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Abstract
In this paper, new refinements of the Hadamard inequality on coordinated convex
function are established. Besides, a simple proof of the Hadamard type for linear
functions is also found. Moreover, some examples of the new refinement inequalities
are given to check their validity.
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1 Introduction and preliminaries
Convex functions have many applications in various areas of science such as management
science, finance and engineering. Moreover, numerous extensions and generalizations of
convexity have been applied in mathematical inequalities and optimization. A function
ψ : J ⊆R →R is called a convex if, for any m, n ∈ J and θ ∈ [a1, a2],

ψ
(
θm + (1 – θ )n

) ≤ θψ(m) + (1 – θ )ψ(n).

The most famous inequality in the literature for convex functions is known as
Hadamard’s inequality. This inequality was proposed in 1893 by Hadamard. The fol-
lowing theorem states the double inequality, introduced by Pečarić and Tong ([1],
1992).

Theorem 1 Let ψ : [a1, a2] ⊆R→R be a convex function where a1 ≤ a2, then

ψ

(
a1 + a2

2

)
≤ 1

a2 – a1

∫ a2

a1

ψ(x) dx ≤ ψ(a1) + ψ(a2)
2

. (1)

Hadamard’s inequalities play a crucial role in various branches of science, including
engineering, economics, astronomy, and mathematics. Thus, due to its great utility in
several areas of pure and applied mathematics, much attention has been paid, by many
mathematicians, to Hadamard’s inequality. Consequently, such inequalities were studied
extensively by many authors. Also, numerous generalizations and extensions have been
reported in a number of papers [2–4].
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Dragomir [5] defined the following mapping which is considered to be naturally con-
nected with Hadamard’s result:

H : [0, 1] → R, H(t) :=
1

a2 – a1

∫ a2

a1

ψ

(
tx + (1 – t)

a1 + a2

2

)
dx,

where ψ : [a1, a2] →R is a convex function defined on [a1, a2].
Using the above result, we now state the following theorem.

Theorem 2 Let ψ : [a1, a2] → R be a convex function. We define H : [0, 1] → R to get the
following inequalities:

ψ

(
a1 + a2

2

)
≤ H(t) ≤ 1

a2 – a1

∫ a2

a1

ψ(x) dx.

ElFarissi [6] established a new generalization of inequality (1) as follows.

Theorem 3 Assume that ψ : [a1, a2] → R is a convex function on [a1, a2], then for all α ∈
[0, 1] we have

ψ

(
a1 + a2

2

)
≤ m(α) ≤ 1

a2 – a1

∫ a2

a1

ψ(x) dx ≤ M(α) ≤ ψ(a1) + ψ(a2)
2

, (2)

where

m(α) =: αψ

(
ta2 + (2 – t)a1

2

)
+ (1 – α)ψ

(
(1 + α)a2 + (1 – α)a1

2

)

and

M(α) =:
1
2
[
ψ

(
αa2 + (1 – α)a1

)
+ αψ(a1) + (1 – α)ψ(a2)

]
.

The concept of coordinated convexity was introduced by Dragomir [7]. This is a modi-
fication of the convex functions, as given by the following definition.

Definition 1 A function ψ : A = [a1, a2] × [b1, b2] → R with a1 < a2 and b1 < b2 is called
a convex function on coordinates on A if the partial mappings ψx : [b1, b2] → R, ψx(v) =
ψ(x, v), and ψy : [a1, a2] →R, ψy(u) = ψ(u, y) defined for all x ∈ [a1, a2] and y ∈ [b1, b2], are
convex.

Following the above definition, we remark that every convex function, ψ : [a1, a2] ×
[b1, b2] →R, is convex on coordinates. However, the converse is not true; see ([7]).

Moreover, a formal definition of the coordinate convex function is given now.

Definition 2 A function ψ : A = [a1, a2]× [b1, b2] →R is said to be convex on coordinates
on A if the following inequality holds:

ψ
(
sx + (1 – s)y, tu + (1 – t)v

) ≤ stψ(x, u) + t(1 – s)ψ(y, u) + s(1 – t)ψ(x, v)

+ (1 – s)(1 – t)ψ(y, v).
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The Hadamard inequalities for coordinate convex functions were further modified by
Dragomir [7]. These inequalities provide continuous scales of refinements to Hadamard’s
inequalities.

Theorem 4 The function ψ : A = [a1, a2] × [b1, b2] → R is convex on coordinates on A.
Thus the following inequalities hold:

ψ

(
a1 + a2

2
,

b1 + b2

2

)
≤ 1

(a2 – a1)(b2 – b1)

∫ a2

a1

∫ b2

b1

ψ(x, y) dx dy

≤ ψ(a1, b1) + ψ(a1, b2) + ψ(a2, b1) + ψ(a2, b2)
4

. (3)

Many improvements and generalizations of the above result have been extensively inves-
tigated by a number of researchers. For several recent results, see [8, 9] and the references
therein. While the Hadamard inequalities were proved by considering convexity on co-
ordinates, this paper is aimed at proving the inequality using the definition of convexity.
This can be obtained by a change of variables.

2 Simple proof of Hadamard type for linear functions
In order to prove the Hadamard inequality, the following lemma is considered.

Lemma 1 Let ψ be an integrable function on A. Then the following result holds:

1
(a2 – a1)(b2 – b1)

∫ a2

a1

∫ b2

b1

ψ(x, y) dx dy

=
∫ 1

0

∫ 1

0
ψ

(
θ1a2 + (1 – θ1)a1, θ2b1 + (1 – θ2)b2

)
dθ1 dθ2 (4)

=
∫ 1

0

∫ 1

0
ψ

(
θ1a1 + (1 – θ1a)a2, θ2b2 + (1 – θ2)b1

)
dθ1 dθ2. (5)

Proof We let x = θ1a2 + (1 – θ1)a1 and y = θ2b1 + (1 – θ2)b2 to prove (4). Meanwhile, (5)
can be proved by denoting x = θ1a1 + (1 – θ1)a2 and y = θ2b2 + (1 – θ2)b1, which is re-
quired. �

Now, a simple proof of Hermite–Hadamard’s inequality for linear functions can be given
as follows.

Proof We let x = θ1a2 + (1 – θ1)a1, and y = θ1a1 + (1 – θ1)a2. Since ψ is a convex function,
we have, for all θ1, θ2 ∈ [0, 1],

ψ

(
a1 + a2

2
,

b1 + b2

2

)

= ψ

(
θ1a2 + (1 – θ1)a1 + θ1a1 + (1 – θ1)a2

2
,
θ2b1 + (1 – θ2)b2 + θ2b2 + (1 – θ2)b1

2

)
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≤
(

ψ(θ1a2 + (1 – θ1)a1, 0) + ψ(θ1a1 + (1 – θ1)a2, 0)
2

,

ψ(0, θ2b2 + (1 – θ2)b2) + ψ(0, θ2b2 + (1 – θ2)b1)
2

)

≤ ψ(a1, b1) + ψ(a1, b2) + ψ(a2, b1) + ψ(a2, b2)
4

.

Thus, one can write

ψ

(
a1 + a2

2
,

b1 + b2

2

)

≤
(

ψ(θ1a2 + (1 – θ1)a1, 0) + ψ(θ1a1 + (1 – θ1)a2, 0)
2

,

ψ(0, θ2b1 + (1 – θ2)b2) + ψ(0, θ2b2 + (1 – θ2)b1)
2

)

≤ ψ(a1, b1) + ψ(a1, b2) + ψ(a2, b1) + ψ(a2, b2)
4

. (6)

Using Lemma 1 and integrating inequality (6) over [0, 1]2, we obtain (3). �

Since the aim of this article is to establish refinements inequalities of (3), the new in-
equality related to both sides of Hadamard’s result can be obtained.

3 The refinements of Hadamard’s type for convex functions
The Hadamard’ inequalities for convex functions on coordinates can be refined as follows.

Theorem 5 Assume that ψ : A → R is a convex function on A. Then, for all λ ∈ [0, 1], we
have

ψ

(
a1 + a2

2
,

b1 + b2

2

)
≤ s(θ1, θ2)

≤ 1
(a2 – a1)(b2 – b1)

∫ a2

a1

∫ b2

b1

ψ(x, y) dx dy

≤ S(θ1, θ2)

≤ 1
4
[
ψ(a1, b1) + ψ(a1, b2) + ψ(a2, b1) + ψ(a2, b2)

]
, (7)

where

s(θ1, θ2) = θ1θ2ψ

(
θ1a2 + (2 – θ1)a1

2
,
θ2b2 + (2 – θ2)b1

2

)

+ (1 – θ1)(1 – θ2)ψ
(

(1 + θ1)a2 + (1 – θ1)a1

2
,

(1 + θ2)b2 + (1 – θ2)b1

2

)

and

S(θ1, θ2) =
θ1θ2

2
(
ψ(a1, b1) + ψ

(
a1, N(θ2)

)
+ ψ

(
N(θ1), b1

)
ψ

(
N(θ1), N(θ2)

)
+ ψ(a2, b2)

)
.
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Proof Let ψ be a convex function on A. Then, by applying (1) on the subinterval [a1, N(θ1)]
and [b1, N(θ2)], with N(θ1) = θ1a2 + (1 – θ1)a1, N(θ2) = θ2b2 + (1 – θ2)b1, and θ1, θ2 �= 0, we
obtain

ψ

(
a1 + N(θ1)

2
,

b1 + N(θ2

2

)
= ψ

(
θ1a2 + (2 – θ1)a1

2
,
θ2b2 + (2 – θ2)b1

2

)

≤ 1
θ1θ2(a2 – a1)(b2 – b1)

∫ N(θ1)

a1

∫ N(θ2)

b1

ψ(x, y) dx dy

≤ ψ(a1, b1) + ψ(a1, N(θ2)
4

+
ψ(N(θ1), b1) + ψ(N(θ1), N(θ2))

4
. (8)

By applying (1) again on [N(θ1), a2] and [N(θ2), b2], with θ1, θ2 �= 1, one can obtain the
following:

ψ

(
N(θ1) + a2

2
,

N(θ2) + b2

2

)

= ψ

(
(1 + θ1)a2 + (1 – θ1)a1

2
,

(1 + θ2)b2 + (1 – θ2)b1

2

)

≤ 1
(1 – θ1)(1 – θ2)(a2 – a1)(b2 – b1)

∫ a2

N(θ1)

∫ b2

N(θ2)
ψ(x, y) dx dy

≤ ψ(θ1a1 + (1 – θ1)a1, N(θ2)) + ψ(N(θ1), b2)
4

+
ψ(a2, N(θ2)) + ψ(a2, b2)

4
. (9)

Multiplying (8) by θ1θ2 and (9) by (1 – θ1)(1 – θ2) yields

θ1θ2ψ

(
θ1a2 + (2 – θ1)a1

2
,
θ2b2 + (2 – θ2)b1

2

)

≤ 1
(a2 – a1)(b2 – b1)

∫ N(θ1)

a1

∫ N(θ2)

b1

ψ(x, y) dx dy

≤ (θ1θ2)
(

ψ(a1, b1) + ψ(a1, N(θ2)) + ψ(N(θ1), b1)
4

+ ψ
(N(θ1), N(θ2))

4

)

and

(1 – θ1)(1 – θ2)f
(

(1 + θ1)a2 + (1 – θ1)a1

2
,

(1 + θ2)b2 + (1 – θ2)b1

2

)

≤ 1
(a2 – a1)(b2 – b1)

∫ a2

N(θ1)

∫ b2

N(θ2)
ψ(x, y) dx dy

≤ (1 – θ1)(1 – θ2)
(

ψ(N(θ1), N(θ2)
4

+
ψ(N(θ1), b2) + ψ(a2, N(θ2) + ψ(a2, b2)

4

)
.
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When combining the resulting inequalities, we have

s(θ1, θ2) ≤ 1
(a2 – a1)(b2 – b1)

∫ a2

a1

∫ b1

b2

ψ(x, y) dx dy ≤ S(θ1, θ2), (10)

where s(θ1, θ2) and S(θ1, θ2) are defined in the same way as in Theorem 5.
Since ψ is a convex function, we obtain

ψ

(
a1 + a2

2
,

b1 + b2

2

)

= ψ

(
θ1θ2

(
θ1a2 + (2 – θ1)a1

2
,
θ2b2 + (2 – θ2)b1

2

))

+ ψ

(
(1 – θ1)(1 – θ2)

(
(1 + θ1)a2 + (1 – θ1)a1

2
,

(1 + θ2)b2 + (1 – θ2)b1

2

))

≤ θ1θ2ψ

(
θ1a2 + (2 – θ1)a1

2
,
θ2b2 + (2 – θ2)b1

2

)

+ (1 – θ1)(1 – θ2)f
(

(1 + θ1)a2 + (1 – θ1)a1

2
,

(1 + θ2)b2 + (1 – θ2)b1

2

)

≤ θ1θ2ψ

(
N(θ1) + a1

2
,

N(θ2) + b1

2

)

+ (1 – θ1)(1 – θ2)ψ
(

N(θ1) + a2

2
,

N(θ2) + b2

2

)

≤ 1
4
(
ψ(a1, b1) + ψ(a1, b2) + ψ(a2, b1) + ψ(a2, b2)

)
. (11)

Then, by (10) and (11), we obtain (7). This process completes the proof. �

Corollary 1 Suppose that ψ : A → R is coordinated convex on A. Using Theorem 5, with
θ1 = θ2 = 1, we obtain the following inequalities:

s(1, 1) ≤ 1
(b – a)(d – c)

∫ a2

a1

∫ b2

b1

ψ(x, y) dx dy ≤ S(1, 1).

The next proposition is immediate.

Proposition 1 Assume that ψ : A → R is a convex on A. Then the following inequalities
are obtained:

ψ

(
a1 + a2

2
,

b1 + b2

2

)
≤ sup

θ1∈[0,1]
s(θ1, δ) ≤ 1

(a2 – a1)(b2 – b1)

∫ a2

a1

∫ b2

b1

ψ(x, y) dx dy

≤ inf
θ1∈[0,1]

S(θ1, θ2)

≤ 1
4
[
ψ(a1, b1) + ψ(a1, b2) + ψ(a2, b1) + ψ(a2, b2)

]
. (12)

Remark 1 In particular,
(i) If we choose θ1 = 1/2 and θ2 = 1/3 in Theorem 5, then we obtain

s
(

1
2

,
1
3

)
=

1
6

(
ψ

(
a2 + 3a1

4
,

b2 + 5b1

6

)
+ 2ψ

(
3a2 + a1

4
,

2b2 + b1

3

))
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and

S
(

1
2

,
1
3

)
=

1
24

(
ψ(a1, b1) + ψ

(
b2 + 2b1

3

)

+ ψ

(
a2 + a1

2
, b1

)
+ 3ψ

(
a2 + a1

2
,

b2 + 2b1

3

)

+ 2
(

ψ

(
a2 + a1

2
, b2

)
+ ψ

(
a2 +

b2 + 2b1

3
+ ψ(a2, b2)

)))
.

(ii) If we choose θ1 = θ2 = 1/2, then one can obtain

s
(

1
2

,
1
2

)
=

1
16

(
ψ(2θ1a2 + 3a1, 2δb2 + 3b1) + ψ(3a2 + a1, 3b2 + b1)

)

and

S
(

1
2

,
1
2

)
=

1
16

(
ψ(a1, b1) + ψ

(
a1,

b1 + b2

2

)
+ ψ

(
a1 + a2

2
, b1

)

+ ψ

(
a1 + a2

2
,

b1 + b2

2

)
+ ψ

(
a1 + a2

2
, b2

)

+ ψ

(
a2,

b1 + b2

2

)
+ ψ(a2, b2)

)
.

Example 1 Assume that θ1 = a1
a1+a2

and θ2 = b1
b1+b2

, where 0 ≤ a1, b1 ≤ a2, b2. Then we have

s
(

a1

a1 + a2
,

b1

b1 + b2

)
=

a1b1

(a1 + a2)(b1 + b2)
ψ

(
a1(3a2 + a1)
2(a1 + a2)

,
b1(3b2 + b1)
2(b1 + b2)

)

+
a2b2

(a1 + a2)(b1 + b2)
ψ

(
a2(3a1 + a2)
2(a1 + a2)

,
b2(3b1 + b2)
2(b1 + b2)

)

and

S
(

a1

a1 + a2
,

b1

b1 + b2

)

=
a1b1

4(a1 + a2)(b1 + b2)
(ψ(a1, b1) + ψ

(
a1,

2b1b2

b1 + d

)

+
a1b1

4(a1 + a2)(b1 + b2)

(
ψ

(
2a1a2

a1 + a2
, b1

)
+ ψ

(
2a1a2

a1 + a2
,

2b1b2

b1 + b2

))

+
a2b2

4(a1 + a2)(b1 + b2)

(
ψ

(
2a1a2

a1 + a2
,

2b1b2

b1 + b2

)
+ ψ

(
2a1a2

a1 + a2
, d

))

+
a2b2

4(a1 + a2)(b1 + b2)

(
ψ

(
a2,

2b1b2

b1 + b2

)
+ ψ(a2, b2)

)
.

(i) If we choose ψ(x, y) = x2 + y2 with a1, b1 = 0 and a2, b2 = 1, then we obtain

ψ

(
1
2

,
1
2

)
=

1
2

≤ s(0, 1) =
1
2

≤
∫ 1

0

∫ 1

0
x2 + y2 dx dy =

2
3
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≤ S(0, 1) = 1

≤ 1
4
[
ψ(a1, b1) + ψ(a1, b2) + ψ(a2, b1) + ψ(a2, b2)

]
= 1.

(ii) If we choose ψ(x, y) = x2y2 with a1, b1 = 0 and a2, b2 = 1, then we obtain

ψ

(
1
2

,
1
2

)
=

1
16

≤ s(0, 0) =
1

16

≤
∫ 1

0

∫ 1

0
x2y2 dx dy =

1
9

≤ S(0, 0) =
1
4

≤ 1
4
[
ψ(a1, b1) + ψ(a1, b2) + ψ(a2, b1) + ψ(a2, b2)

]
=

1
4

.

4 Conclusions
This paper has presented some new refinements of the Hadamard inequality on coor-
dinate convex functions. In addition, Hadamard’s inequality for linear functions has been
proved using the definition of convexity. In order to ascertain the validity of the new refine-
ment inequalities, some examples are also presented. The obtained results in this paper
would be useful for generalization of inequalities that were proved in previous work.
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