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Abstract
The purpose of this paper is to study the solution of two systems of nonlinear integral
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the existing literature.
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1 Introduction and preliminaries
Fixed point theory plays a fundamental role in functional analysis. Nadler [18] started the
investigation of fixed point results for the set-valued functions. Due to its significance, a
large number of authors have proved many interesting multiplications of his result (see
[1–4, 6, 8–29]).

Nazir et al. [19] showed common fixed point results for the family of generalized multi-
valued F-contraction mappings in ordered metric spaces. Recently Shoaib et al. [27] dis-
cussed some theorems for a family of set-valued functions. Rasham et al. [22] proved mul-
tivalued fixed point theorems for new F-contractive functions on dislocated metric spaces.

In this paper, we have obtained a common fixed point of two families of multivalued
mappings satisfying generalized rational type α∗ – ψ-dominated contractive conditions
on a closed set in a complete dislocated b-metric space. We have used a weaker class of
strictly increasing mappings A rather than the class of mappings F used by Wardowski
[29]. Examples have been given to demonstrate the variety of our results. Moreover, we
investigate our results in a better framework of dislocated b-metric space. New results in
ordered spaces, partial b-metric space, dislocated metric space, partial metric space, b-
metric space, and metric space can be obtained as corollaries of our results. We give the
following concepts which will be helpful to understand the paper.

Definition 1.1 ([14]) Let M be a nonempty set, and let db : M×M → [0,∞) be a function.
If, for any x, y, z ∈ M, the following conditions hold:

(i) db(x, y) ≤ b[db(x, z) + db(z, y)], (where b ≥ 1).
(ii) db(x, y) = 0 implies x = y;
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(iii) db(x, y) = db(y, x).
Then db is called a dislocated b-metric with coefficient b (or simply db-metric) and the

pair (M, db) is called a dislocated b-metric space. It should be noted that every dislocated
metric is a dislocated b-metric with b = 1.

Note that, if x = y, then db(x, y) may not be 0. For x ∈ M and ε > 0, B(x, ε) = {y ∈ M :
db(x, y) ≤ ε} is a closed ball in (M, db). We use a D.B.M space instead of a dislocated b-
metric space.

Definition 1.2 ([14]) Let (M, db) be a D.B.M space.
(i) A sequence {xn} in (M, db) is called Cauchy sequence if, given ε > 0, there

corresponds n0 ∈ N such that for all n, m ≥ n0 we have db(xm, xn) < ε or
limn,m→∞ db(xn, xm) = 0.

(ii) A sequence {xn} dislocated b-converges (for short db-converges) to x if
limn→∞ db(xn, x) = 0. In this case x is called a db-limit of {xn}.

(iii) (M, db) is called complete if every Cauchy sequence in M converges to a point
x ∈ M such that db(x, x) = 0.

Definition 1.3 Let K be a nonempty subset of the D.B.M space M, and let x ∈ M. An
element y0 ∈ K is called a best approximation in K if

db(x, K) = db(x, y0), where db(x, K) = inf
y∈K

db(x, y).

If each x ∈ M has at least one best approximation in K , then K is called a proximinal set. Let
Ψb, where b is the coefficient of the D.B.M space M. Denote the family of all nondecreasing
functions ψb : [0, +∞) → [0, +∞) such that

∑+∞
k=1 bkψk

b (t) < +∞ and bψb(t) < t for all t > 0,
where ψk

b is the kth iterate of ψb. Also bn+1ψn+1
b (t) = bnbψb(ψn

b (t)) < bnψn
b (t). We denote

P(M) to be the set of all closed proximinal subsets of M.

Definition 1.4 ([28]) The function Hdb : P(M) × P(M) → R+, defined by

Hdb (N , R) = max
{

sup
n∈N

db(n, R), sup
r∈R

db(N , r)
}

,

is called dislocated Hausdorff b-metric on P(M).

Definition 1.5 Let (M, db) be a D.B.M space. Let S : M → P(M) be a multivalued mapping,
α : M × M → [0, +∞) and α∗(i, Si) = inf{α(i, l) : l ∈ Si}. Let H ⊆ M, then S is said to be α∗-
dominated on H , whenever α∗(i, Si) ≥ 1 for all i ∈ H . If H = M, then we say that the S is
α∗-dominated. If S : M → M is a self mapping, then S is α-dominated on H , whenever
α(i, Si) ≥ 1 for all i ∈ H .

Lemma 1.6 ([17]) Let (Z, db) be a D.B.M space. Let (P(Z), Hdb ) be a dislocated Hausdorff b-
metric space on P(Z). For all G, H in P(Z) and for any g ∈ G, let hg ∈ H such that db(g, H) =
db(g, hg). Then Hdb (G, H) ≥ db(g, hg) holds.
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2 Main result
Let (M, db) be a D.B.M space, c0 ∈ M, let {Sσ : σ ∈ Ω} and {Tβ : β ∈ Φ} be two fami-
lies of multifunctions from M to P(M). Let a ∈ Ω and c1 ∈ Sac0 be an element such that
db(c0, Sac0) = db(c0, c1). Let c2 ∈ Tzc1 be such that db(c1, Tzc1) = db(c1, c2) where z ∈ Φ .
Let y ∈ Ω and c3 ∈ Syc2 be such that db(c2, Syc2) = db(c2, c3). In this way, we get a se-
quence {TβSσ (cn)} in M, where c2n+1 ∈ Sic2n, c2n+2 ∈ Tjc2n+1, n ∈ N, i ∈ Ω , and j ∈ Φ . Also
db(c2n, Sic2n) = db(c2n, c2n+1), db(c2n+1, Tjc2n+1) = db(c2n+1, c2n+2). {TβSσ (cn)} is said to be a
sequence in M generated by c0. If {Sσ : σ ∈ Ω} = {Tβ : β ∈ Φ}, then we say {MSσ (cn)} in-
stead of {TβSσ (cn)}. For u, v ∈ M, a > 0, we define D(σ ,β)(u, v) as

D(σ ,β)(u, v) = max

{

db(u, v),
db(u, Sσ u).db(v, Tβv)

a + db(u, v)
, db(u, Sσ u), db(v, Tβv)

}

.

Theorem 2.1 Let (M, db) be a complete D.B.M space. Suppose that there exists a function
α : M × M → [0,∞). Let r > 0, c0 ∈ Bdb (c0, r), A : R+ → R be a strictly increasing function
and {Sσ : σ ∈ Ω}, {Tβ : β ∈ Φ} be two families of α∗-dominated multivalued mappings
from M to P(M) on Bdb (c0, r). Suppose that, for some ψb ∈ Ψb, there exists τ > 0 such that
the following holds:

τ + A
(
Hdb (Sσ e, Tβy)

) ≤ A
(
ψb

(
D(σ ,β)(e, y)

))
(2.1)

for all e, y ∈ Bdb (c0, r) ∩ {TβSσ (cn)}, α(e, y) ≥ 1, σ ∈ Ω , β ∈ Φ , and Hdb (Sσ e, Tβy) > 0. Also

n∑

i=0

bi+1{ψ i
b
(
db(c0, Sac0)

)} ≤ r for all n ∈ N∪ {0}. (2.2)

Then {TβSσ (cn)} is a sequence in Bdb (c0, r), α(cn, cn+1) ≥ 1 for all n ∈ N ∪ {0} and
{TβSσ (cn)} → u ∈ Bdb (c0, r). Also, if inequality (2.1) holds, if Bdb (c0, r) is a closed set for
e, y ∈ {u} and either α(cn, u) ≥ 1 or α(u, cn) ≥ 1 for all n ∈ N ∪ {0}, then Sσ and Tβ have a
common fixed point u in Bdb (c0, r) for all σ ∈ Ω and β ∈ Φ .

Proof Consider a sequence {TβSσ (cn)}. From (2.2), we get

db(c0, c1) ≤ bdb(c0, Sac0) <
n∑

i=0

bi+1{ψ i
b
(
db(c0, Sac0)

)} ≤ r.

It follows that

c1 ∈ Bdb (c0, r).

Let c2, . . . , cj ∈ Bdb (c0, r) for some j ∈ N. If j is odd, then j = 2ı̀ + 1 for some ı̀ ∈ N. Since
{Sσ : σ ∈ Ω} and {Tβ : β ∈ Φ} are two families of α∗-dominated multivalued mappings
on Bdb (c0, r), so α∗(c2ı̀ , Sσ c2ı̀) ≥ 1 and α∗(c2ı̀+1, Tβc2ı̀+1) ≥ 1 for all σ ∈ Ω and β ∈ Φ . As
α∗(c2ı̀ , Sσ c2ı̀) ≥ 1, this implies inf{α(c2ı̀ , b) : b ∈ Sσ c2ı̀} ≥ 1. Also c2ı̀+1 ∈ Sf c2ı̀ for some f ∈
Ω , so α(c2ı̀ , c2ı̀+1) ≥ 1. Also c2ı̀+1 ∈ Tgc2ı̀+1 for some g ∈ Φ . Now, by using Lemma 1.6, we
have

τ + A
(
db(c2ı̀+1, c2ı̀+2)

) ≤ τ + A
(
Hdb (Sf c2ı̀ , Tgc2ı̀+1)

) ≤ A
(
ψb

(
D(f ,g)(c2ı̀ , c2ı̀+1)

))
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≤ A
(

ψb

(

max

{

db(c2ı̀ , c2ı̀+1),
db(c2ı̀ , c2ı̀+1).db(c2ı̀+1, c2ı̀+2)

a + db(c2i, c2i+1)
,

db(c2ı̀ , c2ı̀+1), db(c2ı̀+1, c2ı̀+2)
}))

≤ A
(
ψb

(
max

{
db(c2ı̀ , c2ı̀+1), db(c2ı̀+1, c2ı̀+2)

}))
.

If max{db(c2ı̀ , c2ı̀+1), db(c2ı̀+1, c2ı̀+2)} = db(c2ı̀+1, c2ı̀+2), then

τ + A
(
db(c2ı̀+1, c2ı̀+2)

) ≤ A
(
ψb

(
db(c2ı̀+1, c2ı̀+2)

))
.

As τ > 0 and A : R+ →R is a strictly increasing function, then

db(c2ı̀+1, c2ı̀+2) < ψb
(
db(c2ı̀+1, c2ı̀+2)

)
< bψb

(
db(c2ı̀+1, c2ı̀+2)

)
.

This is a contradiction to the fact that bψb(t) < t for all t > 0. So

max
{

db(c2ı̀ , c2ı̀+1), db(c2ı̀+1, c2ı̀+2)
}

= db(c2ı̀ , c2ı̀+1).

Hence, we obtain

db(c2ı̀+1, c2ı̀+2) < ψb
(
db(c2ı̀ , c2ı̀+1)

)
. (2.3)

As α∗(c2ı̀–1, Thc2ı̀–1) ≥ 1 and c2ı̀ ∈ Thc2ı̀–1, so α(c2ı̀–1, c2ı̀) ≥ 1 where h ∈ Φ and p ∈ Ω . Now,
by using Lemma 1.6, we have

τ + A
(
db(c2ı̀ , c2ı̀+1)

) ≤ τ + A
(
Hdb (Thc2ı̀–1, Spc2ı̀)

) ≤ A
(
ψb

(
D(h,p)(c2ı̀ , c2ı̀–1)

))

≤ A
(

ψb

(

max

{

db(c2ı̀ , c2ı̀–1),
db(c2ı̀ , c2ı̀+1).db(c2ı̀–1, c2ı̀)

a + db(c2ı̀ , c2ı̀–1)
,

db(c2ı̀ , c2ı̀+1), db(c2ı̀–1, c2ı̀)
}))

≤ A
(
ψb

(
max

{
db(c2ı̀ , c2ı̀–1), db(c2ı̀ , c2ı̀+1)

}))
.

Since A : R+ →R is a strictly increasing function, then we have

db(c2ı̀ , c2ı̀+1) < ψb
(
max

{
db(c2ı̀ , c2ı̀–1), db(c2ı̀ , c2ı̀+1)

})
.

If max{db(c2ı̀ , c2ı̀–1), db(c2ı̀ , c2ı̀+1)} = db(c2ı̀ , c2ı̀+1), then

db(c2ı̀ , c2ı̀+1) < ψb
(
db(c2ı̀ , c2ı̀+1)

)
< bψb

(
db(c2ı̀ , c2ı̀+1)

)
.

This is a contradiction to the fact that bψb(t) < t for all t > 0. Hence, we obtain

db(c2ı̀ , c2ı̀+1) < ψb
(
db(c2ı̀–1, c2ı̀)

)
. (2.4)

As ψb is nondecreasing, it follows

ψb
(
db(c2ı̀ , c2ı̀+1)

)
< ψb

(
ψb

(
db(c2ı̀–1, c2ı̀)

))
.



Rasham et al. Journal of Inequalities and Applications        (2019) 2019:182 Page 5 of 13

By using the above inequality in (2.3), we have

db(c2ı̀+1, c2ı̀+2) < ψ2
b
(
db(c2ı̀–1, c2ı̀)

)
).

Continuing in this way, we obtain

db(c2ı̀+1, c2ı̀+2) < ψ2ı̀+1
b

(
db(c0, c1)

)
. (2.5)

Now, if j = 2ı̀ , where ı̀ = 1, 2, . . . , j
2 . By using (2.4) and a similar procedure as above, we have

db(c2ı̀ , c2ı̀+1) < ψ2ı̀
b

(
db(c0, c1)

)
. (2.6)

Now, by combining (2.5) and (2.6), we get

db(cj, cj+1) < ψ
j
b
(
db(c0, c1)

)
for all j ∈N. (2.7)

Now, by using the triangle inequality and by (2.7), we have

db(c0, cj+1) ≤ bdb(c0, c1) + b2db(c1, c2) + · · · + bj+1db(cj, cj+1)

< bdb(c0, c1) + b2ψb
(
db(c0, c1)

)
+ · · · + bj+1ψ

j
b
(
db(c0, c1)

)

<
j∑

ı̀=0

bı̀+1{ψı̀
b
(
db(c0, c1)

)}
< r.

Thus cj+1 ∈ Bdb (c0, r). Hence cn ∈ Bdb (c0, r) for all n ∈ N, therefore {TβSσ (cn)} is a se-
quence in Bdb (c0, r). As Sσ , Tβ are α∗-dominated on Bdb (c0, r), so α∗(c2n, Sσ c2n) ≥ 1 and
α∗(c2n+1, Tβc2n+1) ≥ 1. This implies α(cn, cn+1) ≥ 1. Also inequality (2.7) can be written as

db(cn, cn+1) < ψn
b
(
db(c0, c1)

)
for all n ∈N. (2.8)

As
∑+∞

k=1 bkψk
b (t) < +∞, then for some p ∈ N the series

∑+∞
k=1 bkψk

b (ψp–1
b (db(c0, c1))) con-

verges. As bψb(t) < t, so

bn+1ψn+1
b

(
ψ

p–1
b

(
db(c0, c1)

))
< bnψn

b
(
ψ

p–1
b

(
db(c0, c1)

))
for all n ∈N.

Fix ε > 0, then there exists p(ε) ∈N such that

bψb
(
ψ

p(ε)–1
b

(
db(c0, c1)

))
+ b2ψ2

b
(
ψ

p(ε)–1
b

(
db(c0, c1)

))
+ · · · < ε.

Let n, m ∈N with m > n > p(ε), then we have

db(cn, cm) ≤ bdb(cn, cn+1) + b2db(cn+1, cn+2) + · · · + bm–ndb(cm–1, cm)

< bψn
b
(
db(c0, c1)

)
+ b2ψn+1

b
(
db(c0, c1)

)
+ · · · + bm–nψm–1

b
(
db(c0, c1)

)

= bψb
(
ψn–1

b
(
db(c0, c1)

))
+ · · · + bm–nψm–n

b
(
ψn–1

b
(
db(c0, c1)

))

< bψb
(
ψ

p(ε)–1
b

(
db(c0, c1)

))
+ b2ψ2

b
(
ψ

p(ε)–1
b

(
db(c0, c1)

))
+ · · · < ε.
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Thus we proved that {TβSσ (cn)} is a Cauchy sequence in Bdb (c0, r). As (X, d) is com-
plete and Bdb (c0, r) is closed, so (Bdb (c0, r), db) is complete. This implies that there exist
u ∈ Bdb (c0, r) such that {TβSσ (cn)} → u as n → ∞, then

lim
n→∞ db(cn, u) = 0. (2.9)

By assumption, α(cn, u) ≥ 1. Suppose that db(u, Tβu) > 0, then there exists a positive inte-
ger k such that db(cn, Tβu) > 0 for all n ≥ k. For n ≥ k, we have

db(u, Tβu) ≤ bdb(u, c2n+1) + bdb(c2n+1, Tβu).

Now, there exists some e ∈ Ω such that c2n+1 ∈ Sec2n and db(c2n, Sec2n) = db(c2n, c2n+1). By
using Lemma 1.6 and inequality (2.1), we have

db(u, Tβu) ≤ bdb(u, c2n+1) + bHdb (Sec2n, Tβu), for some β ∈ Φ

< bdb(u, c2n+1) + bψb

(

max

{

db(c2n, u), db(c2n, Sec2n),

db(c2n, Sec2n).db(u, Tβu)
a + db(c2n, u)

, db(u, Tβu)
})

.

Letting n → ∞, and by using (2.9), we get

db(u, Tβu) < bψb
(
db(u, Tβu)

)
< db(u, Tβu),

which is a contradiction. So our supposition is wrong. Hence db(u, Tβu) = 0 or u ∈ Tβu for
all β ∈ Φ . Similarly, by using Lemma 1.6 and inequality (2.1), we can show that db(u, Sσ u) =
0 or u ∈ Sσ u for all σ ∈ Ω . Hence Sσ and Tβ have a common fixed point u in Bdb (c0, r) for
all σ ∈ Ω and β ∈ Φ . Now,

db(u, u) ≤ bdb(u, Tβu) + bdb(Tβu, u) ≤ 0.

This implies that db(u, u) = 0. �

Example 2.2 Let M = Q
+ ∪ {0} and let db : M × M → M be the complete D.B.M space

defined by

db(ı̀, j) = (ı̀ + j)2 for all ı̀, j ∈ M

with coefficient b = 2. Define Sσ , Tβ : M × M → P(M) to be two families of multivalued
mappings by

Smx =

⎧
⎨

⎩

[ x
3m , 2

3m x] if x ∈ [0, 14] ∩ M,

[xm, 2mx] if x ∈ (14,∞) ∩ M
where m = 1, 2, 3, . . .

and

Tnx =

⎧
⎨

⎩

[ x
4n , 3

4n x] if x ∈ [0, 14] ∩ M,

[2nx, 3nx] if x ∈ (14,∞) ∩ M.
where n = 1, 2, 3, . . . .
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Suppose that, x0 = 1, r = 225, a = 1, then Bdb (x0, r) = [0, 14] ∩ M. Now, db(x0, S1x0) =
db(1, S11) = db(1, 1

3 ). So x1 = 1
3 . Now, db(x1, T1x1) = db( 1

3 , T1
1
3 ) = db( 1

3 , 1
12 ). So x2 = 1

12 .
Now, db(x2, S2x2) = db( 1

12 , S2
1

12 ) = db( 1
12 , 1

72 ). So x3 = 1
72 . Continuing in this way, we have

{TnSm(xn)} = {1, 1
3 , 1

12 , 1
72 , . . .}. Let ψb(t) = 4t

10 , then bψb(t) < t. Consider the mapping α :
M × M → [0,∞) by

α(j, k) =

⎧
⎨

⎩

1 if j > k
1
2 otherwise

⎫
⎬

⎭
.

Now, if x, y ∈ Bdb (x0, r) ∩ {TβSσ (xn)} with α(x, y) ≥ 1, we have

Hdb (Smx, Tny) = max
{

sup
a∈Smx

db(a, Tny), sup
b∈Tny

db(Smx, b)
}

= max

{

sup
a∈Smx

db

(

a,
[

y
4n

,
3y
4n

])

, sup
b∈Tny

db

([
x

3m
,

2x
3m

]

, b
)}

= max

{

db

(
2x
3m

,
[

y
4n

,
3y
4n

])

, db

([
x

3m
,

2x
3m

]

,
3y
4n

)}

= max

{

db

(
2x
3m

,
y

4n

)

, db

(
x

3m
,

3y
4n

)}

= max

{(
2x
3m

+
y

4n

)2

,
(

x
3m

+
3y
4n

)2}

< ψb

{

max

(

(x + y)2,
(x + x

3m )4.(y + y
4n )2

{1 + (x + y)4} ,

(

x +
x

3m

)2

,
(

x +
y

4n

)2)}

< ψb

{

max

(

db(x, y),
db(x, [ x

3m , 2
3m x]).db(y, [ y

4n , 3
4n y])

1 + db(x, y)
,

db

(

x,
[

x
3m

,
2

3m
x
])

, db

(

x,
[

y
4n

,
3

4n
y
]))}

.

Thus,

Hdb (Sx, Ty)) < ψb
(
D(σ ,β)(x, y)

)
,

which implies that, for any τ ∈ (0, 12
95 ] and for a strictly increasing mapping A(s) = ln s, we

have

τ + A
(
Hdl (Smx, Tny)

) ≤ A
(
ψb

(
D(σ ,β)(x, y)

))
.

Note that, for 15, 16 ∈ M, then α(16, 15) ≥ 1. However, we have

τ + A
(
Hdl (S216, T115)

)
> A

(
ψb

(
D(σ ,β)(16, 15)

))
.
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So condition (2.1) does not hold on M. Also, for all n ∈ N∪ {0}, we have

n∑

i=0

bi+1{ψ i
b
(
db(x0, S1x0)

)}
=

16
9

× 2
n∑

i=0

(
4
5

)i

< 225 = r.

Thus all the conditions of Theorem 2.1 are satisfied. Hence Sσ and Tβ have a common
fixed point for all σ ∈ Ω and β ∈ Φ , that is, 0.

Corollary 2.3 Let (M, db) be a complete D.B.M space. Suppose that there exists a func-
tion α : M × M → [0,∞). Let r > 0, c0 ∈ Bdb (c0, r), A be a strictly increasing function, and
{Sσ : σ ∈ Ω}, {Tβ : β ∈ Φ} be two families of α∗-dominated self mappings from M to M on
Bdb (c0, r). Suppose that, for some ψb ∈ Ψb, there exists τ > 0 such that the following holds:

τ + A
(
Hdb (Sσ e, Tβy)

) ≤ A
(
ψb

(
D(σ ,β)(e, y)

))
(2.10)

for all e, y ∈ Bdb (c0, r) ∩ {TβSσ (cn)}, α(e, y) ≥ 1, σ ∈ Ω , β ∈ Φ , and Hdb (Sσ e, Tβy) > 0. Also

n∑

i=0

bi+1{ψ i
b
(
db(c0, Sac0)

)} ≤ r for all n ∈ N∪ {0}.

Then {TβSσ (cn)} is a sequence in Bdb (c0, r), α(cn, cn+1) ≥ 1 for all n ∈ N ∪ {0} and
{TβSσ (cn)} → u ∈ Bdb (c0, r). Also, u satisfies (2.10), if Bdb (c0, r) is a closed set and either
α(cn, u) ≥ 1 or α(u, cn) ≥ 1 for all n ∈ N ∪ {0}, then Sσ and Tβ have a common fixed point
u in Bdb (c0, r) for all σ ∈ Ω and β ∈ Φ .

Corollary 2.4 Let (M, db) be a complete D.B.M space. Suppose that there exists a function
α : M × M → [0,∞). Let r > 0, c0 ∈ Bdb (c0, r), A be a strictly increasing function, and {Sσ :
σ ∈ Ω} be the family of α∗-dominated multivalued mappings from M to P(M) on Bdb (c0, r).
Suppose that, for some ψb ∈ Ψb, there exists τ > 0 such that the following holds:

τ + A
(
Hdb (Sσ e, Sβy)

) ≤ A
(
ψb

(
D(σ ,β)(e, y)

))
(2.11)

for all e, y ∈ Bdb (c0, r) ∩ {MSσ (cn)}, α(e, y) ≥ 1, σ ,β ∈ Ω , and Hdb (Sσ e, Sβy) > 0. Also

n∑

i=0

bi+1{ψ i
b
(
db(c0, Sac0)

)} ≤ r for all n ∈ N∪ {0}.

Then {MSσ (cn)} is a sequence in Bdb (c0, r), α(cn, cn+1) ≥ 1 for all n ∈ N ∪ {0} and
{MSσ (cn)} → u ∈ Bdb (c0, r). Also, u satisfies (2.11), if Bdb (c0, r) is a closed set and either
α(cn, u) ≥ 1 or α(u, cn) ≥ 1 for all n ∈ N ∪ {0}, then Sσ has a common fixed point u in
Bdb (c0, r) for all σ ∈ Ω .

3 Results for families of multigraph dominated mappings
In this section we present an application of Theorem 2.1 in graph theory. Jachymski [16]
proved the result concerning for contraction mappings on metric space with a graph. Hus-
sain et al. [13], introduced the fixed points theorem for graphic contraction and gave an
application.
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Definition 3.1 Let X be a nonempty set and G = (V (G), E(G)) be a graph such that V (G) =
X, A ⊆ X. A mapping F : X → P(X) is said to be multigraph dominated on A if (x, y) ∈ E(G)
for all y ∈ Fx and x ∈ A.

Theorem 3.2 Let (M, db) be a complete D.B.M space endowed with a graph G with con-
stant b ≥ 1. Let r > 0, c0 ∈ Bdb (c0, r), and {Sσ : σ ∈ Ω}, {Tβ : β ∈ Φ} be two families of
multivalued mappings from M to P(M). Suppose that

(i) {Sσ : σ ∈ Ω}, {Tβ : β ∈ Φ} are two families of multigraph dominated on
Bdb (c0, r) ∩ {TβSσ (cn)}.

(ii) There exist τ > 0 and a strictly increasing mapping A satisfying

τ + A
(
Hdb (Sσ e, Tβy)

) ≤ A
(
ψb

(
D(σ ,β)(e, y)

))
, (3.1)

whenever e, y ∈ Bdb (c0, r) ∩ {TβSσ (cn)}, (e,y) ∈ E(G), σ ∈ Ω , β ∈ Φ , and
Hdb (Sσ e, Tβy) > 0.

(iii)
∑n

i=0 bi+1{ψ i
b(db(x0, Sσ c0))} ≤ r for all n ∈ N .

Then {TβSσ (cn)} is a sequence in Bdb (c0, r) if Bdb (c0, r) is a closed set (cn, cn+1) ∈ E(G) and
{TβSσ (cn)} → m∗. Also, if m∗ satisfies (3.1) and (cn, m∗) ∈ E(G) or (m∗, cn) ∈ E(G) for all
n ∈ N ∪ {0}, then Sσ and Tβ have a common fixed point m∗ in Bdb (c0, r) for all σ ∈ Ω and
β ∈ Φ .

Proof Define α : M × M → [0,∞) by

α(e, y) =

⎧
⎨

⎩

1 if e ∈ Bdb (c0, r), (e, y) ∈ E(G),

0 otherwise.

As Sσ and Tβ are two families of graphs dominated on Bdb (c0, r), then for e ∈ Bdb (c0, r),
(e, y) ∈ E(G) for all y ∈ Sσ e and (e, y) ∈ E(G) for all y ∈ Tβe. So, α(e, y) = 1 for all y ∈ Sσ e
and α(e, y) = 1 for all y ∈ Tβe. This implies that inf{α(e, y) : y ∈ Sσ e} = 1 and inf{α(e, y) : y ∈
Tβe} = 1. Hence α∗(e, Sσ e) = 1, α∗(e, Tβe) = 1 for all e ∈ Bdb (c0, r). So, Sσ , Tβ : M → P(M)
are two families of α∗-dominated mappings on Bdb (c0, r). Moreover, inequality (3.1) can
be written as

τ + A
(
Hdb (Sσ e, Tβy)

) ≤ A
(
ψb

(
D(σ ,β)(e, y)

))

whenever e, y ∈ Bdb (c0, r) ∩ {TβSσ (cn)}, α(e, y) ≥ 1, and Hdb (Sσ e, Tβy) > 0. Also, (iii) holds.
Then, by Theorem 2.1, we have {TβSσ (cn)} is a sequence in Bdb (c0, r) and {TβSσ (cn)} →
m∗ ∈ Bdb (c0, r). Now, cn, m∗ ∈ Bdb (c0, r) and either (cn, m∗) ∈ E(G) or (m∗, cn) ∈ E(G) im-
plies that either α(cn, m∗) ≥ 1 or α(m∗, cn) ≥ 1. So, all the conditions of Theorem 2.1 are
satisfied. Hence, by Theorem 2.1, Sσ and Tβ have a common fixed point m∗ in Bdb (c0, r)
and db(m∗, m∗) = 0. �

4 Application to the systems of integral equations
Theorem 4.1 Let (M, db) be a complete D.B.M space with coefficient b ≥ 1. Let c0 ∈ M
and {Sσ : σ ∈ Ω}, {Tβ : β ∈ Φ} be two families of mappings from M to M. Assume that
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there exists τ > 0 and A : R+ → R is a strictly increasing mapping such that the following
holds:

τ + A
(
db(Sσ e, Tβy)

) ≤ A
(
ψb

(
D(σ ,β)(e, y)

))
, (4.1)

whenever e, y ∈ {TβSσ (cn)}, σ ∈ Ω , β ∈ Φ , and db(Sσ e, Tβy) > 0. Then {TβSσ (cn)} → u ∈ M.
Also, if inequality (4.1) holds for e, y ∈ {u}, then Sσ and Tβ have a unique common fixed
point u in M for all σ ∈ Ω and β ∈ Φ .

Proof The proof of this theorem is similar as that of Theorem 2.1. We have to prove
the uniqueness only. Let v be another common fixed point of Sσ and Tβ . Suppose
db(Sσ u, Tβv) > 0. Then we have

τ + A
(
db(Sσ u, Tβv)

) ≤ A
(
ψb

(
D(σ ,β)(u, v)

))
.

This implies that

db(u, v) < ψbdb(u, v) < bψbdb(u, v) < db(u, v),

which is a contradiction. So db(Sσ u, Tβv) = 0. Hence u = v.
In this section, we discuss the application of fixed point Theorem 4.1 in a form of unique

solution of two families of Volterra type integral equations given below:

u(k) =
∫ k

0
Hσ (k, h, u) dh, (4.2)

c(k) =
∫ k

0
Gβ (k, h, c)) dh (4.3)

for all k ∈ [0, 1], σ ∈ Ω , β ∈ Φ , and Hσ , Gβ be the mappings from [0, 1] × [0, 1] ×
C([0, 1],R+) to R. We find the solution of (4.2) and (4.3). Let M = C([0, 1],R+) be the
set of all continuous functions on [0, 1] with nonnegative values endowed with the
complete dislocated b-metric. For u ∈ C([0, 1],R+), define supremum norm as ‖u‖τ =
supk∈[0,1]{|u(k)|e–τk}, where τ > 0 is taken arbitrarily. Then define

dτ (u, c) =
[

sup
k∈[0,1]

{∣
∣u(k) + c(k)

∣
∣e–τk}

]2
= ‖u + c‖2

τ

for all u, c ∈ C([0, 1],R+), with these settings, (C([0, 1],R+), dτ ) becomes a complete D.B.M
space. �

Now we prove the following theorem to ensure the existence of solution of integral equa-
tions.

Theorem 4.2 Assume that the following conditions are satisfied:
(i) {Hσ ,σ ∈ Ω}, {Gβ ,β ∈ Φ} are two families of mappings from

[0, 1] × [0, 1] × C([0, 1],R+) to R;
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(ii) Define

(Sσ u)(k) =
∫ k

0
Hσ (k, h, u) dh,

(Tβc)(k) =
∫ k

0
Gβ (k, h, c) dh.

Suppose that there exists τ > 0 such that

∣
∣Hσ (k, h, u) + Gβ (k, h, c)

∣
∣ ≤ τD(σ ,β)(u, c)

τD(σ ,β)(u, c) + 1

for all k, h ∈ [0, 1] and u, c ∈ C([0, 1],R), where

D(σ ,β)(u, c) = max

{

ψb

(

‖u + c‖2
τ ,

‖u + Sσ u‖2
τ .‖c + Tβc‖2

τ

1 + ‖u(h) + c(h)‖2
τ

,

‖u + Sσ u‖2
τ ,‖c + Tβc‖2

τ

)}

.

Then integral Eqs. (4.2) and (4.3) have a unique solution in C([0, 1],R+).

Proof By assumption (ii)

|Sσ u + Tβc| =
∫ k

0

∣
∣Hσ (k, h, u) + Gβ (k, h, c)

∣
∣dh

≤
∫ k

0

τD(σ ,β)(u, c)
τD(σ ,β)(u, c) + 1

eτh dh

≤ τD(σ ,β)(u, c)
τD(σ ,β)(u, c) + 1

∫ k

0
eτh dh

≤ D(σ ,β)(u, c)
τD(σ ,β)(u, c) + 1

eτk .

This implies

|Sσ u + Tβc|e–τk ≤ D(σ ,β)(u, c)
τD(σ ,β)(u, c) + 1

.

‖Sσ u + Tβc‖τ ≤ D(σ ,β)(u, c)
τD(σ ,β)(u, c) + 1

.

τD(σ ,β)(u, c) + 1
D(σ ,β)(u, c)

≤ 1
‖Sσ u + Tβc‖τ

.

τ +
1

D(σ ,β)(u, c)
≤ 1

‖Sσ u + Tβc‖τ

,

which further implies

τ –
1

‖Sσ u + Tβc‖τ

≤ –1
D(σ ,β)(u, c)

.
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So all the conditions of Theorem 4.1 are satisfied for A(c) = –1√
c ; c > 0 and dτ (u, c) = ‖u+c‖2

τ .
Hence two families of integral equations given in (4.2) and (4.3) have a unique common
solution. �

Example 4.3 Consider the integral equations

g(k) =
1
5

∫ k

0
g(h) dh, p(k) =

1
7

∫ k

0
p(h)) dh, where k ∈ [0, 1].

Define {Hσ ,σ ∈ Ω}, {Hβ ,β ∈ Φ} to be two families of mappings from [0, 1] × [0, 1] ×
C([0, 1],R+) to R; by Hσ = 1

5 g(h), Hβ = 1
7 p(h). Now,

(Sσ g)(k) =
1
5

∫ k

0
g(h) dh, (T

β
p)(k) =

1
7

∫ k

0
p(h)) dh.

Take τ = 6
97 , ‖u‖τ = supk∈[0,1]{|u(k)|e–τk} and ψb(t) = 4t

10 . Then all the conditions of Theo-
rem 4.2 are satisfied and g(k) = p(k) = 0 for all k is a unique common solution to the above
equations.

5 Conclusion
In the present paper, we achieved fixed point results for a pair of families of multival-
ued generalized α∗ – ψ-dominated contractive mappings on an intersection of a closed
ball and a sequence for a more general class of α∗-dominated mappings rather than α∗-
admissible mappings and for a weaker class of strictly increasing mappings A rather than
the class of mappings F used by Wardowski [29]. The notion of multigraph dominated
mapping is introduced. Fixed point results with graphic contractions on a closed ball for
such families of mappings are established. Examples are given to demonstrate the variety
of our results. An application is given to approximate the unique common solution of two
families of nonlinear integral equations. Moreover, we investigated our results in a better
new framework. New results in ordered spaces, partial b-metric space, dislocated metric
space, partial metric space, b-metric space, and metric space can be obtained as corollaries
of our results.
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