)(s)ds+/ Gy (prxp, ) (s)ds.

o=1 sl &
After rearranging, we have (13).
i) For k=2

Using (11) in (14) and following similar steps as in the proof of (i), we get (13). O

Corollary 1 Letf € C3[0,2a] such thatf : I =[0,2a] — R, x1,...,%, € (0,), (p1,...,pn) €
R" such that ), p, = 1. Alsoletx,, Y pp(2a —x,), >7_ ppx, € I. Then

9}
J(FO) = /{ H(Gi(9)fOs)ds, 0<1 <t <20, (16)

where J(f(-)) and J(G(-,s)) are defined in (14) and (15) respectively.

Page 5 of 19
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Proof Choosing I = [0,2a], ¥, = 2a — x,), x1,...,%, € (0,0), p, = gp, and m = n in Theo-
rem 1, after simplification we get (16). O

Theorem 2 Let f : I = [£1,52] — R be a 3-convex function. Also let (ps,...,p,) € R”,
(q1,---»qm) € R be such that Y _p, =1 and Y 7" q, = 1 and x,, Yo, Yy Pp¥p»
ZZI:I goYo € 1.

If

m m 2 n n 2
[quyé - (qu) = ps+ (prxp) ]/‘”(g) >0, a7)
0=1 0=1 p=1 p=1

then the following statements are equivalent:
Forf € C*[41, 8],

n

prf(xp) —f(Zp,;%) = Zqof()’g) _f<2 %J’Q)‘ (18)
p=1 o=1 o=1

p=1
Forallsel,

Y p,Gilx,,5) - Gy (prxp,S> < 45,5 - Gr <quyg,S), (19)
p=1 p=1 0=1

o=

where G (-,s) are defined by (10) and 1 2)for k =)1,2 respectively.
Moreover, inequality in (18) is/everse Viff ivequality in (19) is reversed.

Proof (18) = (19): Let (180bhe valic. Then, as the function Gi(,s) (s € I) is also continuous
and 3-convex, it follow'; that also foi this function (18) holds, i.e., (19) is valid.

(19) = (18): If f is 31 nnvex, then without loss of generality we can suppose that there
exists the third dpsivative ., . Let f € C3[¢y, £,] bea 3-convex function and (19) hold. Then
we can represent'fur:c. 1 f in the form (9). Now, by means of some simple calculations,

we can Wi

qu Jo) _f<ZquQ> - prf(xp) +f<Zprp>
=1 o=1 p=1 p=1
1 m m 2 n n 2
=3 [Zrmﬁ - (ZquQ> - prxf, + (prxp) ],/(2)(§2)
o=1 o=1 p=1 p=1
;-2 m m

+ / (Z 90Gr (Y, 5) — Gk (Z q@(ygrs))
a o=1 o=1

- prGk(xp!S) + Gy (prxp,s> )f(g)(s) ds.

p=1 p=1

By the convexity of f, we have f®(s) > 0 for all s € I. Hence, if for every s € I, (19) is
valid, then it follows that for every 3-convex function f : I — R, with f € C3[¢1,62], (18) s
valid. .
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Remark 1 If the expression
m m 2 n n 2
> a0t~ (Saon) - 3ore (L)
o=1 o=1 p=1 p=1

and f@(¢,) have different signs in (17), then inequalities (18) and (19) are reversed.

Next we have the results about generalization of Bullen-type inequality (for real weightgi
given in [2] (see also [16] and [11]).

Corollary 2 Let f : I = [{1,8] — R be a 3-convex function and f € C3[1,8], A ..\ %n,
Y1s---»Ym € I such that

max{xlw---;xn} < min{yly'“’ym} (20)
and
X1 +Y1= =Xy + Y- (21)

Also let (py,...,pu) €R”, (q1,--.,qm) € R™ be suglythat Y \vip,=1and )", q, =1 and
Xpr Vor 2pe1 PpXps Dpe1 doYo € 1. If (17) hol(s, then \8) and (19) are equivalent.

Proof By choosing x, and y, such th¢t conditiony(20) and (21) hold in Theorem 2, we get
the required result. g

Remark 2 1f p, = g, are pasitive « '\ x,, ¥, satisfy (20) and (21), then inequality (18) re-
duces to Bullen’s inequ/lity given in/|16, p. 32, Theorem 2] for m = n.

Next we have,a gener«. wi’form (for real weights) of Bullen-type inequality given in
[17] (see also [16}).

Coroll '~y 3 Letf J'=[{1, 4] — R be a 3-convex function and f € C3[¢1, 5], (p1,...,pn) €
R%™%q1,- 2am) € R™ be such that Zzzlpp =1 and Zg’zlqg = 1. Also let x1,...,%,
@ NY1s-..0m € 1 be such that x, + y, = 2¢, and for p = 1,...,n, X5 + Xy_ps1 and
%ﬂ, D_:ff;p“ <c. If(17) holds, then (18) and (19) are equivalent.

Pioof Using Theorem 2 with the conditions given in the statement, we get the required
result. O

Remark 3 In Theorem 2, if m = n, p, = q, are positive, x, + y, = 2¢, X, + %,_,1 and
}W < c. Then (18) reduces to a generalized form of Bullen’s inequality defined
n—p+

in [16, p. 32, Theorem 4].

In [15], Mercer made a notable work by replacing condition (21) of symmetric distribu-
tion of points x, and y, with symmetric variances of points x, and y, for p = 1,...,n and
o=1,...,m.

So in the next result we use Mercer’s condition (6), but for p = ¢ and m = n.
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Corollary 4 Let f : I = [£1,81] — R be a 3-convex function and f € C3[¢1, &), Pp» g, be
positive such that Y, _\p,=1and ) _, q, = 1. Also let x,,, y, satisfy (20) and

n n 2 n n 2
pr (xﬂ - prxﬂ) = pr (yp - Z%%ﬂ) . (22)
p=1 p=1 p=1 p=1
If (17) holds, then (18) and (19) are equivalent.

Proof For positive weights, using (6) and (20) in Theorem 2, we get the required resdie: ]

Next we have the results that lean on the generalization of Levinson-ty;fe in. wality,

given in [12] (see also [16]).

Corollary 5 Let f:1 = [0,2a] — R be a 3-convex function and f € C3[0,2 . x1,...,%, €

0,@), (pr,-...,pn) ER" and 37 _ p, = 1. Alsoletx,, Y p,(20—x, Y"1 pp¥, €1. Then
the following are equivalent:

Y paf(x0) —f(prxp) <Y pfQa-x,)-f (Z,pp(za - xp)>. (23)
p=1 p=1 p=1 p=1
Forallsel,

> poGil(x,,5) - Gi <Zr xp,s) < PG - %,,5)
pdl

p=1 p=1

- Gk<2pp(2a —xp),s>, (24)

p=1
where Gi(-,s) is agje... 09 (10) and (12) for k = 1,2 respectively.

Proof< N\ =/ %2/ (x1,...,%,) € (0,@), p, = g, m = n, and ¥, = (2o — x,,) in Theorem 2

with 0 <¢ %& < 2a, we get the required result. O

Rema. "4 In Corollary 5, if p, are positive, then inequality (23) reduces to Levinson’s

inpquality given in [16, p. 32, Theorem 1].

3 New bounds for Levinson-type functionals

Consider the Cebysev functional for two Lebesgue integrable functions fi, f5 : [¢1, &) — R

9}
Othf) - —— [ Awpe dx
CZ—fl 1

1 ¢} P 1 ¢} 4
- s 25
=80 Jy Jila) dae HL-4 /;1 Hlw)d (25)

where the integrals are assumed to exist.
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Theorem F ([3]) Letfi : [¢1,¢2] — R bea Lebesgue integrable function and f; : [£1,5] = R
be an absolutely continuous function with (-,—1)(-, &) [fy1* € L[¢1, §). Then

D=

e 7[@(13,1] w;%(/ (t- )@ - D[] d ) (26)

% is the best possible.

Theorem G ([3]) Letfi : [£1,42] — R be absolutely continuous with f| € Ls|¢1,$2], azedllet

fo:[¢1, 8] = R be monotonic nondecreasing on ({1, ¢]. Then

62
06| = 5z | |- 80 Dlf0] @)

% is the best possible.

In the next result we construct the Cebysev-type boynd for ot fdnctional defined in

(5).

Theorem 3 Let f € C3[¢1, &) be such that f£1 =" %3] — R and f®)() is absolutely con-
tinuous with (- — 1)(& — ) [fP)? € Ll¢1,72]. 2 v let p1,...,pn) €R”, (q1,...,qm) € R™ be
such that ZZ:le =1 Zgil 9o =1, x5, ¥, ZZ:L oxps ZZ:I 4oYo €1. Then

[quyg—\z \ prx + (prxp) }/2) )

\o=1 /

@ (r ) P2
e, Ay f T(Gil,9))fOs) ds + Ra(cr, &:), (28)
(;2’ &

where J(£3, J(G\(-,s)) are defined in (14) and (15) respectively, and the remainder
R3(cul n:f) ) atisfieb the bound

ST

Ra(1) 0| < “J;I [00/(Ge(9),J(Ge(9))] x
1

9] 2
- _ _ (4)
—( [ -l o)) (29)

for Gi(-,s) (k = 1,2) defined in (10) and (12) respectively.

Proof Setting fi — J(G(-,s)) and f, > f® in Theorem F, we get

: /Q](Gk(~,5))f(3)(s) ds— /Q](Gk(,,s)) ds x Qf(3>(s) ds
-4 Jy o-0l, G0 )y
< %[@(/(Gk(-,s)):](GkC,s)))]%J%( (s = &)(e —s)[f(4)(s)] ds)_,
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1qe FO0) -2 [°
Gi(-,8))f®(s) ds —
-0 /;1 ]( Kl S))f (s)ds (G2 —1)? &

J(Gi(-5)) ds

1
2

9]
\/;21—41</ (S—fl)(fz—s)[f@)(s)]ds) )
- &

Multiplying (&2 — ¢1) on both sides of the above inequality and using estimation (29), we

1

=7

D=

[©0(6i(+9).1(Gi(.9))]

get

9} (2) _f2 9}
/ J(Gel )@ ds =TT (% 16 ) ds + Raten 21sf).
a (&2 —-¢1) a

[

Using identity (13), we get (28).
In the next result the bounds of Griiss-type inequalities are estim{tea.

Theorem 4 Let f € C?[¢1, 8] be such that f : I = [¢1, 8] — RS () iaahsolutely continu-
ous and f¥(-) > 0 a.e. on [¢1, ). Also let (py,...,p,) € R”, (q1,.+ 0,,) € R™ be such that

Y p1Pe =12 0100 = 1, %p, Yor 201 Pp¥os X1 deYe € - W ipuidentity (28) holds, where
the remainder satisfies the estimation

We(2) _£(2) (2) _ £
R, = €2 - 60 (G 9 1] ) “;)_]; (©)

]. (30)

Proof Setting fi — J(G(-,s)) and f> >, hin/t’heorem G, we get

! / 2 GNP ds /{ZJ(Gk(us))d&(; L (% 00 as

=0 Jgy =8 Jy 2— 81 Jy
1 % ! o @
< 3 o) [0 [T 6=t -9l o] s (31)
2 52 - Cl o

Since

&
[ e -9l O] ds

1

9]
- f 25— g1 = &1 (5) ds

&1
= (& - )[fD&) +fP)] - 2(F2 () - fP(2)), (32)
using (13), (31), and (32), we have (28). O

Ostrowski-type bounds for a newly constructed functional defined in (5).

Theorem 5 Let f € C3[¢y, &) be such that f : 1 = [£1,85] — R and f?)(-) is absolutely con-
tinuous. Also let (p1,...,pn) € R, (q1,...,qm) € R™ be such that Zzzlpp =1, Z;”Zl go=1,
Xps Yos ZZ:lprP’ Zg’zl qoYo € 1. Also let (r,s) be a pair of conjugate exponents, that is,
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1<rs <00, % + % = LIf|f®) : [¢1, 8] — R is a Riemann integrable function, then

2 2
1 m m n m
6003 Saot - (Saon) - Somst (Yo [
o=1 o=1 p=1 o=1

s

19}
<Ol Weeat) @)
a
Proof Rearrange identity (13) in the following way:

2 2
1 m m n m |
‘f o) -5 (quyi - (Z%%) =Y P+ (Zm%) )f(z’(;“z)
o=1 o=1 p=1 p=1

9}
< / T(Gi(5))fO(s) ds. (34)
s

1

Employing the classical Holder’s inequality to R.H.S of (34) yieix. (33). O

4 Application to information theory

The idea of Shannon entropy is the focal job efain:a hypotl€sis once in a while alluded as
measure of uncertainty. The entropy of a4 »dom ™ riable is characterized regarding its
probability distribution and can be shefwia to L% decent measure of randomness or un-
certainty. Shannon entropy permits® heviluaie the normal least number of bits expected
to encode a series of images desfendent” the letters in order size and the recurrence of
the symbols.

Divergences betweengprobability " Stributions have been acquainted with measure of
the difference betweel them. A)variety of sorts of divergences exist, for instance the f-
difference (particularly, wlbalk-Leibler divergence, Hellinger distance, and total varia-
tion distance), Re.. Wlivergence, Jensen—Shannon divergence, and so forth (see [13, 21]).
There ares,lot of\papers managing inequalities and entropies, see, e.g., [8, 10, 20] and
the reffzenc < thercin. Jensen’s inequality assumes a crucial role in a portion of these in-
egriaiitie. n any case, Jensen’s inequality deals with one sort of information focuses and
L mson’s ijiequality manages two types of information points.

Zip y'aw is one of the central laws in data science, and it has been utilized in linguistics.
George Zipf in 1932 found that we can tally how frequently each word shows up in the
¢éntent. So on the off chance that we rank (r) word as per the recurrence of word event
(f), at that point the result of these two numbers is steady (C) : C = r x f. Aside from the
utilization of this law in data science and linguistics, Zipf’s law is utilized in city population,
sun powered flare power, site traffic, earthquake magnitude, the span of moon pits, and so
forth. In financial aspects this distribution is known as the Pareto law, which analyzes the
distribution of the wealthiest individuals in the community [6, p. 125]. These two laws are

equivalent in the mathematical sense, yet they are involved in different contexts [7, p. 294].

4.1 Csiszér divergence

In [4, 5] Csiszar gave the following definition:
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Definition 1 Letf bea convex function from R* to R*. Let ¥, k € R” be such that Y7 7, =
land ), gs = 1. Then an f-divergence functional is defined by

P - rs
L(F, k) = qu<—).
s=1 qs
By defining the following:

o= timser o(g)=o o(5)=tm(5) a0

he stated that nonnegative probability distributions can also be used.
Using the definition of f-divergence functional, Horvath et al. [9] gaved » foi. wng
functional:

Definition 2 Let I be an interval contained in R and f : I — R be'a fui._on. Also let
f=(r1,....,rn) €ER"and k = (ky, ..., k,) € (0,00)" be such that

B el 1
= s=1,...,n.
ks

Then
Ao~ i T
I (%, k) := ij(k—)
s=1 S

We apply a generalized form_«t Buller. ‘ngquality (18) (for positive weights) to if(f, K).

Let us denote the following se. € assumptions by G:

Letf:I=[a, B] — R b&€a3-conve unction. Also let (p1,...,p,) € R, (q1,...,qm) € R?
be such that ) ps=F and D" g =1 and &, Y5, Y o g Psksr D uey GsYs € L.

Theorem 6 Assinee G.
Lett=(r1,...,7\), 2~ Ki,...,kn) be in (0,00)", and W = (W1,..., W), t=(t1,...,t,) be in
(0, 00)"8uc. that

]:—zel s=1,...,n,
and
Wy
—el, u=1,....m
Ly
Then
0 =l @& -f Z R e i ) e
Zs lk Zs lk Zu:l t’l u=1 Zu:l t"

(ii) If x — xf(x) (x € [a, b)) is 3-convex, then

1 . ~ 1 - - " wy
@k - S A Wu ), 36
SR (Z zm) ST 0 (Z Zm) o
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where

i,«df(f,f()-z J( )
s=1

and

Tar W, ®) = anf( )

u=1

Proof (i) Taking p; = Z”k—slks’x” = ;—z, qs = Z,ﬁ—“ltu, and y, = ‘:—: in inequality (18) (for »ositive
weights), we have

ZZSlk < ) (ZZ“/() Xm: ;i: (tu>—f<\M=1A:”itu). (37)

Multiplying (37) by the sum )., k,, we get

]f(r,k) f(z Zs lk)XI:kS—Z " "t (%)Z;‘(u

-ka = ) k. (38)
u s=1

u=1

Now again multiplying (38) by the sum', "(z,, we get

f:tuif(f, k) —f({: ﬁ) Lksitu

u=1 1 =1 s=1  u=1
<Y Kl -leZ )stZtu.
s=1 u=1 u s=1 u=1

If we'a. e ove inequality with the product > ks Y | £,, we get (35).
‘i) Using = idf (where “id” is the identity function) in (18)(for positive weights), we
hav

Zpsxsf x;) Zpst (Z psxs> < quf ) = Y quif (Z quyu)-
u=1 u=1

Using the same steps as in the proof of (i), we get (36). O

4.2 Shannon entropy
Definition 3 (see [9]) The Shannon entropy of positive probability distribution r =
(r1,...,1y) is defined by

n

S:=-) rlog(r,). (39)

s=1
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Corollary 6 Assume G.
Ifl~( =(k1,....ky) €R", t=(t1,...,t,y) € R"™ and if base of log is greater than 1, then

1
el S [E o)
1 _ m i wy “ Wy
< Z;”Zl L |:S + Z Wy IOg(tu):| + {Z ZrunZI t, 10g (Z Z::’:I tu)i|’ (40)

u=1

where S is defined in (39), and

- Z wy log(w,,).
u=1

If base of log is less than 1, then inequality (40) is reversed.

Proof The function f +— —xlog(x) is 3-convex for base of logd's gr ater than 1. So, using
f = —xlog(x) in Theorem 6(i), we get (40). O

Remark 5 If k and t are positive probability distributions, u.. 4%0) becomes

n \ Jen
|:S + er log(ks) :| |:Z T log( 2| | < 'i‘ + ZWS log(t; ):|
s=1 7
+ |:§: W log(i ws>j|. (41)
s=1 s=1

Definition 4 (see [9]) Fonr‘and™ hwhere F,q € R’ the Kullback-Leibler divergence is
defined by

N\

D@ = Yo 1og(q ) (42)

Corolliry 7, Assune G.
Lésr = <...,,,,),l~< = (ki,...,k,) e R, and w := Wiyeo W), t=(t1,... L) € R be such
Lo r v p ke, Y wy, and Y | t; be equal to 1, then

Z(%)D(E,R)—Z(%)D(W,E) >0, (43)
s=1 s s=1 s

where base of log is greater than 1.
If base of log is less than 1, then the signs of inequality in (43) are reversed.

Proof In Theorem 6(ii), replacing f by —xlog(x), we have

Z” (k ~ Z s
———D(r,k 1 —_
Zs lk ( () ZZS lk Og(SX: Z:’lks)

Zs l(ts) “
= Zs lts D Z Zs lts log<z ) (44)

sltS

Page 14 of 19
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Now simply taking Y " r, Y o ks, > uey ws,and > .- & are equal to 1 and after rearrang-
ing, we get (43). O

4.3 Rényi divergence and entropy
The Rényi divergence and Rényi entropy are given in [19].

Definition 5 Let ,q € R” be such that ) r;,=1and > 7g;=1,andlet§ >0, #1.
(a) The Rényi divergence of order § is defined by

1 “ \°
D)= s log<Zqi(;) ) (45)
i=1 t

(b) The Rényi entropy of order § of T is defined by

Hs(F) = 113 1og(zrf>. (46)
i=1

These definitions also hold for nonnegative probability distri. itions. If § — 1 in (45),
we have (42), and if § — 1 in (46), then we have (39).
Now we obtain inequalities for the Rényi divergence.

Theorem 7 Assume G.
Lett=(r,...,r), k=(ky,...,k,) € R, W= Nut,... W), and t = (t1, ..., t,) € R7.
(i) If base of log is greater than 1 gfid.0 < § < Wdre such that 5,6 # 1, then
Dy (F, k) - Ds (&, k) 1Dy (W, 0 D5 (W, ). (47)

If base of log is less"tnan 1, the Vinequality (47) holds in reverse.
(i) If6 > 1 and if bd e of log is greater than 1, then

Dy(l1)= D (r, k) < Dy(W, t) - Dy (W, F). (48)
(iii) If6°< 0,1) aud if base of log is greater than 1, then
D, (t,k) - D5 (F,k) < D1 (W, t) - Ds(W, D). (49)

-1

Prooj_7ith the mapping f defined by f : (0,00) — R by f(¢) := t51 and using

5-1
Ts

Ps =", x:=| — , s=1,...,m
ks

and

W, 5-1
qu = Wy, Yu=|— , u=1,...,m,

in (18) (for positive weights) and after simplifications, we have

e(z) - (24())

B

1 6-1

1 m 0 m 8 -1
< Ztu(%) - (Zt(‘:—) ) (50)
u=1 u u

= u=1

o



Adeel et al. Journal of Inequalities and Applications (2019) 2019:212 Page 16 of 19

ifeither 0 <§<1< y or 1 <§ <6, and inequality (50) holds in reverse if 0 <§ <y < 1.
Raising the power ;7 in (50),

<z<>><z<>>
(o)) ()

For base of log is greater than 1, the log function is increasing, therefore on takir'g log in
(51), we get (47). If base of log is less than 1, inequality in (47) is reversed. If §= 1| 19, and
by taking the limit, we have (48) and (49) respectively. cl

Theorem 8 Assume G.

Letf:(rl,...,r,,),f(=(kl,...,k,,)eR’j,W:(wl,...,wm),andf S by TR
If either 1 < § and base of log is greater than 1 or § € [0,1),4 " bc saflog is less than 1,
then
ks Ds (1, k
s 5 (E) () -2
(Ws s(,;;s)(3
e b, (52)
Z ks )82 ( ) \ts) 9 S(k_s) ?

If either 1 < § and base of log islgreater'. w»’l or § € [0,1) and base of log is less than 1,
inequality in (52) is reversed

Proof The proof is on! : for the case when § € [0,1) and base of log is greater than 1, and
similarly the remaining_ hses ase simple to prove.

The function x_xf(x) (x > 0) is 3-convex for base of log is less than 1. Also 0 > l—is and
choosing I = (0, )

6-1
Ts
[)S:: Xg i= (E) ) S:]-;"'rnr

and

W 5-1
qu = Wy, Y= — , u=1,...,m,
Ly

n (18) (for positive weights) and after simplifications, we have (52). a

Corollary 8 Assume G.
Letr = (rl,...,r,,),f(: (kiy....k,) e R, w= Wiy, W), and t = (t1,...,tm) € R be such
that Y 1, Y w1 ke Yooy Wy, and y oy t, are equal to 1.
i) If base of log is greater than 1 and 0 < 8 < 0 such that §,0 # 1, then

Ho(£) — Hs (1) = Ho(W) — Hs(W). (53)
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The reverse inequality holds in (53) if base of log is less than 1.
(i) If1 <6 and base of log is greater than 1, then

Ho(®) - 8 > Ho(W) - S. (54)

The reverse inequality holds in (54) if base of log is greater than 1.
(ili) If0 <& <1 and base of log is greater than 1, then

S —Hs[®) > S — Hs(w). (55,

If base of log is less than 1, the inequality in (55) is reversed.

Proof (i) Suppose k, t = i Then from (45) we have

n n \
= = 1 5-1,8 1
Ds(t,q) = ﬁlog<§=1 n rs> log(n) + —log<s=1 % }

and
1 " 1 .
Ds(w,t) = 51 log (Z n‘s_lwf) =log(p™ N logk wf)
s=1 s=1
We have
1)
mm=mw—m@~ (56)
1)
and
- N o1
Hs(w) =log =-Ds( W, —). (57)
N n

We get‘53) | fter using Theorem 7(i), (56) and (57).
SCateni ts (1) and (iii) are similarly proved. 0

Cor._ary 9 Assume G.

Lett=(r1,....rn), k= (ki,...., kp), W= (Wi, ..., W), and t = (t1,...,t,) be positive proba-
bil.ty distributions.

If either § € [0,1) and base if log is greater than 1, or § > 1 and base if log is less than 1,
then

P
r log(rs) — Hs(r) = w. log(ws) - = S’H,g( ). (58)
s 1 s ;E; E:s 1 s ;E; E:s 175

The inequality in (58) is reversed if either § € [0,1) and base if log is less than 1, or § > 1
and the base of log is greater than 1.

Proof Proof is similar to Corollary 8 g
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4.4 Zipf-Mandelbrot law
In [14] the authors gave some contribution in analyzing the Zipf-Mandelbrot law which
is defined as follows:

Definition 6 The Zipf-Mandelbrot law is a discrete probability distribution depending
on three parameters: N € {1,2,...,}, ¢ € [0,00), and ¢ > 0, and is defined by

1
f(S;N¢¢;t)1= m, s=1,...,.N,

where

A
Moo= 2 gy

For all values of A, if the total mass of the law is taken, then fof' %< ¢, 1 < v, s € N, the
density function of the Zipf-Mandelbrot law becomes

1
L e T
where
S
YT (vt )

For ¢ = 0, the Zipf—Mandel¥rot: s becomes Zipf’s law.

Conclusion 1 Assum/ G.
Let  and w be the Zip »Mandelbrot laws. By Corollary 8(iii). If § € [0, 1) and base of log

is greater than 1,

LA 1 | ( 1 ) L, 1 Z 1
. = o - o
=t kPH Ny N\ Hrw) 1-5° Hi iy <5 (s +K)
>8
1 1 1
- 1
Z(S+W)S’HNWV ((s+w)5’HN,W,V) 1-6 Og(’HNWVSZI(S+w )

The inequality is reversed if base of log is less than 1.
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