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Abstract
In this paper, we consider wavelet analysis to obtain an estimator of a copula function
based on censored data. We show that optimal convergence rates for the mean
integrated squared error (MISE) of linear wavelet-based function estimators are exact
under right censoring model. Moreover, we derive asymptotic formulae for MISE.
Finally, the simulation results and the analysis of real data validate the proposed
procedure.
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1 Introduction
Recently, copulas and their applications in statistics have become a rather popular phe-
nomenon. For a long time, statisticians have been interested in the relationship between
a multivariate distribution function and its lower-dimensional margins. When it comes
to analyzing the dependence between random variables, the copula function becomes a
very useful tool. According to Sklar’s theorem [22], if H is a bivariate distribution function
with margins F(x) and G(y), then there exists a copula C such that H(x, y) = C(F(x), G(y)).
Statisticians are interested in copulas for two reasons: (1) Inspecting how the measures
of dependence are scale-free and (2) constructing families of bivariate distributions. For
more information about this flexible tool and dependence modeling, we refer to [16] and
[20]. A detailed survey on copula models can be found in [24]. Copula models have many
applications in finance and insurance, some of which are considered in [2, 7, 10, 11, 13].
For more studies on copulas in econometrics, we refer to [3] and [21].

In recent years, the analysis of censored data has become very popular. In many sci-
ences such as statistics, engineering, finances, and other areas, censoring is a condition
in which observation is partially known, that is, censoring occurs when a value is outside
the range of a measuring instrument, particularly in life-testing data in medicine, where
observations often survive or fail at the end of the test (see, e.g., [12] for good examples
of the censoring method). Let T1, T2, . . . , Tn be i.i.d. survival times with probability den-
sity function f and common distribution function F . Typically, instead of observing the
variables of interest, we are able to observe the i.i.d. censoring times C1, C2, . . . , Cn. Let G
be the common distribution function of the latter. Also, it is assumed that Ti and Ci are
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independent. Let Yi = min(Ti, Ci) for i = 1, . . . , n, and define the indicator function

δi =

⎧
⎨

⎩

1 if Ti ≤ Ci,

0 if Ti > Ci.

This definition denotes the right-censoring. Several approaches have been proposed to
deal with the estimation of copulas under uncensored or censored data. See [9] for non-
parametric estimation and also [23]. In [24] consistent estimators are considered under
some restrictions on the dependence structure of the censored data. For right-censored
data, less work has been done on nonparametric copula estimators. Recently, in [15] a new
class of nonparametric estimators of copula function for bivariate censoring is described.
The aim of this paper is to estimate the copula function via wavelets based on censoring.

The theory of wavelets and their applications in statistics and other sciences have be-
come an important technique. We can find several applications of wavelet estimators for
copula functions in different contexts. In [14] smoothed empirical copula estimators con-
sidered using ranks and wavelets. See [1] for more information about the procedure to
estimate copula functions using wavelets, where the problem of multivariate copula den-
sity estimation by wavelet methods has been described. In [19] the wavelet approaches
were used, basically following the same route as in [14]. In [5] multiwavelets for estimat-
ing copula density were used, and in [6] the same work was prepared based on a Legendre
multiwavelets. There are many different papers that considered wavelets, and we proposed
some of the most important.

Currently, an extension of wavelets and copulas is increasingly popular as an alterna-
tive to many methods such as those briefly discussed. In this paper, we propose a lin-
ear wavelet-based estimation for copulas with right censored data in the observation T1

or T2. Let (T11, T21), . . . , (T1n, T2n) be independent and have a joint distribution function
(d.f.) F(t1, t2). As usual, assume that T1 and C1 are independent, where C1 is the censoring
variable associated with the variable T1. Rather than observing the variables of interest
(T11, T21), . . . , (T1n, T2n), in the randomly right censor model, (Yi, δi, T2i) is observed. We
apply the method of [17], which provides a MISE expansion similar to a density function
over (–∞, T] for any fixed T < τH(·,t), where τH(·,t) = inf{u : H(u, t) = 1} ≤ ∞ is the least
upper bound for the support of H(·, t), the distribution function of (Z1, t).

The rest of the paper is as follows. In Sect. 2, we define the elements of copula density
and wavelet transform and provide the wavelet estimators for the copula based on the
censored data. The main results are described in Sect. 3, and the simulation study for the
proposed estimator is provided in Sect. 4. The proofs are presented in the Appendix.

2 Preliminary notations
In this section, we provide some necessary concepts about the general framework of this
paper. Section 2.1 presents preliminary assumptions and some notations about copula
functions. All the major definitions and facts about the wavelets used in the paper are
presented in Sect. 2.2. At the end of the section we introduce the estimators for the main
result.

2.1 Copula function
Copula had been first established in [22] and improved very fast in many spaces. Here we
give a brief definition of a copula function in the two-dimensional case. Any extension
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of the results to higher dimensions is straightforward. Consider a random vector (T1, T2)
with cumulative distribution function F(t1, t2) = P(T1 ≤ t1, T2 ≤ t2) and margin distribu-
tion functions F1 and F2. The relation between these variables is of interest, so the copula
function C can be formed as follows:

F(t1, t2) = C
(
F1(t1), F2(t2)

)
.

The marginals F1 and F2 have uniform distribution on (0,1), and if they are continu-
ous, then C is unique and coincides with the distribution function of the pair (U , V ) =
(F1(T1), F2(T2)). In practice, F is unknown. The advantage of using copula is that the joint
distribution function (F(t1, t2)) can be constructed by using marginals (F1 and F2) when
they are from different classes of distributions. Let (T11, T21), . . . , (T1n, T2n) be a random
sample from the unknown distribution F . Denote by F1n and F2n the empirical distribu-
tions associated with F1 and F2. A first step in selecting an appropriate class of copulas
consists of plotting the pairs ( Ri

n , Si
n ) = (F1n(T1i), F2n(T2i)), i = {1, . . . , n}.

Here Ri is the rank of T1i among T11, . . . , T1n, and Si is the rank of T2i among T21, . . . , T2n.
The motivation behind this approach is that the pseudo-observations (Ri/n, Si/n) are close
substitutes to the unobservable pairs (Ui, Vi) = (F1(T1i), F2(T2i)) forming a random sample
from C. We denote by c(u, v) the density of C(u, v),

c(u, v) =
∂2C(u, v)

∂u∂v
, u, v ∈ (0, 1).

It is obvious that in real analysis one of our variables (or even both of them) may be subject
to be censored, and one observes a minimum between it and another (censoring) random
variable, denoted by Cj, so Yj = min(Tj, Cj) and δj = ITj≤Cj for j = 1, 2. The i.i.d. replication
vector (Y1i, Y2i, δ1i, δ2i)1≤i≤n denotes the random sample of (Y1, Y2, δ1, δ2). Clearly, many dif-
ferent estimators can be considered for a distribution function based on censoring. The
one used in this paper has the form

F̂n(t1, t2) =
1
n

n∑

i=1

W (·)
in I(Y1i ≤ t1, T2i ≤ t2),

where Win are random weights designed to compensate asymptotically the bias caused by
censoring and can be assumed in three different forms; see [15]. The weight considered
in the present paper is

Win =
δ1i

1 – Ĝ(Y –
1i)

.

In this form only T1 is assumed to be censored, and then Y2 = T2, δ2 = 1 a.s., and C1 is in-
dependent from T1. Also Ĝ, the Kaplan–Meier estimator of the censoring variable, is de-
fined as Ĝ(t) = 1 –

∏
i:Y1i≤t(1 – 1∑n

j=1 I(Y1j≥Y1i)
)1–δ1i . Introducing G(t) = P(C1 ≤ t), the weight

Win can be seen as an approximation of Wi = δ1i
1–G(Y –

1i)
. The other weights are discussed in

[15]. They took Win = δ1iĝ(Y1i), where ĝ is a consistent estimator of limit function g , esti-
mated from the data, where g satisfies the condition E[δ1g(Y1)φ(Y1, T2)] = E[φ(T1, T2)] for
all φ ∈ L1.
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2.2 Wavelets
Wavelets and their applications are still an important subject in statistics. The term
wavelet is used to refer to a set of orthonormal basis functions generated by dilation and
translation of a compactly supported scaling function (father wavelet) φ and a mother
wavelet ψ associated with an r-regular (r > 0) multiresolution analysis of L2(R), the space
of square-integrable functions on the line. Define φj,k(x) = 2j/2φ(2jx – k) and ψj,k(x) =
2j/2ψ(2jx – k) for j ∈ N and k = (k1, k2) ∈ Z

2. It is assumed that j ≥ jo for some coarse
scale jo ∈ N, which we take as l. We suppose that φ and ψ are bounded and compactly
supported. For more on wavelets, see [8] and [18]. The wavelet expansion for f (x, y) can
be written as

f (x, y) = fj0 (x, y) + Dj0 f (x, y), x, y ∈ R, (1)

where fj0 (x, y) =
∑

k∈Z2 αj0kφj0k(x, y) is a trend of an approximation, and

Dj0 f (x, y) =
∞∑

j=j0

(∑

k∈Z2

β
(1)
j0kψ

(1)
j0k(x, y) +

∑

k∈Z2

β
(2)
j0kψ

(2)
j0k(x, y) +

∑

k∈Z2

β
(3)
j0kψ

(3)
j0k(x, y)

)

.

For more details about Dj0 f (x, y) and the functions ψj0k , see [14]. The coefficients αj0k and
β

(1)
j0k , β

(2)
j0k , β

(3)
j0k are unique for every j0 ∈ N. The function φj0k is defined as φj0k1k2 (x, y) =

φj0k1 (x)φj0k2 (y).
Some important cases of wavelets are the Haar, Daubechies, Shannon, Meyer, and Mor-

let wavelets (see [8]). We used the Haar and Daubechies wavelets in our simulation studies.
Accordingly, by equation (1) the copula density c can be expanded with

αj0k =
∫

(0,1)2
c(u, v)φj0k(u, v) du dv, k ∈ Z

2.

By the change of variables u = F1(t1) and v = F2(t2) we get

αj0k =
∫

φj0k
(
F1(t1), F2(t2)

)
f (t1, t2) dt1 dt2 = Ef

(
φj0k

(
F1(T1), F2(T2)

))
. (2)

Assuming that I = I(Y1i ≤ T , T2i ≤ T), when F1 and F2 (the marginal distributions) are
known, a moment-based estimator of αj0k based on censored data is then given by

α̂j0k =
∫

Iφj0k
(
F1(y1), F2(t2)

)
F̂(dy1, dt2)

=
1
n

n∑

i=1

W (·)
in I(Y1i ≤ t1, T2i ≤ t2)φj0k

(
F1(Y1i), F2(T2i)

)
. (3)

Then the wavelet-based estimator of c is given by

ĉj0 (u, v) =
∑

k∈Z2

α̂j0kφj0k(u, v), u, v ∈ (0, 1).
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When F1 and F2 are unknown, their empirical distribution functions F1n and F2n are used.
So the rank-based estimator is as follows:

α̃j0k =
∫

Iφj0k
(
F1n(y1), F2n(t2)

)
F̂(dy1, dt2)

=
1
n

n∑

i=1

W (·)
in I(Y1i ≤ t1, T2i ≤ t2)φj0k

(
F1n(Y1i), F2n(T2i)

)
. (4)

Now we can introduce the linear wavelet-based estimator of c based on the ranks as

c̃j0 (u, v) =
∑

k∈Z2

α̃j0kφj0k(u, v), u, v ∈ (0, 1). (5)

When we have no censoring, the definition reduces to that of the copula estimator in-
troduced in [9]. We further denote by K any constant that may change from one line
to another, does not depend on j, k, n, but depends on the wavelet basis and on ‖c‖∞ =
sup(u,v)∈(0,1) |c(u, v)| and ‖c‖2 =

∫
c(u, v)2 du dv.

Since we deal with the wavelet method, it is very common to consider Besov spaces
as functional spaces because they are characterized in terms of wavelet coefficients as
follows. Besov spaces depend on three parameters s > 0, 1 < p < ∞, and 1 < q < ∞ and
are denoted by Bs

pq. Let f ∈ L2(Rd) (that is, L2(R2) in our paper), and let s < r (wavelet
regularity). Define the sequence norm of the wavelet coefficients of a function f ∈ Bs

pq by

|fBs
pq | =

(∑

k∈Z2

|αj0k|p
)1/p

+
(∑

j≥j0

[

2j0(s+d(1/2–1/p))
(∑

k∈Z2

|βj,k|p
)1/p]q)1/q

,

where (|βj,k|p)1/p = (
∑

k∈Z2
∑

ε∈S2
|βε

j,k|p)1/p. We assume that the copula function c belongs
to a Besov space.

3 Main results
In this section, we present the main results. The following theorems show that the wavelet-
based estimators based on censoring attain nearly optimal convergence rates over a large
range of Besov function classes. We also show that our estimator obtains the optimal con-
vergence rates under mean integrated squared error (MISE) by accepting some mild con-
ditions. The mean integrated squared error (MISE) is defined by

MISE(c̃j0 , c) = Ef

[∫ 1

0

∫ 1

0

{
c̃j0 (u, v) – c(u, v)

}2 dv du
]

.

In view of decomposition (1) for c, it is obvious that

MISE(c̃j0 , c) = MISE(c̃j0 , cj0 ) +
∫ 1

0

∫ 1

0

{
Dj0 c(u, v)

}2 dv du.

The bias term in the equation can be bounded as in the proof of Lemma 1 in [4],

∫ 1

0

∫ 1

0

{
Dj0 c(u, v)

}2 dv du ≤ M2–2j0s∗ .
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Precisely, suppose that c belongs to the ball of radius M > 0 in the Besov space Bs
p,q(M),

where the parameters s > 0 and p ≥ 2, 1 ≤ q ≤ ∞ or s > 2/p – 1 and p ∈ [1, 2], 1 ≤ q ≤ ∞;
also, s∗ can be defined as s∗ = s + 1 – 2/p if p ∈ [1, 2] and s∗ = s otherwise. Also, by defining
ĉj0 based on Eq. (3), we can easily show that

MISE(c̃j0 , cj0 ) ≤ 2 MISE(c̃j0 , ĉj0 ) + 2 MISE(ĉj0 , cj0 ).

We now look for an optimal upper bound for each of the above sequences.

Lemma 1 Let α̂ be as in (3), and let j0 be an arbitrary integer in N. Then

S1 ≡ E
∑

k∈z2

(α̂j0k – αj0k)2 ≤ K1
22j0

n

for some constant K1 > 0 depending only on φ and either

‖c‖2 =
∫

c(u, v)2 du dv or ‖c‖∞ = sup
u,v∈(0,1)

∣
∣c(u, v)

∣
∣.

Also note that the proposed linear wavelet estimator of cj0 is ĉj0 (x, y) =
∑

k∈Z2 α̂j0k ×
φj0k(x, y). Then

MISE(ĉj0 , cj0 ) = O
(

22j0

n

)

.

Note that j0 must be chosen so that 2j0 	 √
n.

Proof of Lemma 1 The proof is similar to optimality results in Sect. 5 of [14]. �

Theorem 1 Assume that the function φ is m-differentiable, and let c̃j0 be the copula density
estimator of c defined in (5). Then there exists a constant K1 > 0 such that, for a given
(u, v) ∈ (0, 1)2 and any level j0 satisfying 2j0 � (n/ log n)1/2–1/2m,

MISE(c̃j0 , ĉj0 ) ≤ K1
22j0

n

(

22j0 log n
n

+ 2–j0 log n
)

.

The error term associated with the use of ranks is negligible with respect to the usual
error term as soon as 2j0 � log(n). For the proof, see the Appendix.

Now, combining the results of Lemma 1 and Theorem 1, we are in a position to express
the main theorem of this section.

Theorem 2 Let φ be a scaling function mentioned in Sect. 2.2 having m derivatives with
m > 1 + 1/s∗, and for arbitrary j0 ∈ N, let c̃j0 be the estimator in (5). Then there exists a
constant K2 > 0 such that, for all M ∈ (0,∞), s > 2/p – 1, and p, q ∈ [1,∞), if j0 satisfies
2j0 � n1/2+2s∗ , then

sup
c∈Bs

p,q(M)
MISE(c̃j0 , c) ≤ K2n–s∗/1+s∗ .



Ghanbari et al. Journal of Inequalities and Applications        (2019) 2019:188 Page 7 of 15

Note that the procedure of estimation described is optimal on the Besov space. The
simulation studies are applied in the next section. For the proof, see the Appendix.

Remark 1 This study can be regarded as an extension from complete data to randomly
right censored data. If we assume that there is no censoring, that is, G ≡ 0 on (–∞, +∞),
then δ1i = 1 for all i = 1, 2, . . . , n, and the estimators defined by (4) and (3) are the same as
those of [14] for the complete data case. Therefore our estimators can be regarded as an
extension of those of [14] from complete data to randomly right censored data.

4 Simulation studies and analysis for real data
In this section, we conduct simulation studies to investigate the performance of the pro-
posed estimator (5) for censored data and compare it with the kernel estimator by an av-
erage squared error. Wavelet estimators for the copula, for noncensored data, have been
proposed in [14].

4.1 Simulation study
The simulation scheme consisted in three steps.

Step 1: We simulate a random sample of size n = 2000 to display some scatter and rank–
rank plots according to the following scheme.

(i) The marginal distribution of random variables T1 and T2 (F1 and F2) are simulated
from three distributions: (a) F1 is the B distribution with shape parameter α1 = 0.5
and scale parameter α2 = 0.7, F2 is the exponential distribution with mean 1/3;
(b) F1 is N(0, 1), and F2 is as the same as in part (a); and (c) both F1 and F2 are
uniform distributions.

(ii) For the dependence structure, we consider two copula families, Gumbel and
Clayton with Kendall’s tau τ = 0.5.

(iii) Censoring variables were simulated from Exp(ν(x)) where ν(x) = x + 0.7 with
results in approximately 0.40 censoring.

The plots are shown in Figs. 1 and 2. In both figures the scatter plots in the top row show
what happens when F2 is exponential with mean 1/3 and F1 is either B(0.5, 0.7) or N(0, 1).
In the bottom row the left one shows the same scatter plot, but the margins are considered
as U(0, 1), and the right one shows the pairs of normalized ranks. It is worth mentioning
that Fig. 1 displays scatter plots generated from the Gumbel copula, and Fig. 2 displays
the same ones from the Clayton copula. As the number of observations is increased, the
rank–rank plots are more unreadable. It is clear that for a random sample of size n = 2000
or more, the square in these plots could be completed filled, and all features of distribu-
tion had been lost. As a suggestion, we would consider the plots of the empirical copula
function of the pairs (Ri/n, Si/n). For the same data as in panel (d, bottom right) in Figs. 1
and 2, 3d-histograms of the relative frequencies of the pseudo-observations (Ri/n, Si/n)
are illustrated in Fig. 3. The plots show the relative frequency of n = 2000 pairs (Ri/n, Si/n)
in a 32 × 32 regular partitions of the unit square for Gumbel (left column) and Clayton
(right column) copulas in two parts, full data (top row) and censored data (bottom row)
with Kendall’s tau τ = 1/2.

Step 2: Marginal distribution of T1 and T2 are simulated from B(0.5, 0.7) and Exp(3),
respectively. Then for N = 2J ≤ √

(n) < 2J+1, the empirical scaling coefficients at resolution
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Figure 1 Scatter and rank-rank plots for a sample of size 2000 from the Gumbel copula based on censored
data with τ = 1/2, once the margins have been transformed to F1 and F2. (a, top left): F1 = B(0.5, 0.7) and
F2 = ε(3); (b, top right): F1 = N(0, 1) and F2 = ε(3); (c, bottom left): F1 = F2 = U(0, 1); (d, bottom right): the
rank-rank plot for Gumbel copula

level J are computed as follows:

α̃Jk1k2 =
1
n

n∑

i=1

winI
{

k1 – 1
N

<
Ri

n
≤ k1

N
,

k2 – 1
N

<
Si

n
≤ k2

N

}

for all k1, k2 ∈ {1, . . . , N}. Finally, we obtain the wavelet estimators for Gumbel and Clayton
copulas (equation (5)) and consider their plots at levels J – 1 and J – 2. The graphs are in
Fig. 4.

Step 3: We find the average squared error (ASE) calculated for several wavelet copula
estimators, including (5) for different sample sizes n. The results for ASE and the total
number of replications N = 100 for two different dependence copula parameters and for
wavelet and kernel methods are shown in Table 1. The ASE criterion is defined as

ASE =
1
N

N∑

l=1

(
1
n2

n∑

j=1

n∑

i=1

(
c̃(l)(ui, vj) – c(ui, vj)

)2
)

,

where c̃(l) denotes an estimator of c at the lth replication. In this simulation study, we have
used Daubechies’s compactly supported wavelet symmlet8 and level j0 = 5.

The codes are in MATLAB environment using the Wavelab software. Our simulation
study is done for sampling in three sizes n = 100, n = 300, and n = 500. The main result
in the table is consistent with the conclusions of [14]. In both of these examples the sim-
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Figure 2 Scatter and rank-rank plots for a sample of size 2000 from the Clayton copula based on censored
data with τ = 1/2, once the margins have been transformed to F1 and F2. (a, top left): F1 = B(0.5, 0.7) and
F2 = ε(3); (b, top right): F1 = N(0, 1) and F2 = ε(3); (c, bottom left): F1 = F2 = U(0, 1); (d, bottom right): the
rank-rank plot for Clayton copula

ulation results show that the wavelet estimator performs better than kernel estimators
in terms of AMSE criterion. We can do the same work for some other copula functions
like Gaussian, Frank, and Student copulas or for other wavelets such as Haar or Adelson
wavelets.

4.2 Real data
Here we present an application of the proposed methodology for the data of [13], where the
first observation is censored. The data consist of the indemnity payment (LOSS) and the
allocated loss adjustment expense (ALAE) for 1500 general liability claims. The graphical
representation of this data is considered in Fig. 5. Panels (a) and (b) show logarithm scale
of the original data and the rank–rank plot, respectively. In panel (c) the 3D-histogram
of Loss (censored) and Alae data is shown based on 16 × 16 grid. Panel (d) shows the
wavelet-based estimator described in Sect. 2.

Due to our simulation results, the nonparametric procedure tries to provide a smooth
copula estimate, and the wavelet-based estimator is a good estimator under the fact that a
considerable copula family is Gumbel. Many authors who used this data in their researches
claimed that the best representation of Loss and Alae data is the Gumbel copula.

5 Conclusions
Here we consider wavelet-based identification and estimation of a censored copula den-
sity function under a rank-based producer. We proposed a linear wavelet estimator and
provided its asymptotic formulae for mean integrated square error. The wavelet methods
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Figure 3 3d-histograms. (a, top left): Gumbel (full data), (b, top right): Clayton (full data), (c, bottom left):
Gumbel (censored data), (d, bottom right): Clayton (censored data)

offer fast computations and easy updating in addition to being easily adapted to the de-
sign. We derived an analog of the asymptotic formula of the mean integrated square error
in the context of kernel density estimators for censored data, admitting an expansion with
distinct squared bias and variance components.

The numerical performance of the proposed linear wavelet density estimators was il-
lustrated on simulated datasets. Comparisons between full data and censored data for
some different sample sizes were also given. Although using wavelet-based estimator of
a copula function is very useful for underlying dependence structure, it does not cover
the main conditions of parametric models. In future work we might also consider using
a nonlinear wavelet-based copula density estimator for randomly censored data or using
for goodness-of-fit testing.

Appendix: Proofs
A.1 Proof of Theorem 1
The proofs follow along with the lines of that in [14] for the density function. Compared
to the uncensored case, the main difficulty here is to handle the weights Win. For this pur-
pose, we use some assumptions of [15]. This is the direct approach to the copula function
estimation problem under censoring. To complete the proof, we need some preparations.
Suppose that Assumption 4 in [15] is satisfied. Here this assumption for our results is as
follows.
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Figure 4 Wavelet smoothing of n = 2000 pairs of normalized ranks from Gumbel (left column) and Clayton
(right column). (a, top left) and (b, top right) show wavelet estimators under censored data at level j = J – 1
with J = 5 for Gumbel and Clayton copula, respectively. (c, bottom left) and (d, bottom right) show wavelet
estimators under censored data at level j = J – 2 with J = 5 for Gumbel and Clayton copulas, respectively

Table 1 Computed value for ASE compared between the proposed wavelet estimator in our paper
and kernel estimator (defined in lopez(2015)) based on two copulas for various sample sizes

Estimation methods ASE

n = 100 n = 300 n = 500

Wavelet Gumbel (τ = 0.25) 1.07 1.25 1.36
Kernel (h = 0.4) Gumbel (τ = 0.25) 1.32 1.45 1.57
Wavelet Clayton (τ = 0.25) 1.15 1.82 2.02
Kernel (h = 0.4) Clayton (τ = 0.25) 1.37 2.01 2.32
Wavelet Gumbel (τ = 0.75) 6.13 7.32 7.59
Kernel (h = 0.4) Gumbel (τ = 0.75) 6.63 7.66 7.95
Wavelet Clayton (τ = 0.75) 7.20 8.74 9.11
Kernel (h = 0.4) Clayton (τ = 0.75) 7.90 9.31 10.32

Assumption 1 Assume that E( δ1
1–G )2 = E(δ1g(T1))2 < ∞, and assume that there exist i.i.d.

random variables (Zi) such that sup |Win – Wi| ≤ BnZi, where Bn = sup | Ĝ–G
1–Ĝ

| = O(n–1/2)
and E[Zi] = E[ δ1

1–G(Y1i)
] < ∞.

Also, suppose that the function φ defined in Sect. 2.2 is m-differentiable. We define

ξk(Y1i, T2i) =
(
φj0k

(
F1n(Y1i), F2n(T2i)

)
– φj0k

(
F1(Y1i), F2(T2i)

))
I(Y1i≤A1,Y2i≤A2).
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Figure 5 (a, top left): original data on the logarithm scale, (b, top right): rank–rank plot, (c, bottom left):
3D-histogram, panel (d, bottom right): wavelet-based copula density estimate

In addition, α̃j0k – α̂j0k = 1
n
∑n

i=1 Winξk(Y1i, T2i). So we obtain

E
(∑

k

(α̃j0k – α̂j0k)2
)

=
∑

k

E

(
1
n

n∑

i=1

Winξk(Y1i, T2i)

)2

=
∑

k

E

(
1
n

n∑

i=1

Wiξk(Y1i, T2i) +
1
n

n∑

i=1

(Win – Wi)ξk(Y1i, T2i)

)2

≤ 2

(
∑

k

E

(
1
n

n∑

i=1

Wiξk(Y1i, T2i)

)2

+
∑

k

E

(
1
n

n∑

i=1

(Win – Wi)ξk(Y1i, T2i)

)2)

=: 2(T1 + T2).

First, following the proof of Proposition 1 in [14], we obtain a bound for T1:

T1 ≤ 1
n2

∑

k

∑

i∈I(j,0)∪I1(j,ε)

E
(
Wiξk(Y1i, T2i)

)2

+
1
n2

∑

k

∑

i�=l∈I(j,0)∪I1(j,ε)

∣
∣E

(
WiWlξk(Y1i, T2i)ξk(Y1l, T2l)

)∣
∣ + K22jn–δE(Wi)2.



Ghanbari et al. Journal of Inequalities and Applications        (2019) 2019:188 Page 13 of 15

Due to the last sentence in Sect. 2.1 and because of the limit function g , we get

E
(
Wiξk(Y1i, T2i)

)2 = gE
(
ξk(T1i, T2i)

)2 ≤ K1E
(
ξk(T1i, T2i)

)2

and also

E
(
WiWlξk(Y1i, T2i)ξk(Y1l, T2l)

)
= gE

(
ξk(T1i, T2i)ξk(T1l, T2l)

)

≤ K1E
(
ξk(T1i, T2i)ξk(T1l, T2l)

)
.

Similarly, we have E(Wi)2 = 1
1–G = g ≤ K1.

Since the support of the scaling function is compact, we finally obtain the bound for T1:

T1 ≤ KK1
1
n2 22j(n2–j)23j log(n)

n
+ KK1

1
n2 22j(n2–j)223j log(n)

n
+ KK1n–δ+1

≤ K
22j

n

(

22j log(n)
n

+ 2–j log(n)
)

.

In addition, according to Assumption 1, we have

E
(
(Win – Wi)ξk(Y1i, T2i)

)2 = E
(

δ1(Ĝ – G)
(1 – Ĝ)(1 – G)

ξk(Y1i, T2i)
)2

=
(Ĝ – G)2

(1 – Ĝ)2
E
(
Ziξk(T1i, T2i)

)2

≤ Kn–1E
(
ξk(T1i, T2i)

)2.

Similarly, the bound for (Win – Wi)ξk(Y1i, T2i) follows:

E
(
(Win – Wi)(Wln – Wl)ξk(Y1i, T2i)ξk(Y1l, T2l)

)

=
(Ĝ – G)2

(1 – Ĝ)2
E
(
Z2

i ξk(T1i, T2i)ξk(T1l, T2l)
)

≤ Kn–1E
(
ξk(T1i, T2i)ξk(T1l, T2l)

)
.

It remains to find the bound for the last part of T2:

E(Win – Wi)2 = E
(

δ1(Ĝ – G)
(1 – Ĝ)(1 – G)

)2

=
(Ĝ – G)2

(1 – Ĝ)2
E(Zi)2 ≤ Kn–1,

where the last equality follows from Assumption 1. At the end, the sharper bound for C2

is

T2 ≤ 1
n2

∑

k

∑

i∈I(j,0)∪I1(j,ε)

(Ĝ – G)2

(1 – Ĝ)2
E
(
Ziξk(T1i, T2i)

)2

+
1
n2

∑

k

∑

i�=l∈I(j,0)∪I1(j,ε)

(Ĝ – G)2

(1 – Ĝ)2

∣
∣E

(
Z2

i
)
ξk(T1i, T2i)ξk(T1l, T2l)

∣
∣
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+ Kn–δ22j (Ĝ – G)2

(1 – Ĝ)2
E(Zi)2

≤ KK1n–1 1
n2 22j(n2–j)23j log(n)

n
+ KK1n–1 1

n2 22j(n2–j)223j log(n)
n

+ KK1n–1n–δ+1

≤ K
22j

n2

(

22j log(n)
n

+ 2–j log(n)
)

.

Therefore with the bounds for T1 and T2 the proof of Theorem 1 is complete.

A.2 Proof of the Theorem 2
Combining the result of Lemma 1 and Theorem 1 and the fact that the error term associ-
ated with the use of ranks in the proof of Theorem 1 is negligible with respect to the usual
error term as soon as 2j0 � log(n), the proof is complete.
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