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Abstract
The motivation of the present work concerns two objectives. Firstly, a
predictor-corrector iterative method of convergence order p = 45 requiring 10 matrix
by matrix multiplications per iteration is proposed for computing the Moore–Penrose
inverse of a nonzero matrix of rank = r. Convergence and a priori error analysis of the
proposed method are given. Secondly, the numerical solution to the general linear
least squares problems by an algorithm using the proposed method and the
perturbation error analysis are provided. Furthermore, experiments are conducted on
the ill-posed problem of one-dimensional image restoration and on some test
problems from Harwell–Boeing collection. Obtained numerical results show the
applicability, stability, and the estimated order of convergence of the proposed
method.
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1 Introduction
The numerical solution of many problems in mathematical physics requires the solution
of an algebraic linear system of equations. When the coefficient matrix of a consistent
linear system is singular or rectangular matrix, then the need for Moore–Penrose inverse
occurs for the computation of minimum norm least squares solution.

Let Cn1×n2 and C
n1×n2
r denote the sets of all complex n1 × n2 matrices and all complex

n1 × n2 matrices of rank = r, respectively. By A∗, R(A), and PR(A) we present the conjugate
transpose of A, range of A, and the orthogonal projector onto R(A) respectively, and as
usual I denotes the unit matrix of appropriate order. The generalized inverse or Moore–
Penrose inverse of a matrix A ∈ Cn1×n2 denoted by A† ∈ Cn2×n1 is the unique matrix sat-
isfying the following four Penrose equations (see [1]):

AA†A = A, A†AA† = A†,
(
AA†

)∗ = AA†,
(
A†A

)∗ = A†A. (1.1)

Many important approaches for computing the Moore–Penrose generalized inversion
have been developed. Among these methods, direct methods usually tend to require a pre-
dictable amount of resources in terms of time and storage, which normally puts them out
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of interest especially for large scaled systems with sparse matrices. Special interest is given
to propose and investigate iterative methods for computing the Moore–Penrose inverse
A†. Let A ∈C

n1×n2
r , we survey on iterative methods by which Vm denotes the approximate

Moore–Penrose inverse of A at the mth iteration, and Mms stands for the matrix by matrix
multiplications per iteration. The authors of [2] proposed the sequence

Vm = α

m∑

i=0

A∗(I – αAA∗)i, m = 0, 1, . . . , (1.2)

that converges to A† as m → ∞ under the assumption

0 < α <
2

λ1(A∗A)
, (1.3)

where

λ1
(
A∗A

) ≥ λ2
(
A∗A

) ≥ · · · ≥ λr
(
A∗A

)
> 0 (1.4)

are the nonzero eigenvalues of A∗A. Later in [3] (see also [4]) the iterative method (1.2)
was written as follows:

V0 = αA∗, (1.5)

Vm+1 = Vm + α(I – VmA)A∗, m = 0, 1, . . . , (1.6)

and it converges to A† linearly. The following iterative algorithm [5, 6]

V0 = αA∗,

Vm+1 = Vm(2I – AVm), m = 0, 1, . . . ,
(1.7)

yields A† as the limit of the sequence {Vm}, m = 0, 1, . . . , when α satisfies (1.3). This method
is a variant of the well-known Schulz method of 2nd order. A pth order iterative method
for computing A† is studied in [7] and [8] for p ≥ 2 and p being integer as follows:

V0 = αA∗,

Tm = I – VmA,

Pm =
p–1∑

i=0

Ti
m,

Vm+1 = PmVm =

( p–1∑

i=0

Ti
m

)

Vm, m = 0, 1, . . . .

(1.8)

Method (1.8) is also called hyperpower iterative method and for n1 ≤ n2 is usually pre-
sented as

Vm+1 = Vm

p–1∑

j=0

Tj
m, m = 0, 1, . . . , (1.9)
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where Tm = I – AVm, performing p Mms. In [7], when p = 3, method (1.9) is rewritten in
the form

Vm+1 = Vm
(
3I – 3AVm + (AVm)2), m = 0, 1, . . . , (1.10)

and in Horner’s form for the inversion of a square nonsingular matrix is given in [9] as

Vm+1 = Vm
(
3I – AVm(3I – AVm)

)
, m = 0, 1, . . . , (1.11)

and has at least third order of convergence [7, 10]. There are different representations of
the hyperpower method (1.9) which differ in the evaluation of the power sum

∑p–1
j=0 Tj

m.
The computational effort in the pth order method decreases when the number of matrix
by matrix multiplications and additions in the polynomial are reduced through factoriza-
tions if nested loops are used (see [11] and [12]). When p = 5, an effective form of the
hyperpower iterative method for inverse of a square nonsingular matrix is presented in
[11] as follows:

Vm+1 = Vm
(
I +

(
I + T2

m
)(

Tm + T2
m
))

, m = 0, 1, . . . , (1.12)

and requires 4 Mms. To compute the inner inverse of matrix A ∈ Cn1×n2 , the following
iterative procedure is proposed in [13]:

Vm+1 = Vm

[
pI –

p(p – 1)
2

AVm + · · · + (–1)p–1(AVm)p–1
]

, p ≥ 2, (1.13)

m = 0, 1, 2, . . . , which requires p Mms. Equation (1.13) is an equivalent form of (1.9). In
[14] the authors showed that the iterative procedure (1.13) can be used to compute the
Moore–Penrose inverse of a matrix. The authors of [15] proved that the sequences (1.13)
indeed are convergent to a fixed inner inverse of the matrix which is the Moore–Penrose
inverse of the matrix, and they provided numerical results for the third order iterations.
The following 7th order method is given by [16] for computing generalized inverse A(2)

T ,S :

Vm+1 = Vm
(
I +

(
Tm + T4

m
)(

I + Tm + T2
m
))

, m = 0, 1, . . . . (1.14)

The method in (1.14) performs 5 Mms. Recently several systematic algorithms for fac-
torizations of the hyperpower iterative family (1.9) of arbitrary orders have been given in
[17] for computing outer inverses. Among these methods the 11th, 15th, and 19th order
methods are

Vm+1 = Vm
(
I + Tm

(
I +

(
Tm + T2

m + T3
m
)(

I + T3
m + T6

m
)))

, m = 0, 1, . . . . (1.15)

Vm+1 = Vm
(
I +

(
Tm + T2

m
)(

I +
(
T2

m + T4
m
)(

I + T4
m + T8

m
)))

, m = 0, 1, . . . (1.16)

Vm+1 = Vm
(
I +

(
Tm + T2

m
)(

I + T2
m + T4

m
)(

I + T6
m + T12

m
))

, m = 0, 1, . . . , (1.17)

given that each uses 7, 7, and 8 Mms, respectively.
In [18] for a given integer parameter k ≥ 1, two classes of iterative methods for matrix

inversion of a square nonsingular matrix were proposed, and these methods were used
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to construct inverse preconditioners for solving linear systems. Class 1 methods converge
with order of convergence p = 3 ∗ 2k + 1 and Class 2 methods converge with order p =
5 ∗ 2k – 1, requiring 2k + 4 Mms and 3k + 4 Mms, respectively. Most recently, high order
iterative methods with a recurrence formula for approximate matrix inversion have been
proposed in [19] with orders of convergence p = 4k + 3, where k ≥ 1 is an integer requiring
k + 4 matrix multiplications per iteration. The methods of orders p = 7, 11, 15, 19 are used
to construct approximate Schur-block incomplete LU preconditioners (Schur-BILU) for
regularized solution of discrete ill-posed problems.

The original contribution of this study is the construction of a predictor-corrector iter-
ative method (PCIM) of convergence order p = 45 requiring 10 Mms for computing the
Moore–Penrose inverse of nonzero matrix A ∈ C

n1×n2
r . Also, perturbation error analysis

of the proposed method for the minimum norm solution of least squares problems is pro-
vided. To verify the theoretical results, experimental analysis are conducted for the one-
dimensional image restoration problem and for some well-conditioned and moderately
ill-conditioned problems from Harwell–Boeing collection. Next, a benchmark example is
used to numerically compute the order of convergence of the proposed method. Conclud-
ing remarks are given in the last section.

Some versions of the predictor-corrector variational iteration method for the solution
of integral equations of fractional order were studied in [20] and [21].

2 A predictor-corrector iterative method for approximate Moore–Penrose
inverse

Let I denote the n1 × n1 unit matrix and let A ∈ C
n1×n2
r and the nonzero eigenvalues of

A∗A be denoted by (1.4). We define the following matrix-valued functions consisting of
matrix multiplications and additions:

Ω(Tm) = Tm + T2
m, (2.1)

Ψ (Tm) = I + T2
m, (2.2)

Γ (Tm) = T4
m, (2.3)

where Tm = (I – AVm). We propose the following:
Predictor-corrector iterative method (PCIM).

In : V0 = αA∗

G : Tm = I – AVm, Φ(Tm) = Ψ (Tm)Ω(Tm)

P : Vm+ 1
2

= Vm
(
I + Φ(Tm)

)
, Tm+ 1

2
= I – AVm+ 1

2

C : Vm+1 = Vm+ 1
2

(
I + Φ(Tm+ 1

2
)
(
I + Γ (Tm+ 1

2
)
))

for m = 0, 1, 2, . . . . (2.4)

Here, In is the initial step, G is the generator, P is the predictor at the fractional step m + 1
2 ,

and C is the corrector for the approximate Moore–Penrose inverse Vm+1 of A at the m+1th
iteration in (2.4). Let Rm = PR(A) – AVm be the residual at the mth iteration and consider
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the following form of (2.4) which requires PR(A):

In : V0 = αA∗,

G : Rm = PR(A) – AVm, Φ(Rm) = Ψ (Rm)Ω(Rm),

P : Vm+ 1
2

= Vm
(
PR(A) + Φ(Rm)

)
, Rm+ 1

2
= PR(A) – AVm+ 1

2
,

C : Vm+1 = Vm+ 1
2

(
PR(A) + Φ(Rm+ 1

2
)
(
I + Γ (Rm+ 1

2
)
))

for m = 0, 1, 2, . . . (2.5)

Lemma 2.1 Let A ∈ C
n1×n2
r , if in the initial step In of (2.5 α satisfies (1.3), then for the

sequence {Vm+1} obtained at m + 1th iteration by PCIM (2.5) the following hold true for
every m = 0, 1, 2, . . . :

(i) Vm+1PR(A) = Vm+1, (ii) PR(A∗)Vm+1 = Vm+1, (2.6)

(iii) (AVm+1)∗ = AVm+1, (iv) (Vm+1A)∗ = Vm+1A. (2.7)

Proof The proof follows from PCIM (2.5) using mathematical induction. We give the
proof of (i) and (iii) and the proof of (ii) and (iv) can be given analogously. By (III) of The-
orem 1 [7], AA† = PR(A) and A†A = PR(A∗), and on the basis of Moore–Penrose equations
(1.1), the projection PR(A) satisfies the following:

P2
R(A) = PR(A), P∗

R(A) = PR(A), PR(A)A = A; A∗PR(A) = A∗. (2.8)

(i) For m = 0, in the initial step In of PCIM (2.5) we have V0 = αA∗ implying V0PR(A) =
αA∗PR(A) = αA∗ = V0. Assume that VmPR(A) = Vm holds true for m, then using (2.8) for the
predictor step P of (2.5) we obtain

Vm+ 1
2

PR(A) = Vm
(
PR(A) + Φ(Rm)

)
PR(A)

= Vm
(
PR(A) + (PR(A) – AVm) + (PR(A) – AVm)2 + (PR(A) – AVm)3

+ (PR(A) – AVm)4)PR(A) = Vm+ 1
2

, (2.9)

Rm+ 1
2

= PR(A) – AVm+ 1
2

= PR(A) – AVm
(
PR(A) + Φ(Rm)

)

= PR(A) – AVm
(
PR(A) + Rm + R2

m + R3
m + R4

m
)

= R5
m. (2.10)

Also in the corrector step C of (2.5) using (2.10) we get

Γ (Rm+ 1
2

) = R4
m+ 1

2
= R20

m , (2.11)

Φ(Rm+ 1
2

) = Ψ (Rm+ 1
2

)Ω(Rm+ 1
2

) =
(
I + R10

m
)(

R5
m + R10

m
)
. (2.12)

Using (2.8) and from the assumption VmPR(A) = Vm, equations (2.11) and (2.12) imply

Γ (Rm+ 1
2

)PR(A) = (PR(A) – AVm)20PR(A) = Γ (Rm+ 1
2

), (2.13)

Φ(Rm+ 1
2

)PR(A) =
(
I + R10

m
)(

R5
m + R10

m
)
PR(A) = Φ(Rm+ 1

2
). (2.14)
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Using (2.8)–(2.14) in the corrector step C of (2.5), we obtain

Vm+1PR(A) = Vm+ 1
2

(
PR(A) + Φ(Rm+ 1

2
)
(
I + Γ (Rm+ 1

2
)
))

PR(A)

= Vm+ 1
2

(
PR(A) + Φ(Rm+ 1

2
)PR(A) + Φ(Rm+ 1

2
)Γ (Rm+ 1

2
)PR(A)

)

= Vm+ 1
2

(
PR(A) + Φ(Rm+ 1

2
)
(
I + Γ (Rm+ 1

2
)
))

= Vm+1. (2.15)

(iii) For m = 0, in the initial step In of PCIM (2.5) we have V0 = αA∗ implying (AV0)∗ =
(AαA∗)∗ = αAA∗ = AV0. Assume that (AVm)∗ = AVm holds true, then from (2.8) in the pre-
dictor step P of (2.5) gives

R∗
m = (PR(A) – AVm)∗ = Rm, (2.16)

Φ∗(Rm) =
((

I + R10
m

)(
R5

m + R10
m

))∗ = Φ(Rm), (2.17)

(AVm+ 1
2

)∗ =
(
P∗

R(A) + Φ∗(Rm)
)
(AVm)∗ = AVm+ 1

2
. (2.18)

From the assumption and also using (2.8), (2.10)–(2.12), and (2.16) gives

R∗
m+ 1

2
= Rm+ 1

2
, Γ ∗(Rm+ 1

2
) = Γ (Rm+ 1

2
), Φ∗(Rm+ 1

2
) = Φ(Rm+ 1

2
). (2.19)

Using (2.8), (2.18), and (2.19) in the corrector step C of (2.5) yields

(AVm+1)∗ =
(
PR(A) + Φ(Rm+ 1

2
)
(
I + Γ (Rm+ 1

2
)
))∗(AVm+ 1

2
)∗

= AVm+1. (2.20)

�

Remark 2.2 The validity of (2.6) and (2.7) for PCIM (2.5) implies that PCIM (2.4) is derived
from PCIM (2.5). The computational significance of method (2.5) is limited by the need for
knowledge of PR(A).Therefore, the PCIM given in (2.4) is more effective in computational
aspects and is preferable for n1 ≤ n2. If n1 > n2, then the dual version of PCIM (2.4) can be
used.

Theorem 2.3 Let A ∈ C
n1×n2
r , if in the initial step In of PCIM (2.4) α satisfies (1.3), then

the sequence {Vm+1} obtained by the proposed PCIM (2.4) converges to the Moore–Penrose
inverse A† uniformly with p = 45 order of convergence and with asymptotic convergence
factor [18] ACF = 10

ln 45 ≈ 2.627. Furthermore, the following error estimate is valid:

∥
∥A† – Vm+1

∥
∥

2 ≤ α‖R0‖45m+1
2 ‖A∗‖2

1 – ‖R0‖2
, (2.21)

where R0 = PR(A) – αAA∗.

Proof To show the uniform convergence of {Vm+1} obtained by PCIM (2.4) to A†, we use
the approach analogous to the proof of Theorem 3 of [7]. Let us define the residual in the
dual version at initial approximation by

T0 = I – V0A = I – αA∗A. (2.22)



Buranay and Iyikal Journal of Inequalities and Applications        (2019) 2019:203 Page 7 of 14

Also, for any integer s > 0,

Ts
0A = ATs

0 (2.23)

and for PCIM (2.4), for its dual version and from Lemma 2.1 using (2.10)–(2.12) for PCIM
(2.5), we obtain the residual error at the (m + 1)th iteration as

Tm+1 = I – AVm+1 = T45
m , m = 0, 1, . . . , (2.24)

Tm+1 = I – Vm+1A = T45
m , m = 0, 1, . . . , (2.25)

Rm+1 = PR(A) – AVm+1 = R45
m , m = 0, 1, . . . , (2.26)

respectively. It follows from (2.24)–(2.26) that, for each m,

AVm+1 = I – T45m+1
0 , Vm+1A = I – T45m+1

0 , (2.27)

Vm+1AVm+1 = Vm+1 – T45m+1

0 Vm+1. (2.28)

From Lemma 2.1, equations (2.6), (2.7) and on the basis of Corollary 4 to Theorem 2 and
Theorem 1 of [7] the passage to the limit in (2.27) and (2.28) imply the uniform conver-
gence

AVm+1 → PR(A), Vm+1A → PR(A∗), Vm+1AVm+1 → A†. (2.29)

Therefore, the sequence {Vm+1} converges uniformly to A† with order p = 45. By denoting

V̂m+ 1
2

= Vm+ 1
2

(
I + T5

m + T10
m + T15

m + T20
m + T25

m + T30
m + T35

m
)
, (2.30)

the corrector step C of (2.4) can be rewritten as

Vm+1 = Vm+ 1
2

+ V̂m+ 1
2

T5
m. (2.31)

We denote the error of PCIM (2.4) at the corrector step C by Em+1 = A† – Vm+1. Next, by
using that A†AA† = A† and from Lemma 2.1 equations (2.6) and (2.8), we obtain

Em+1 – Em+1Rm+1 = A† – Vm+1 –
(
A† – Vm+1

)
(PR(A) – AVm+1)

= Vm+1
(
AA† – AVm+1

)
= Vm+1Rm+1. (2.32)

Using (1.3) and on the basis of Theorem 2 of [6], we have ρ(R0) < 1. Since R0 is Hermitian,
this gives ρ(R0) = ‖R0‖2 < 1 and using (2.26) and norm properties

‖Rm+1‖2 ≤ ‖Rm‖45
2 ≤ ‖R0‖45m+1

2 < 1. (2.33)

From (2.32) using second norm gives

‖Em+1‖2 ≤ ‖Vm+1Rm+1‖2

1 – ‖Rm+1‖2
(2.34)
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(see [7]). By using (2.26), (2.30), and (2.31), it follows that

Vm+1Rm+1 = Vm+1R40
m R5

m

=
{

Vm+1
(
PR(A) + R5

m + R10
m + R15

m + R20
m + R25

m + R30
m + R35

m + R40
m

)

– Vm+1
(
PR(A) + R5

m + R10
m + R15

m + R20
m + R25

m + R30
m + R35

m
)}

R5
m

=
{

Vm+1
(
PR(A) + R5

m + R10
m + R15

m + R20
m + R25

m + R30
m + R35

m + R40
m

)

– Vm+ 1
2

(
PR(A) + R5

m + R10
m + R15

m + R20
m + R25

m + R30
m + R35

m
)

– V̂m+ 1
2

T5
m
(
PR(A) + R5

m + R10
m + R15

m + R20
m + R25

m + R30
m + R35

m
)}

R5
m

= (Vm+1 – V̂m+ 1
2

)
(
PR(A) + R5

m + R10
m + R15

m + R20
m

+ R25
m + R30

m + R35
m + R40

m
)
R5

m. (2.35)

From equation (2.35) and using ‖PR(A)‖2 = 1 and second norm, we get

‖Vm+1Rm+1‖2 ≤ ‖Rm‖5
2
(
1 + ‖Rm‖5

2 + ‖Rm‖10
2 + ‖Rm‖15

2 + ‖Rm‖20
2 + ‖Rm‖25

2

+ ‖Rm‖30
2 + ‖Rm‖35

2 + ‖Rm‖40
2

)‖Vm+1 – V̂m+ 1
2
‖2. (2.36)

From (2.30) and (2.31) and using that Vm+ 1
2

Ps
R(A) = Vm+ 1

2
is valid for every positive integer

s and also using second norm, it follows that

‖Vm+1 – V̂m+ 1
2
‖2 =

∥∥Vm+ 1
2

+ V̂m+ 1
2

(
T5

m – I
)∥∥

2

=
∥∥Vm+ 1

2
T40

m
∥∥

2 ≤ ‖Vm+ 1
2

Rm‖2‖Rm‖39
2 . (2.37)

Also, in view of (2.33),

1 – ‖Rm+1‖2 ≥ 1 – ‖Rm‖45
2 =

(
1 – ‖Rm‖5

2
)(

1 + ‖Rm‖5
2 + ‖Rm‖10

2 + ‖Rm‖15
2

+ ‖Rm‖20
2 + ‖Rm‖25

2 + ‖Rm‖30
2 + ‖Rm‖35

2 + ‖Rm‖40
2

)
. (2.38)

From the predictor step P of (2.4) and using ‖PR(A)‖2 = 1 and second norm, it follows that

‖Vm+ 1
2

Rm‖2 ≤ ‖VmRm‖2
(
1 + ‖Rm‖2 + ‖Rm‖2

2 + ‖Rm‖3
2 + ‖Rm‖4

2
)
. (2.39)

Also

1 – ‖Rm‖5
2 =

(
1 – ‖Rm‖2

)(
1 + ‖Rm‖2 + ‖Rm‖2

2 + ‖Rm‖3
2 + ‖Rm‖4

2
)
. (2.40)

Using (2.34), (2.36)–(2.40) and by recursion, we obtain the following inequalities yielding
(2.21):

∥∥A† – Vm+1
∥∥

2 ≤ ‖Vm+1Rm+1‖2

1 – ‖Rm+1‖2
≤

‖Rm‖44
2 ‖Vm+ 1

2
Rm‖2

1 – ‖Rm‖5
2

≤ ‖Rm‖44
2 ‖VmRm‖2

1 – ‖Rm‖2

≤ ‖R0‖45m+1
2 ‖V0‖2

1 – ‖R0‖2
=

α‖R0‖45m+1
2 ‖A∗‖2

1 – ‖R0‖2
. (2.41)
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The proposed PCIM (2.4) requires 5 Mms for the evaluation of the predictor step P and 5
Mms for the corrector step C. Therefore, total 10 Mms are needed giving the asymptotic
convergence factor ACF [18] as 10

ln 45 ≈ 2.627. �

3 Perturbation error analysis
We consider the minimum norm solution of the linear system of equations

Ax = b, A ∈R
n1×n2 , b ∈R

n1 , (3.1)

where b ∈ R(A) and x ∈Rn2 denotes the unknown solutions and rank(A) = r ≤ min(n1, n2).
The general least squares solution of (3.1) or minimum norm least squares solution is the
solution of the problem

min
x∈S

‖x‖2, S =
{

x ∈R
n2 | ‖Ax – b‖2 = min

}
. (3.2)

System (3.2) always has a unique solution x = A†b called the pseudoinverse solution [22]. If
A is a square nonsingular matrix, then A† = A–1. The condition number of A is defined by
κ(A) = ‖A‖2‖A†‖2. Next we consider the following perturbed general least squares prob-
lem:

min
x̃∈̃S

‖̃x‖2, S̃ =
{

x̃ ∈R
n2 | ‖Ã̃x – b̃‖2 = min

}
, (3.3)

where Ã = A + ∂A, b̃ = b + ∂b, and x̃ = Ã†̃b is called the regularized pseudoinverse solution
and ∂x = x̃ – x, ∂τ = τ̃ – τ and the residuals are τ̃ = b̃ – Ã̃x, τ = b – Ax. Also, we take into
account the perturbations satisfying rank(Ã) = rank(A) = r and ‖∂A‖2

‖A‖2
≤ εA, ‖∂b‖2

‖b‖2
≤ εb.

3.1 Algorithm for approximate regularized pseudoinverse solution
Let x̃m+1,∂ = Ṽm+1̃b be the approximate regularized pseudoinverse solution of (3.3), where
Ṽm+1 is the approximate Moore–Penrose inverse of Ã obtained by the PCIM given in (2.4)
at the m + 1th iteration by using initial approximation Ṽ0 = αÃ∗ and α satisfying

0 < α <
2

λ̃1(Ã∗Ã)
, (3.4)

where

λ̃1
(
Ã∗Ã

) ≥ λ̃2
(
Ã∗Ã

) ≥ · · · ≥ λ̃r
(
Ã∗Ã

)
> 0 (3.5)

are the nonzero eigenvalues of Ã∗Ã. Hence the residual error at the corresponding step
is τ̃m+1 = b̃ – Ã x̃m+1,∂ . Given a predescribed accuracy ε > 0, we propose the following al-
gorithm that uses PCIM (2.4) and approximates the regularized pseudoinverse solution
x̃m+1,∂ .

Algorithm A Choose an initial matrix Ṽ0 = αÃ∗ under the assumption (3.4).
Step 1 Let m = 0. Evaluate x̃0,∂ = Ṽ0̃b and τ̃0 = b̃ – Ã x0,∂ , then calculate ‖τ̃0‖2

‖̃b‖2
.

Do Step 2–Step 6 until ‖τ̃m‖2
‖̃b‖2

≤ ε.
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Step 2 Evaluate T̃m = I – ÃṼm.
Step 3 Apply the predictor step P of PCIM (2.4) to find Ṽm+ 1

2
.

Step 4 Evaluate T̃m+ 1
2

= I – ÃṼm+ 1
2

.
Step 5 Apply the corrector step C of PCIM (2.4) to find Ṽm+1.
Step 6 Evaluate x̃m+1,∂ = Ṽm+1̃b and τ̃m+1 = b̃ – Ã x̃m+1,∂ respectively. Then calculate

‖τ̃m+1‖2
‖̃b‖2

. Let m = m + 1.
Step 7 If m̃ is the number of iterations performed, then ỹm̃ = x̃m̃,∂ is the approximate

regularized pseudoinverse solution satisfying ‖τ̃m̃‖2
‖̃b‖2

≤ ε.

Theorem 3.1 (Theorem 1.4.6 in [22]) Assume that rank(Ã) = rank(A) = r and let ‖∂A‖2
‖A‖2

≤
εA, ‖∂b‖2

‖b‖2
≤ εb. Then, if η = κ(A)εA < 1, the perturbations ∂x and ∂τ in the least squares

solution x and the residual τ satisfy

‖∂x‖2 ≤ κ(A)
1 – η

(
εA‖x‖2 + εb

‖b‖2

‖A‖2
+ εAκ(A)

‖τ‖2

‖A‖2

)
+ εAκ(A)‖x‖2, (3.6)

‖∂τ‖2 ≤ εA‖x‖2‖A‖2 + εb‖b‖2 + εAκ(A)‖τ‖2. (3.7)

Theorem 3.2 Assume that rank(Ã) = rank(A) = r and let ‖∂A‖2
‖A‖2

≤ εA, ‖∂b‖2
‖b‖2

≤ εb. Let x̃m̃,∂ =
Ṽm̃b̃ be the approximate regularized pseudoinverse solution (3.3) obtained by Algorithm A.
Then, if η = κ(A)εA < 1, the following inequality holds true:

‖x – x̃m̃,∂‖2 ≤ κ(A)
1 – η

(
εA‖x‖2 + εb

‖b‖2

‖A‖2
+ εAκ(A)

‖τ‖2

‖A‖2

)
(3.8)

+ εAκ(A)‖x‖2 +
α(1 + εb)‖R̃0‖45m̃

2 ‖Ã∗‖2‖A‖2‖x‖2

1 – ‖R̃0‖2
,

where x is the pseudoinverse solution (3.2), τ = b – Ax and R̃0 = PR(Ã) – ÃṼ0.

Proof On the basis of Theorem 2.3 and the inequality in (2.21), and from Theorem 3.1,
using (3.6), it follows that

‖x – x̃m̃,∂‖2 = ‖x – x̃m̃,∂ + x̃ – x̃‖2 ≤ ‖x – x̃‖2 + ‖̃x – x̃m̃,∂‖2

= ‖x – x̃‖2 +
∥
∥Ã†̃b – Ṽm̃b̃

∥
∥

2 ≤ ‖x – x̃‖2 +
∥
∥Ã† – Ṽm̃

∥
∥

2‖̃b‖2

≤ κ(A)
1 – η

(
εA‖x‖2 + εb

‖b‖2

‖A‖2
+ εAκ(A)

‖τ‖2

‖A‖2

)
+ εAκ(A)‖x‖2

+
α‖R̃0‖45m̃

2 ‖Ã∗‖2

1 – ‖R̃0‖2
‖̃b‖2

≤ κ(A)
1 – η

(
εA‖x‖2 + εb

‖b‖2

‖A‖2
+ εAκ(A)

‖τ‖2

‖A‖2

)
+ εAκ(A)‖x‖2

+
α(1 + εb)‖R̃0‖45m̃

2 ‖Ã∗‖2‖A‖2‖x‖2

1 – ‖R̃0‖2
. �

4 Numerical results
In this section all the computations are performed using a personal computer with prop-
erties AMD Ryzen 7 1800X Eight Core Processor 3.60 GHz. Calculations are carried by
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Mathematica program in double precision for Example 1 and Example 2 and with 900
precision for Example 3. The tables adopt the following notations:

TCSAL is the total solution cost in seconds of Algorithm A.
TCSSPAL is the total solution cost in seconds of Algorithm A for successive perturba-

tions.

Example 1 (One-dimensional image restoration problem (see [18, 23])) In this test prob-
lem we consider the first kind Fredholm integral equation

∫ π
2

–π
2

K(θ ,ϕ)f (ϕ) dϕ = g(θ ),
–π

2
≤ θ ≤ π

2
. (4.1)

The kernel K(θ ,ϕ) and the function f (ϕ) are as follows:

K(θ ,ϕ) =
[

(cos θ + cosϕ)
sinω

ω

]2

, (4.2)

with

ω = π (sin θ + sinϕ).

f (ϕ) = exp
(
–4(ϕ + 0.5)2) + 2 exp

(
–4(ϕ – 0.5)2).

(4.3)

By taking the quadrature nodes ϕj = – π
2 + (j–0.5)π

n2
, j = 1, . . . , n2, and the points θi = – π

2 +
(i–0.5)π

n1
, i = 1, . . . , n1, the discretization of (4.1)–(4.3) gives the discrete ill-posed problem

Auh = b. The right-hand side vector b is calculated by multiplying A with u, where u is
the trace of f (ϕ) on the grid points ϕj, j = 1, . . . , n2. We apply the proposed Algorithm A
by using successive perturbations to obtain the regularized pseudoinverse solution for the
perturbed systems (A +∂A)yk = b +∂kb, where ∂Ai,j =

{
δ1 if i=j
0 if i
=j

}
and ∂kb = (δk , . . . , δk)T ∈ Rn1

for different values of the smoothing parameter δ1, and δk = 0.999δk–1, k = 2,. . . ,6. Let ỹk
m̃k

,
k = 1, . . . , 6, be the approximate regularized pseudoinverse solution of

min
ỹk ∈̃Sk

∥
∥̃yk∥∥

2, S̃k =
{

ỹk ∈ Rn2 | ∥∥(A + ∂A)̃yk –
(
b + ∂kb

)∥∥
2 = min

}
, (4.4)

obtained by the given Algorithm A by performing m̃k iterations for an accuracy of
‖τ̃m̃k ‖2
‖̃b‖2

≤
5×10–7 for the corresponding perturbed system. Table 1 presents the total iteration num-
ber m̃ =

∑6
k=1 m̃k performed, TCSSPAL and the relative L2 norm of the errors using Algo-

rithm A when n1 = 400 and n2 = 800.

Table 1 TCSSPAL , iteration numbers, relative L2 norm of the errors obtained by Algorithm A for
Example 1

δ1 TCSSPAL m̃
‖u–̃y1m̃1

‖2
‖u‖2

‖u–̃y3m̃3
‖2

‖u‖2
‖u–̃y5m̃5

‖2
‖u‖2

‖u–̃y6m̃6
‖2

‖u‖2
10–3 0.45 10 1.7423E–02 6.2443E–02 1.1128E–01 1.3823E–01
10–4 0.45 10 9.0878E–03 1.4484E–02 2.0965E–02 2.4639E–02
10–6 0.45 10 8.2943E–03 3.1554E–03 3.3861E–03 3.6325E–03
10–8 0.45 10 8.2620E–03 2.8571E–03 3.2967E–04 4.1878E–03
10–10 0.45 10 8.2616E–03 2.8499E–03 3.2244E–04 1.0131E–04
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Example 2 (Test problems from Harwell–Boeing collection) The experiments are carried
out on nine of the matrices from the Harwell–Boeing test collection (Duff, Grimes, and
Lewis, see [22]). The numerical values of the ABB and ASH matrices are random num-
bers uniformly distributed in [–1, 1], while WELL and ILLC have their original values.
The WELL and ILLC matrices have the same nonzero structure but different numerical
values. A set of consistent least squares problems is defined by taking the exact solution
to be u = (1, . . . , 1)T ∈ Rn2 , and the right-hand side b is obtained by multiplying the co-
efficient matrix A by u. We apply the proposed Algorithm A using the dual version of
PCIM for obtaining the regularized pseudoinverse solution for each test problem, where
∂Ai,j =

{ δ if i=j
0 if i
=j

}
and ∂b = (δ, . . . , δ)T ∈ Rn1 for different values of the smoothing parameter δ.

Let ỹm̃ be the approximate regularized pseudoinverse solution obtained by the given Al-
gorithm A using the dual version of PCIM by performing m̃ iterations for an accuracy of
‖τ̃m̃‖2
‖̃b‖2

≤ ε. Table 2 presents the test problems, description of the problems, and the size
of the matrices, TCSAL, iteration numbers m̃ performed, and the relative L2 norm of the
errors obtained for the test problems in Example 2 when δ = ε = 5 × 10–15. Figure 1 illus-
trates the relative L2 norm of errors for the test problems in Example 2 with respect to δ.
The obtained numerical results justify the theoretical results in Theorem 3.2.

Table 2 TCSAL , iteration numbers, and relative L2 norm of the errors obtained by Algorithm A for
the test problems of Example 2

Test problem Description Size (n1 × n2) TCSAL m̃
‖u–̃ym̃‖2

‖u‖2
ABB313 Sudan survey 313×176 0.02 2 3.4674E–15
ASH219 Geodesy problem 219×85 0.01 3 4.5483E–15
ASH331 Geodesy problem 331×104 0.02 3 3.8656E–15
ASH608 Geodesy problem 608×188 0.05 3 3.8984E–15
ASH958 Geodesy problem 958×292 0.06 3 3.4699E–15
WELL1033 Gravity-meter 1033×320 0.09 5 1.2690E–14
WELL1850 Gravity-meter 1850×712 0.77 5 7.0907E–15
ILLC1033 Gravity-meter 1033×320 0.16 7 7.9173E–13
ILLC1850 Gravity-meter 1850×712 1.07 8 4.7693E–14

Figure 1 Relative L2 norm of errors for the test problems in Example 2 with respect to δ
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Table 3 Second norm errors and the estimated order of convergence of PCIM for Example 3

‖V1 – A†‖2 ‖V2 – A†‖2 ‖V3 – A†‖2 p̃

0.11199 3.51011E–20 7.43666E–853 47.16

Example 3 (A benchmark example [17]) With this example we aim to numerically com-
pute the theoretical order of convergence of the proposed PCIM (2.4) using the known
exact Moore–Penrose inverse. In this example A and A† are

A =

⎛

⎜
⎝

1 0 0 –6
2 6 0 –6
7 8 9 –6

⎞

⎟
⎠ , A† =

⎛

⎜
⎜⎜
⎝

28
1931

–143
3862

84
1931

–653
3862

1335
7724

–14
1931

57
1931

–249
1931

171
1931

–1903
11,586

–143
23,172

14
1931

⎞

⎟
⎟⎟
⎠

,

and we use

p̃ = ln

(‖Vm+1 – A†‖2

‖Vm – A†‖2

) /
ln

( ‖Vm – A†‖2

‖Vm–1 – A†‖2

)

to estimate the order of convergence p. The maximum norm of the errors and the calcu-
lated order of convergence p̃ are presented in Table 3. The fourth column of Table 3 shows
that the numerically calculated order of convergence p̃ of PCIM (2.4) is at least 45.

5 Conclusion
The PCIM with convergence order p = 45 is proposed for computing the Moore–Penrose
inverse of a nonzero matrix A ∈ C

n1×n2
r . Also we give the Algorithm A which uses the

PCIM and approximates the regularized pseudoinverse solution of general least squares
problem. The economical computational efficiency and stability of Algorithm A are useful
for the numerical regularized pseudoinverse solution of difficult problems such as the first
kind Fredholm integral equations.
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