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Abstract
Let L = –� +μ be a generalized Schrödinger operator, where the measure μ is a
nonnegative Radon measure. In this paper, we establish the molecular
characterization of the Hardy type space H1

L(R
n) associated with L. As applications,

we obtain the H1
L-boundedness of Riesz transforms and the imaginary power related

to L.
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1 Introduction
Consider the generalized Schrödinger operator

L = –� + μ in R
n, n ≥ 3, (1.1)

where μ is a nonnegative Radon measure on R
n. Throughout this paper we assume that

μ satisfies the following conditions: there exist positive constants C0, C1, and δ such that

μ
(
B(x, r)

) ≤ C0

(
r
R

)n–2+δ

μ
(
B(x, R)

)
(1.2)

and

μ
(
B(x, 2r)

) ≤ C1
{
μ

(
B(x, r)

)
+ rn–2} (1.3)

for all x ∈ R
n and 0 < r < R, where B(x, r) denotes the open ball centered at x with radius r.

Condition (1.2) may be regarded as scale-invariant Kato-condition, and (1.3) says that the
measure μ is doubling on balls satisfying μ(B(x, r)) ≥ crn–2.

Hardy spaces are widely used various fields of analysis and partial differential equations.
Let � be the Laplace operator on R

n. It is well known that H1(Rn) can be characterized by
the maximal function supt>0 |e–t�f (x)|. See Stein [14]. In a sense, H1(Rn) can be seen as the
Hardy space associated with the operator –�. LetL be a general differential operator, such
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as second order elliptic self-adjoint operators in divergence form, degenerate Schrödinger
operators with nonnegative potential, Schrödinger operators with nonnegative potential,
and so on. In recent years, the Hardy spaces associated with L have become one of hot
issues in harmonic analysis, see [2, 4–10] and the references therein.

Let L be a generalized Schrödinger operator. Denote by {Tt}t>0 := {e–tL}t>0 the heat
semigroup generated by –L. The kernel of {Tt} is denoted by KL

t (·, ·), that is,

Ttf (x) =
∫

Rn
KL

t (x, y)f (y) dμ(y).

The maximal function associated with {Tt} is defined as

ML(f )(x) := sup
t>0

∣∣e–tLf (x)
∣∣ ∈ L1(

R
n).

In [15], Wu and Yan introduced the following Hardy type space associated with L.

Definition 1.1 A Hardy type space H1
L(Rn) related to L is defined as the set of all func-

tions in f ∈ L1(Rn) satisfying ML(f ) ∈ L1(Rn). The norm of H1
L(Rn) is defined as ‖f ‖H1

L
:=

‖ML(f )‖L1 .

Let L = –�. H1
L(Rn) goes back to the classical Hardy space H1(Rn). For a linear operator

T , one of the methods to derive the H1-boundedness is the so-called “atomic-molecular”
method. In recent years, several authors used this method to investigate the boundedness
on Hardy spaces associated with operators, see [3, 11, 13]. In Sect. 3.1, via a class of (1, q)-
type atoms associated with L, we obtain the corresponding atomic characterization of
H1

L(Rn), see Sect. 3.1. Further, in Sect. 3.2, we introduce the (p, q, ε)-moleculars associated
with L and establish the molecular decomposition of H1

L(Rn), see Theorem 3.6. In Sect. 4,
let RL and Liγ denote the Riesz transforms and the imaginary power associated with L,
i.e.,

⎧
⎨

⎩
RL := ∇(–� + μ)–1/2;

Lγ := (–� + μ)iγ .

By the aid of the regularities of the integral kernels, we can apply Theorems 3.3 & 3.6 to
derive the H1

L-boundedness of RL and Liγ , see Theorems 4.4 & 4.6, respectively.
Throughout this article, we will use c and C to denote the positive constants, which are

independent of the main parameters and may be different at each occurrence. By B1 ∼ B2,
we mean that there exists a constant C > 1 such that 1/C ≤ B1/B2 ≤ C.

2 Preliminaries
2.1 Generalized Schrödinger operators
Let μ be a Radon measure satisfying conditions (1.2) & (1.3). The auxiliary function
m(x,μ) is defined by

1
m(x,μ)

=: sup

{
r > 0 :

μ(B(x, r))
rn–2 ≤ C1

}
.

We begin by recalling some basic properties of the function m(x,μ).
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Lemma 2.1 ([12, Proposition 1.8 & Remark 1.9]) Suppose that μ satisfies (1.2) & (1.3).
Then

(i) 0 < m(x,μ) < ∞ for every x ∈R
n.

(ii) If r = m(x,μ)–1, then rn–2 ≤ μ(B(x, r)) ≤ C1rn–2.
(iii) If |x – y| ≤ Cm(x,μ)–1, then m(x,μ) ≈ m(y,μ).
(iv) There exist constants c, C > 0 such that, for x, y ∈ R

n,

cm(y,μ)
{1 + |x – y|m(y,μ)}k0/(1+k0) ≤ m(x,μ) ≤ Cm(y,μ)

{
1 + |x – y|m(y,μ)

}k0

with k0 = C2/δ > 0 and C2 = log2(C1 + 2n–2).

With the modified Agmon metric ds2 = m(x,μ){dx2
1 + · · · + dx2

n}, the distance function
d(x, y,μ) is given by

d(x, y,μ) = inf
γ

∫ 1

0
m

(
γ (τ ),μ

)∣∣γ ′(τ )
∣∣dτ , (2.1)

where γ : [0, 1] →R
n is absolutely continuous and γ (0) = x, γ (1) = y.

A parabolic-type distance function associated with m(x,μ) is defined by

dμ(x, y, t) = inf
γ

∫ 1

0
m

(
γ̃ (τ ),μ

)
max

{∣∣(γ̃ )′(τ )
∣
∣,

∣
∣(γn+1)′(τ )

∣
∣}dτ , (2.2)

where γ (τ ) = (γ1(τ ), . . . ,γn(τ )) = (γ̃ (τ ),γn+1(τ )) : [0, 1] →R
n ×R+ is absolutely continuous

with γ (0) = (x, 0), γ (1) = (y,
√

t).

Lemma 2.2 ([15, Lemma 2.2]) For the distance function d(x, y,μ) in (2.1), we have
(i) For every x, y, z ∈ R

n,

d(x, y,μ) ≤ d(x, z,μ) + d(z, y,μ).

(ii) There are two positive constants c and C such that, for any x, y ∈R
n,

c
{{

1 + |x – y|m(x,μ)
}1/(k0+1) – 1

} ≤ d(x, y,μ) ≤ C
{

1 + |x – y|m(x,μ)
}k0+1.

Lemma 2.3 ([15, Lemma 2.3]) For the distance function dμ(x, y, t), there exist two positive
constants c and C such that, for any x, y ∈R

n, x 
= y, and t > 0,
⎧
⎨

⎩
dμ(x, y, t) ≥ c{{1 + max{|x – y|,√t}m(x,μ)}1/(k0+1) – 1};
dμ(x, y, t) ≤ C{1 + max{|x – y|,√t}m(x,μ)}k0+1.

It follows from (1.2), (1.3), and Lemma 2.1 that there exists a constant C > 0 such that,
for every x ∈R

n,

μ
(
B(x, r)

) ≤
⎧
⎨

⎩
C(rm(x,μ))δrn–2, r < m(x,μ)–1;

C(rm(x,μ))C2 m(x,μ)2–n, r < m(x,μ)–1,
(2.3)

see [15, (2.1)]. The above estimate implies the following.
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Lemma 2.4 ([15, (2.2)]) For every nonnegative Schwarz function ω,

∫

Rn
t–n/2ω

(
x – y√

t

)
dμ(y) ≤

⎧
⎨

⎩
Ct–1(

√
tm(x,μ))δ , t < m(x,μ)–2;

Ct–1(
√

tm(x,μ))C2–n+2, t ≥ m(x,μ)–2.
(2.4)

2.2 Function spaces associated with L
In order to characterize H1

L(Rn), Wu and Yan [15] introduced the following H1
L-atoms.

For j ∈ Z, define the sets Bj as

Bj =
{

x : 2j/2 ≤ m(x,μ) < 2(j+1)/2}.

Since 0 < m(x,μ) < ∞, we have R
n =

⋃
j∈ZBj.

Definition 2.5 A function a is a (1,∞)-atom for H1
L(Rn) associated with a ball B(x0, r) if

(i) supp a ⊂ B(x0, r);
(ii) ‖a‖L∞ ≤ |B(x0, r)|–1;

(iii) if x0 ∈ Bj, then r ≤ 21–j/2;
(iv) if x0 ∈ Bj and r ≤ 2–1–j/2, then

∫
a(x) dx = 0.

The atomic norm of H1
L(Rn) is defined by ‖f ‖L-atom := inf{∑j |λj|}, where the infimum is

taken over all decompositions f =
∑

j λjaj, where {aj} is a sequence of (1,∞)-atoms and
{λj} is a sequence of scalars.

One of the main results of [15] is the following proposition.

Proposition 2.6 ([15, Theorem 1.2]) Assume that μ is a nonnegative Radon measure on
R

n satisfying (1.2) & (1.3) for some δ > 0. Then the norms ‖f ‖H1
L

and ‖f ‖L-atom are equiva-
lent, that is, there exists a constant C > 0 such that

1
C

‖f ‖H1
L

≤ ‖f ‖H1
L-atom ≤ C‖f ‖H1

L
.

At the end of this section, we state some regularity estimates for the kernel KL
t (·, ·).

Proposition 2.7 ([15, Lemma 3.7])
(i) There exist positive constants C and c depending only on n and constants C0, C1 and

δ in (1.2) & (1.3) such that

0 ≤ KL
t (x, y) ≤ Cht(x – y)e–cdμ(x,y,t).

(ii) For every 0 < δ′ < δ0 = min{α, δ,ν}, there exists a constant C such that, for every
N ′ > 0, there exists a constant C > 0 such that, for |h| <

√
t, we have

∣∣KL
t (x + h, y) – KL

t (x, y)
∣∣ ≤ CN ′

( |h|√
t

)δ′
1

tn/2 e–c|x–y|2/t CN

{1 +
√

tm(x,μ) +
√

tm(y,μ)}N ′ .
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3 Molecular characterization of H1
L(Rn)

3.1 The (1, q)-atom decomposition
Now we introduce a new type of atoms.

Definition 3.1 A function a is a (1, q)-atom of H1
L(Rn) if

(i) supp a ⊂ B(x0, r);
(ii) ‖a‖q ≤ |B(x0, r)|1/q–1;

(iii) if r ≤ ρ(x0), then
∫

a(x) dx = 0.

Theorem 3.2 Any (1,∞)-atom is a (1, q)-atom.

Proof In fact, by Hölder’s inequality,

‖a‖q ≤ ‖a‖∞
∣∣B(x0, r)

∣∣1/q ≤ ∣∣B(x0, r)
∣∣1/q–1. �

Theorem 3.3 Let L = –� + μ be a generalized Schrödinger operator, where μ 
= 0 is a
nonnegative Radon measure on R

n satisfying (1.2) & (1.3) for some δ > 0. Then f ∈ H1
L(Rn)

if and only if f =
∑

j λjaj, where {aj} are (1, q)-atoms and {λj} are scalars.

Proof Because an (1,∞)-atom is also an (1, q)-type atom, we only need to prove that there
exists a constant c such that, for any (1, q)-atom a, ‖ML(a)‖1 ≤ c. Suppose that a is a (1, q)-
atom supported in B(x0, r). We write ‖ML(a)‖1 ≤ I1 + I2, where

⎧
⎨

⎩
I1 :=

∫
B(x0,4r) |MLa(x)|dx;

I2 :=
∫

Bc(x0,4r) |MLa(x)|dx.

By Hölder’s inequality and the Lq-boundedness of ML, we can get

I1 ≤ ‖MLa‖q
∣
∣B(x0, r)

∣
∣1–1/q ≤ C‖a‖q

∣
∣B(x0, r)

∣
∣1–1/q ≤ C.

The estimation of I2 is divided into two cases.
Case 1: 1/m(x0,μ) ≤ r ≤ 1/4m(x0,μ). For this case, by (i) of Lemma 2.7, we have

ML(a)(x) ≤ c sup
t>0

∫

B(x0,r)
t–n/2e–|x–y|2/t(1 + m(x,μ)

√
t
)–N ∣∣a(y)

∣∣dy

≤ c sup
t>0

∫

B(x0,r)
t–n/2e–|x–y|2/t(1 + |x – y|2/

√
t
)–n–N(

1 + m(x,μ)
√

t
)–N ∣∣a(y)

∣∣dy.

If y ∈ B(x0, r) and |x – x0| > 4r, then |y – x0| ≤ |x – x0|/4 and |y – x| ≥ 3|x – x0|/4. We can
apply Lemma 2.1 to obtain

∣∣ML(a)(x)
∣∣ ≤ c sup

t>0

1
tn/2

∫

B(x0,r)

(|x – x0|/
√

t
)–n–N(

m(x,μ)
√

t
)–N ∣∣a(y)

∣∣dy

≤ c|x – x0|–n–N[
m(x,μ)

]–N
∫

B(x0,r)

∣∣a(y)
∣∣dy

≤ c|x – x0|–n–N/(k0+1)[m(x0,μ)
]–N/(k0+1),
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which gives

∫

|x–x0|>4r

∣
∣MLa(x)

∣
∣dx ≤ c

∫

|x–x0|>4r
|x – x0|–n–N/(k0+1)[m(x0,μ)

]–N/(k0+1) dx

≤ c|x – x0|–n–N/(k0+1)r–N/(k0+1) ≤ C,

where in the last inequality we have used the fact that 1 ≤ rm(x0,μ) ≤ 4.
Case2: r < 1/m(x0,μ). By Proposition 2.7 and the symmetry of KL

t (·, ·), we have

∣
∣KL

t (x, y + h) – KL
t (x, y)

∣
∣ ≤ CN

(|h|/√t
)δ′

t–n/2e–|x–y|2/ct{1 +
√

tm(x,μ) +
√

tm(y,μ)
}–N .

Notice that |y – x0| < r, |x – x0| > 4r ⇒ |x – y| ≥ 3|x – x0|/4. By the canceling condition of
a, we can get

∣∣MLa(x)
∣∣ ≤ sup

t>0

∣
∣∣
∣

∫

B(x0,r)

[
KL

t (x, y) – KL
t (x, x0)

]
a(y) dy

∣
∣∣
∣

≤ c sup
t>0

∫

B(x0,r)
t–n/2e–|x–y|2/ct(|y – x0|/

√
t
)δ′ ∣∣a(y)

∣∣dy

≤ c sup
t>0

{
t–n/2

∫

B(x0,r)

(
1 + |x – y|/√t

)–n–δ′ |y – x0|δ′
/tδ′/2∣∣a(y)

∣∣dy
}

≤ crδ′ |x – x0|–n–δ′
,

which gives

∫

|x–x0|≥4r

∣
∣MLa(x)

∣
∣dx ≤ c

∫

|x–x0|≥4r
rδ′ |x – x0|–n–δ′

dx ≤ C. �

3.2 Molecular characterization of H1
L(Rn)

Now we introduce the molecular of H1
L(Rn).

Definition 3.4 Let 1 ≤ q ≤ ∞, ε > 0, b = 1 – 1/q + ε. An Lq-function M is called a (1, q, ε)-
molecular centered at x0 if

(i) |x|nbM(x) ∈ Lq(Rn)j;
(ii) ‖M‖ε/b

q ‖|x – x0|nbM(·)‖1–ε/b
q ≤ 1;

(iii) if x0 ∈ Bk and ‖M‖{n(1/q–1)}–1
q ≤ m(x0,μ)–1,

∫
M(x) dx = 0.

Lemma 3.5 If a is a (1, q)-atom supported on B(x0, r), a is also a (1, q, ε)-molecular cen-
tered at x0.

Proof Recall that ‖a‖q ≤ |B(x0, r)|1/q–1. It is easy to see that

∫

Rn

∣
∣|x – x0|nba(x)

∣
∣q dx ≤ ∣

∣B(x0, r)
∣
∣bq+1–q,

which indicates that | · –x0|nba ∈ Lq(Rn) with ‖| · –x0|nba‖q ≤ |B(x0, r)|q. Moreover, for
b = 1 – 1/q + ε,

‖a‖ε/b
q

∥∥| · –x0|nba(·)∥∥1–ε/b
q ≤ ∣∣B(x0, r)

∣∣(1/q–1)(ε/b)∣∣B(x0, r)
∣∣ε(1–ε/b) ≤ 1.



Wang and Li Journal of Inequalities and Applications        (2019) 2019:175 Page 7 of 20

We only need to verify the canceling condition, i.e., ‖a‖1/{n(1/q–1)}
q ≤ m(x0,μ)–1. Denote

by ωn the volume of the unit ball in R
n. It is clear that ωn > 1 and ‖a‖q ≤ ω

(1/q–1)
n rn(1/q–1) ≤

rn(1/q–1), equivalently,

r ≤ ‖a‖1/{n(1/q–1)}
q ≤ m(x0,μ)–1.

By the canceling condition of (1, q)-atoms, we can see that
∫
Rn a(x) dx = 0. So a is a (1, q, ε)-

molecular centered at x0. �

Theorem 3.6 Let 1 ≤ q ≤ ∞, ε > 0, b = 1 – 1/q + ε. Then f ∈ H1
L(Rn) if and only if f =

∑
j λjMj, where {Mj} are (1, q, ε)-moleculars and {λj} are scalars with inf

∑
j |λj| ∼ ‖f ‖H1

L
,

where the infimum is taken over all decompositions.

Proof We have known that any (1, q)-type atom is also a (1, q, ε)-type molecular. By The-
orem 3.3, if f ∈ H1

L(Rn), then there exist a sequence of (1, q)-type atoms {aj} and a se-
quence of scalars {λj} such that f =

∑
j λjaj. This means that f can be represented as a

linear combination of (1, q, ε)-moleculars. Conversely, we only need to verify that, for any
(1, q, ε)-molecular, ‖M‖H1

L
≤ C. For simplicity, denote

NL(M) =: ‖M‖ε/b
q

∥∥| · –x0|nbM(·)∥∥1–ε/b
q .

Without loss of generality, we assume that NL(M) = 1 and q = 2. Write σ = ‖M‖1/{n(1/2–1)}
2 .

Let

⎧
⎪⎪⎨

⎪⎪⎩

E0 = {x : |x – x0| ≤ σ };
Ek = {x : 2k–1σ < |x – x0| ≤ 2kσ }, k ∈ N ;

Bk = {x : |x – x0| ≤ 2kσ }, k = 0, 1, 2, . . . .

Denote by ψk the characteristic function χEk (x) and write M(x) =
∑

k Mk(x), where Mk :=
M(x)ψk(x).

Case 1: σ ≤ 1/m(x0,μ). Then ‖M‖1/{n(1/2–1)}
2 ≤ m(x0,μ)–1 and

∫
Rn M(x) dx = 0. The proof

is similar to the classical case, and we omit it.
Case 2: σ > 1/m(x0,μ). For this case, ‖| · –x0|n(1/2+ε)M(·)‖1–ε/b

2 = ‖M‖–ε/b
2 . Denote by σ

the term ‖M‖1/{n(1/2–1)}
2 . Then ‖| · –x0|n(1/2+ε)M(·)‖2 = σ nε and

1
|B0|

∫

Rn

∣
∣M0(x)

∣
∣2 dx ≤ 1

σ n ‖M‖2
2 =

1
σ 2n ,

which implies that ‖M0‖2 ≤ |B0|–1/2.
For the term Mk , we have

1
|Bk|

∫

Rn

∣
∣Mk(x)

∣
∣2 dx ≤ 1

(2k–1σ )n

∥
∥| · –x0|nbMk(·)∥∥2

2

(
2k–1σ

)–n(1+2ε)

≤ (
2k–1σ

)–2n–2εn
σ 2nε

≤ Cn,ε
(
2kσ

)–2n2–2kε ,
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that is, ‖M‖2 ≤ C|Bk|–1/22–kεn. Let ak(x) = λ–1
k Mk(x), k = 0, 1, 2, . . . , where λk = 2–2kεn

and ak , k ∈ Z+, are (1, 2)-atoms. Hence M(x) =
∑

k λkak(x) =
∑

k Mk(x) and
∑

k |λk| =
C

∑
k 2–2kεn < ∞. Repeating the procedure of [3, Theorem 4], we can prove that M ∈

H1
L(Rn). We omit the details, and this completes the proof of Theorem 3.6. �

4 Operators on the Hardy type space H1
L(Rn)

4.1 The H1
L-boundedness of Liγ

Let qt(·, ·) denote the kernel of e–tL – e–t(–�). We have

qt(x, y) = ht(x – y) – KL
t (x – y) =

∫ t

0

∫

Rn
KL

s (x, t)ht–s(z – y) dμ(z) ds.

The following estimate was obtained by Wu and Yan [15].

Lemma 4.1 ([15, Lemma 3.6])
(i) There exist constants C and c such that, for every x, y ∈ R

n and t > 0,

qt(x, y) ≤

⎧
⎪⎪⎨

⎪⎪⎩

C(
√

tm(x,μ))δt–n/2e–|x–y|2/ct ,
√

t ≤ m(x,μ)–1;

C(
√

tm(y,μ))δt–n/2e–|x–y|2/ct ,
√

t ≤ m(y,μ)–1;

ht(x – y), elsewhere.

(ii) For every 0 < δ′ < min{1, δ} and C > 0, there exist constants C′ and c such that, for
every h, x, y ∈R

n, |h| ≤ |x – y|/4, |h| ≤ Cm(y,μ)–1, we have

∣
∣qt(x, y + h) – qt(x, y)

∣
∣ ≤ C′(|h|m(x,μ)

)δ′
t–n/2e–|x–y|2/ct .

By the functional calculus, we can see that the kernel of (–�)iγ – Liγ can be expressed
as

g(x, y) :=
∫ ∞

0
t–iγ qt(x, y)

dt
t

. (4.1)

Lemma 4.2 Let L = –� + μ be a generalized Schrödinger operator, where μ 
= 0 is a non-
negative Radon measure on R

n satisfying (1.2) & (1.3) for some δ > 0.
(i) If y ∈ B(x0, r), then

∣∣g(x, y)
∣∣ ≤ Cm(x0,μ)δ|x – y|δ–n. (4.2)

(ii) There exists 0 < δ′ < δ such that

∣∣g(x, y) – g(x, x0)
∣∣ ≤ C|x – y|–n(|y – x0|m(x,μ)

)δ′
.

Proof (i). In fact, we can deduce (4.2) from Lemma 4.1. Precisely,
Case 1:

√
t ≤ 1/m(y,μ). Because y ∈ B, then |y – x0| < r < 1/m(x0,μ), m(y,μ) ∼ m(x0,μ).

By (i) of Lemma 4.1, we can get

∣
∣g(x, y)

∣
∣ ≤ Cm(x0,μ)δ

∫ ∞

0
t–n/2+δ/2–1e–|x–y|2/ct dt ≤ Cm(x0,μ)δ|x – y|δ–n.
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Case 2:
√

t > 1/m(y,μ). For this case,
√

tm(y,μ) > 1. Using Lemma 4.1 again, we can
deduce that

∣∣g(x, y)
∣∣ ≤ C

∫ ∞

0
t–n/2e–|x–y|2/ct(√tm(y,μ)

)δ dt
t

≤ Cm(x0,μ)δ|x – y|δ–n.

(ii). It follows from (4.1) that

∣∣g(x, y) – g(x, x0)
∣∣ =

∣
∣∣∣

∫ ∞

0
t–iγ qt(x, y)dt/t –

∫ ∞

0
t–iγ qt(x, x0)

dt
t

∣
∣∣∣

≤
∫ ∞

0
t–iγ ∣

∣qt(x, y) – qt(x, x0)
∣
∣dt

t
.

By (ii) of Lemma 4.1 and a direct computation, we get

∣
∣g(x, y) – g(x, x0)

∣
∣ ≤

∣∣
∣∣

∫ ∞

0
t–iγ [|y – x0|m(x,μ)

]δ′
t–n/2e–c|x–y|2/t dt

t

∣∣
∣∣

≤ C
[|y – x0|m(x,μ)

]δ′ ∫ ∞

0
t–n/2e–c|x–y|2/t dt

t

≤ C|x – y|–n[|y – x0|m(x,μ)
]δ′

.

This completes the proof of Lemma 4.2. �

We recall that an operator T taking C∞(Rn) into L1
loc(Rn) is called a Calderón–Zygmund

operator if
(a) T extends to a bounded operator on L2(Rn, dx);
(b) there exists a kernel K such that, for every f ∈ L1

c (Rn, dx),

Tf (x) =
∫

Rn
K(x, y)f (y) dy a.e. on {supp f }c;

(c) the kernel K satisfies

⎧
⎪⎪⎨

⎪⎪⎩

|K(x, y)| ≤ c/|x – y|n;

|K(x + h, y) – K(x, y)| ≤ c|h|δ/|x – y|n+δ ;

|K(x, y + h) – K(x, y)| ≤ c|h|δ/|x – y|n+δ .

(4.3)

In [12], Shen proved the following result.

Theorem 4.3 Let L = –� + μ be a generalized Schrödinger operator, where μ 
= 0 is a
nonnegative Radon measure on R

n satisfying (1.2) & (1.3) for some δ > 0. Then, for γ ∈R
n,

Liγ is a Calderón–Zygmund operator.

Now we prove the H1
L-boundedness of Liγ .

Theorem 4.4 Let μ be a nonnegative Radon measure in R
n, n ≥ 3. Suppose that μ satisfies

conditions (1.2) & (1.3) for some δ > 0. Then, for γ ∈R
n, Liγ is bounded on H1

L(Rn).



Wang and Li Journal of Inequalities and Applications        (2019) 2019:175 Page 10 of 20

Proof We only need to prove that, for any (1,∞) atom a, Liγ (a) is a (1, q, ε)-molecular and
‖Liγ (a)‖H1

L
≤ C. Let a be a (1,∞) atom supported on B(x0, r). Then ‖a‖∞ ≤ 1/|B(x0, r)|.

If r < m(x0,μ)–1,
∫

a(x) dx = 0. Set B� = B(x0, 2/m(x0,μ)) and B∗ = B(x0, 2r). We divide the
proof into three parts.

Part I: Liγ a ∈ Lq(Rn)&|x|nbLiγ (a) ∈ Lq(Rn).

∥∥|x|nbLiγ a
∥∥

q ≤ ∥∥xB∗ | · |nbLiγ a
∥∥

q +
∥∥x(B∗)c | · |nbLiγ a

∥∥
q

=
(∫

B∗
|x|qnb∣∣Liγ (a)

∣∣q dx
)1/q

+
(∫

(B∗)c
|x|qnb∣∣Liγ (a)

∣∣q dx
)1/q

≤ (
r + |x0|

)nb∥∥Liγ a
∥
∥

q +
[∫

(B∗)c
|x|qnb

∣∣
∣∣

∫

Rn
KL

γ (x, y)a(y) dy
∣∣
∣∣

q

dx
]1/q

.

By the Lq-boundedness of Liγ and Minkowski’s inequality, ‖|x|nbLiγ a‖q ≤ S1 + S2, where

⎧
⎨

⎩
S1 := (r + |x0|)nb‖a‖q;

S2 :=
∫

B(x0,r) |a(y)|[∫(B∗)c |x|qnb|KL
γ (x, y)|q dx]1/q.

Because ‖a‖q ≤ |B(x0, r)|1/q–1, then

S1 =
(
r + |x0|

)nb‖a‖q ≤ (
r + |x0|

)nbrn(1/q–1).

For the term S2, recall that

KL
γ (x, y) =

∫ ∞

0
t–iγ KL

t (x, y)
dt
t

.

Proposition 2.7 implies that

∣∣KL
γ (x, y)

∣∣ ≤ CN t–n/2 e–c|x–y|2/t

{1 + |x – y|[m(x,μ) + m(y,μ)]}N
dt
t

≤ CN

{1 + |x – y|[m(x,μ) + m(y,μ)]}N
1

|x – y|n ,

which gives

S2 ≤ C
∫

B

∣
∣a(y)

∣
∣
[∫

(B∗)c
|x|qnb 1

{1 + |x – y|[m(x,μ) + m(y,μ)]}qN
dx

|x – y|qn

]1/q

dy.

For x ∈ B and y ∈ (B∗)c, we can see that |x – y| ≥ |x – x0|/2. Notice that for y ∈ B(x0, r),
|x0 – y| < r and

m(y,μ)N ≥
[

cm(x0,μ)
{1 + |x0 – y|m(x0,μ)}k0/(k0+1)

]N

.

Then, via a direct computation, we have

S2 ≤ C
∫

B

∣∣a(y)
∣∣ 1
m(y,μ)N

{∫

(B∗)c

|x|qnb dx
|x – x0|(n+N)q

}1/q

dy
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≤ C
∫

B

∣
∣a(y)

∣
∣ 1
m(y,μ)N

{[∫

(B∗)c

1
|x – x0|(n+N)q–qnb dx

]1/q

+
[∫

(B∗)c

|x0|qnb

|x – x0|(n+N)q dx
]1/q}

dy

≤ C
∫

B

|a(y)|
m(y,μ)N

{
rnε–N + |x0|nbr–n–N+n/q}dy

≤ C
{1 + rm(x0,μ)}k0N/(k0+1)

m(x0,μ)N

{
rnε–N + |x0|nbr–n–N+n/q}

(∫

B

∣
∣a(y)

∣
∣dy

)
< ∞.

Part II: NL(Liγ a) = ‖Liγ a‖ε/b
q ‖| · –x0|nbLiγ a‖1–ε/b

q ≤ C.
Case I: r ≥ ρ(x0). Because x ∈ (B∗)c and y ∈ B,

∥∥Liγ a
∥∥

q ≤
(∫

B∗

∣∣Liγ a(y)
∣∣q dy

)1/q

+
(∫

(B∗)c

∣∣Liγ a(y)
∣∣q dy

)1/q

.

Because Liγ is bounded on Lq(Rn), q > 1, then

(∫

B∗

∣∣Liγ a(y)
∣∣q dy

)1/q

≤ ∥∥Liγ a
∥∥

q ≤ C‖a‖q ≤ |B|1/q–1.

For y ∈ B and x ∈ (B∗)c, |x – y| ≥ |x – x0|/2. By Theorem 4.3, we can get

(∫

(B∗)c

∣
∣Liγ a(x)

∣
∣q dx

)1/q

≤
∫

B

∣
∣a(y)

∣
∣
(∫

(B∗)c

∣
∣KL

γ (x, y)
∣
∣q dx

)1/q

dy

≤
∫

B

∣∣a(y)
∣∣
(∫

(B∗)c
|x – y|–nq dx

)1/q

dy

≤
∫

B

∣
∣a(y)

∣
∣rn/q–n dy ≤ Crn/q–n.

Because q > 1&r ≥ ρ(x0), the above estimates indicate that

∥
∥Liγ a(x)

∥
∥1/{n/q–n} ≥ ρ(x0)(n/q–n)/{n/q–n} = ρ(x0),

which means that such Liγ a need not satisfy the canceling condition.
On the other hand, we write ‖| · –x0|nbLiγ a‖q ≤ I1 + I2, where

⎧
⎨

⎩
I1 := ‖χB∗ | · –x0|nbLiγ a‖q;

I2 := ‖χ(B∗)c | · –x0|nbLiγ a‖q.

For I1, by the Lq-boundedness of Liγ and the fact that ε – b = 1/q – 1, we have

I1 ≤ C|B|b∥∥Liγ a
∥
∥

q ≤ C|B|ε .

For I2, because

∣∣KL
γ (x, y)

∣∣ ≤ CN

{1 + |x – y|[m(x,μ) + m(y,μ)]}N
1

|x – y|n ,
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we can use Lemma 2.1 and the fact that r ≥ 1/m(x0,μ) to obtain

I2 ≤ C
∫

B

|a(y)|
m(y,μ)N

(∫

(B∗)c

|x – x0|nbq

|x – x0|(n+N)q dx
)1/q

dy

≤ C
∫

B

|a(y)|
m(y,μ)N rnb+n/q–n–N dy

≤ C
∫

B

∣∣a(y)
∣∣
{

1
m(x0,μ)

+ |y – x0|
}N

rnb+n/q–n–N dy

≤ C
∫

B

∣∣a(y)
∣∣rN rnb+n/q–n–N dy

≤ C|B|ε .

The estimates for I1 and I2 imply that

NL
(
Liγ a

)
=

∥∥Liγ a
∥∥ε/b

q

∥∥| · –x0|Liγ a
∥∥1–ε/b

q ≤ C.

Case 2: r < 1/m(x0,μ). For this case, the atom a has the canceling property. There exists a
positive integer m such that 2–m–1/m(x0,μ) ≤ r < 2–m/m(x0,μ). Let B� = B(x0, 2/m(x0,μ))
and B∗ = B(x0, 2r). We write

Liγ a =
(
Liγ – (–�)iγ )

a + (–�)iγ a.

We will prove that (Liγ – (–�)iγ )a and (–�)iγ a are both moleculars. For r < 1/m(x0,μ),
any (1, q)-atom is a classical atom. By Alverez–Milman [1], (–�)iγ a is a (1, q, ε)-molecular.
Hence, (–�)iγ a is a molecular of H1

L(Rn). We write ‖(Liγ – (–�)iγ )a‖q ≤ I1 + I2 + I3, where

⎧
⎪⎪⎨

⎪⎪⎩

I1 := ‖(Liγ – (–�)iγ )aχB∗‖q;

I2 := ‖(Liγ – (–�)iγ )aχB�\B∗‖q;

I3 := ‖(Liγ – (–�)iγ )aχ(B�)c‖q.

We first estimate the term I1. Because δ ∈ (0, n), then n/q – n + δ > 0. Estimate (4.2)
implies that

I1 ≤ C
∫

B

(∫

B∗

∣∣g(x, y)
∣∣q dx

)1/q∣∣a(y)
∣∣dy

≤ C
∫

B

∣
∣a(y)

∣
∣m(x0,μ)δ

(∫

B∗
|x – y|–q(n–δ) dx

)1/q

dy

≤ C
∫

B

∣
∣a(y)

∣
∣m(x0,μ)δr(n–qn+qδ)/q dy

≤ Cm(x0,μ)δ
[
2mm(x0,μ)

]–n/q+n–δ

≤ Cm(x0,μ)n–n/q.
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Now we deal with I3. If x ∈ (B�)c and y ∈ B, then |y – x| ∼ |x – x0|. By the canceling
property of a, we have

∣
∣[Liγ – (–�)iγ ]

(a)(x)
∣
∣ ≤

∣∣
∣∣

∫

B

[
KL

γ (x, y) – Kγ (x, y)
]
a(y) dy

∣∣
∣∣

≤
∣
∣∣∣

∫

B

[
KL

γ (x, x0) – KL
γ (x, y)

]
a(y) dy

∣
∣∣∣

+
∣
∣∣
∣

∫

B

[
Kγ (x, y) – Kγ (x, x0)

]
a(y) dy

∣
∣∣
∣

≤
∫

B

∣
∣a(y)

∣
∣
[ |y – x0|δ

|x – x0|n+δ
+

|y – x0|
|x – x0|n+1

]
dy

≤ C
(

rδ

|x – x0|n+δ
+

r
|x – x0|n+1

)
.

Then, since rm(x0,μ) < 1, we obtain that

I3 ≤ C
[∫

(B�)c

(
rδ

|x – x0|n+δ
+

r
|x – x0|n+1

)q

dx
]1/q

≤ C
{[∫

(B�)c

rqδ

|x – x0|q(n+δ) dx
]1/q

+
[∫

(B�)c

rq

|x – x0|q(n+1) dx
]1/q}

≤ Crδm(x0,μ)δ+n–n/q + rm(x0,μ)δ+1–n/q

≤ Cm(x0,μ)n–n/q.

At last, we estimate I2. For this case, x ∈ B�\B∗, then 2r < |x – x0| < 2/m(x0,μ) and |x –
y| ∼ |x – x0|. Applying (4.2) and the canceling property of a again, we get

∣∣[Liγ – (–�)iγ ]
a(x)

∣∣ ≤ C
∫

B

[|y – x0|m(x0,μ)
]δ′ |x – x0|–n∣∣a(y)

∣∣dy

≤ C
[
m(x0,μ)

]δ′
rδ′ |x – x0|–n

∫

B

∣
∣a(y)

∣
∣dy

≤ C
[
m(x0,μ)

]δ′
rδ′ |x – x0|–n

≤ C2–mδ′ |x – x0|–n,

which implies that

I2 ≤ C
[∫

B�\B∗

∣
∣[Liγ – (–�)iγ ]

a(x)
∣
∣q dx

]1/q

≤ C
(∫

B�\B∗
2–mδ′q|x – x0|–nq dx

)1/q

≤ Cm(x0,μ)n–n/q,

where in the last inequality we have used the fact that q < n/(n – δ′).
Finally, it follows from the estimates for Ii, i = 1, 2, 3, that

∥∥[
Liγ – (–�)iγ ]

a
∥∥1/(n/q–n)

q ≥ m(x0,μ)–1.
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On the other hand, the Lq-boundedness of Liγ – (–�)iγ gives

∥
∥[
Liγ – (–�)iγ ]

a
∥
∥

q ≤ ‖a‖q =
(∫

B

∣
∣a(y)

∣
∣q dy

)1/q

≤ rn/q–n.

This means that for this case, (Liγ – (–�)iγ )a need not satisfy the canceling condition.
Part III: There exists a constant C such that, for any (1,∞)-atom, uniformly,

NL
([
Liγ – (–�)iγ ]

a
) ≤ C.

We write b = 1 – 1/q + ε, then ε – b = 1/q – 1. We have proved that

∥∥(
Liγ – (–�)iγ )

a
∥∥

q ≤ Cρ(x0)n/q–n ≤ ρ(x0)n(ε–b).

Now we split: ‖| · –x0|nb(Liγ – (–�)iγ )a‖q ≤ I1 + I2, where

⎧
⎨

⎩
I1 := ‖| · –x0|nb(Liγ – (–�)iγ )a‖Lq(B�);

I2 := ‖| · –x0|nb(Liγ – (–�)iγ )a‖Lq((B�)c).

For I1, because B� = (x0, 2ρ(x0)),

I1 ≤ Cρ(x0)nb
[∫

B�

∣∣(Liγ – (–�)iγ )
a(x)

∣∣q
]1/q

≤ Cρ(x0)nbρ(x0)n(ε–b) ≤ Cρ(x0)nε .

For I2, we further split I2 into I2,1 + I2,2, where

⎧
⎨

⎩
I2,1 := ‖| · –x0|nbLiγ a‖Lq((B�)c);

I2,2 := ‖| · –x0|nb(–�)iγ a‖Lq((B�)c).

Notice that ε < δ/n and nb – (n + δ) + n/q < 0. By Theorem 4.3, we have

I2,1 ≤ C
∫

B

∣
∣a(y)

∣
∣
[∫

(B�)c
|x – x0|qnb|

∫

B
|y – x0|qδ|x – x0|–q(n+δ) dx

]1/q

dy

≤ C
∫

B

∣∣a(y)
∣∣|y – x0|δ

[∫

(B�)c
|x – x0|qnb–q(n+δ) dx

]1/q

dy

≤ C
∫

B

∣∣a(y)
∣∣rδρ(x0)nb–(n+δ)+n/q dy

≤ Cρ(x0)nε .

For I2,2, similarly, we have

I2,2 ≤ C
∫

B

∣
∣a(y)

∣
∣|x – x0|

(∫

|x–x0|≥2ρ(x0)
|x – x0|q(nb–n–1)|x – x0|n–1 d|x – x0|

)1/q

dy

≤ C
∫

B

∣
∣a(y)

∣
∣rρ(x0)nb–(n+1)+n/q dy

≤ Cρ(x0)nε ,
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where we have used the fact that 0 < ε < min{δ/n, 1/n}. Finally, we get

∥∥| · –x0|nb(Liγ – (–�)iγ )
a
∥∥

q ≤ ρ(x0)nε ,

and, hence,

∥
∥(
Liγ – (–�)iγ )

a
∥
∥ε/b

q

∥
∥| · –x0|nb(Liγ – (–�)iγ )

a
∥
∥(1–ε/b)

q

≤ Cρ(x0)n(ε–b)ε/bρ(x0)nε(1–ε/b) ≤ C.

Finally, we have proved that, for any (1,∞)-atom, Liγ a is a (1, q, ε)-molecular or the linear
combination of finite (1, q, ε)-moleculars. �

4.2 The H1
L-boundedness of Riesz transforms RL

In this section, we prove that Riesz transforms RL are bounded on H1
L(Rn). The Riesz

transforms associated with L are defined as

RL := ∇(–� + μ)–1/2,

where (–� + μ)–1/2 = 1
π

∫ ∞
0 λ–1/2(–� + μ + λ)–1 dλ. Shen proved the following estimate of

RL. Assume that μ satisfies (1.2) & (1.3) for some δ > 1. Then ∇(–�+μ)–1/2 is a Calderón–
Zygmund operator. Precisely,

∇(–� + μ)–1/2f (x) =
∫

Rn
RL(x, y)f (y) dy,

where

RL(x, y) :=
1
π

∫ ∞

0
λ–1/2∇xΓμ+λ(x, y) dλ.

In [12], Shen proved the following results, see [12, (7.20), (7.26), (7.29)], respectively.

Lemma 4.5 The kernel RL(·, ·) satisfies the following estimates:

⎧
⎪⎪⎨

⎪⎪⎩

(1) |RL(x, y)| ≤ Ce–cd(x,y,μ)|x – y|–n;

(2) |RL(x + h, y) – RL(x, y)| ≤ C(|h|/|x – y|)δ–1|x – y|–n;

(3) |RL(x, y + h) – RL(x, y)| ≤ C(|h|/|x – y|)δ1 |x – y|–n, δ1 ∈ (0, 1).

Theorem 4.6 Let L = –� + μ be a generalized Schrödinger operator, where μ 
= 0 is a non-
negative Radon measure on R

n satisfying (1.2) & (1.3) for some δ > 0. The Riesz transform
RL is bounded on H1

L(Rn).

Proof Similar to Theorem 4.4, the proof of this theorem is divided into three parts.
Part I: ‖| · |nbRLa‖q < ∞, uniformly. For any atom a and B∗ = B(x0, 2r), we write

‖| · |nbRLa‖q ≤ I1 + I2, where I1 := ‖| · |nbRLa‖Lq(B∗) and I2 := ‖| · |nbRLa‖Lq((B∗)c).
By the Lq-boundedness of RL, we have

I1 ≤ rnb
(∫

B∗

∣
∣RLa(x)

∣
∣q dx

)1/q

≤ rnb‖a‖q ≤ rnb∣∣B(x0, r)
∣
∣1/q–1 ≤ rnε .
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By Lemma 4.5, for any positive N > 0,

∣∣RL(x, y)
∣∣ ≤ C|x – y|–n–N[

m(y,μ)
]–N .

On the other hand, for y ∈ B and x ∈ (B∗)c, |x – y| ≥ |x – x0|/2. We can obtain that

I2 ≤ C
∫

B

∣∣a(y)
∣∣
(∫

(B∗)c
|x|qnb∣∣RL(x, y)

∣∣q dx
)1/q

dy

≤ C
∫

B

∣
∣a(y)

∣
∣ 1
m(y,μ)N

(∫

(B∗)c
|x|qnb 1

|x – y|(n+N)q dx
)1/q

dy

≤ C
{∫

B

∣∣a(y)
∣∣ |x0|nb

m(y,μ)N

(∫

(B∗)c

dx
|x – x0|(n+N)q

)1/q

dy

+
∫

B

∣∣a(y)
∣∣ 1
m(y,μ)N

(∫

(B∗)c

|x – x0|qnb

|x – x0|(n+N)q dx
)1/q

dy
}

≤ C
∫

B

|a(y)|
m(y,μ)N

{
rnε–N + |x0|–n–N+n/q}dy.

Because y ∈ B(x0, r),

m(y,μ) ≥ Cm(x0,μ)
{1 + |x – x0|m(x0,μ)}k0/(k0+1) ,

which implies that ‖| · |nba‖Lq((B∗)c) < ∞.
Part II: NL(RL(a)) ≤ C. We divide the proof into two cases.
Case1: r ≥ 1/m(x0,μ). By the boundedness of the Riesz transform RL, we have

‖RLa‖q ≤ C
{‖RLa‖q + ‖χ(B∗)c RLa‖q

}

≤ C
{‖a‖q + ‖χ(B∗)c RLa‖q

}

≤ C
{∣
∣B(x0, r)

∣
∣1/q–1 +

∫

B

∣
∣a(y)

∣
∣
(∫

(B�)c

∣
∣RL(x, y)

∣
∣q dx

)1/q

dy
}

.

By Lemma 4.5, we can get

∫

B

∣
∣a(y)

∣
∣
(∫

(B�)c

∣
∣RL(x, y)

∣
∣q dx

)1/q

dy ≤ C
∫

B

∣
∣a(y)

∣
∣
(∫ ∞

2r
sn–qn–1 ds

)1/q

dy

≤ C
∫

B

∣∣a(y)
∣∣dy × rn/q–n

≤ Cρ(x0)n/q–n,

which means that ‖RLa‖1/(n/q–n)
q ≥ ρ(x0), i.e., RLa does not need the canceling condition

for this case. Now we split ‖| · –x0|nbRLa‖q ≤ I1 + I2, where

⎧
⎨

⎩
I1 := (

∫
B∗ |x – x0|qnb|RLa(x)|q dx)1/q;

I2 := (
∫

(B∗)c |x – x0|qnb|RLa(x)|q dx)1/q.
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It is easy to see that

I1 ≤ rnb
(∫

B∗

∣∣RLa(x)
∣∣q dx

)1/q

≤ rnb‖RLa‖q ≤ rnb‖a‖q ≤ rnε .

For I2, by Minkowski’s inequality,

I2 ≤ C
∫

B

∣∣a(y)
∣∣m(y,μ)–N

(∫

B∗
|x – x0|qnb–q(n+N) dx

)1/q

dy

≤ C
∫

B

∣∣a(y)
∣∣m(y,μ)–N rnb+n/q–n–N dy

≤ C
∫

B

∣
∣a(y)

∣
∣{m(x0,μ)–1 + |y – x0|

}N rnb+n/q–n–N dy

≤ C
∫

B

∣∣a(y)
∣∣rN rnb+n/q–n–N dy

≤ C|B|(ε–b)ε/b|B|ε(1–ε/b),

which gives NL(RLa) = ‖RLa‖ε/b
q ‖| · –x0|nbRLa‖1–ε/b

q ≤ C.
Case 2: r ≤ ρ(x0). Let B� = B(x0, 2ρ(x0)) and B∗ = B(x0, 2r). So RLa = R0a + (RL – R0)a,

where R0 := ∇(–�)–1/2. For any a with the canceling condition, R0a is a molecular. We only
need to deal with (RL – R0)a. Split ‖(RL – R0)a‖q ≤ I1 + I2 + I3, where

⎧
⎪⎪⎨

⎪⎪⎩

I1 := (
∫

B∗ |(RL – R0)a(x)|q dx)1/q;

I2 := (
∫

B�\B∗ |(RL – R0)a(x)|q dx)1/q;

I3 := (
∫

(B�)c |(RL – R0)a(x)|q dx)1/q.

We first estimate I3. For x ∈ (B�)c and y ∈ B, |x – y| ∼ |x – x0|. Denote by R0(·, ·) the kernel
of ∇(–�)–1/2. We can get

∣∣(RL – R0)(a)(x)
∣∣

≤ C
{∫

B

∣∣RL(x, y) – RL(x, x0)
∣∣∣∣a(y)

∣∣dy +
∫

B

∣∣R0(x, y) – R0(x, x0)
∣∣∣∣a(y)

∣∣dy
}

≤ C‖a‖∞
(∫

B

|y – x0|δ
|x – x0|n+δ

dy +
∫

B

|y – x0|
|x – x0|n+1 dy

)

≤ C‖a‖∞|B|
(

rδ

|x – x0|n+δ
+

r
|x – x0|n+1

)
.

It follows from the above estimate that

I3 ≤ C
{(∫

(B�)c

rqδ

|x – x0|q(n+δ) dx
)1/q

+
(∫

(B�)c

rq

|x – x0|q(n+1) dx
)1/q}

≤ C
{

rδm(x0,μ)n+δ–n/q + r
[
m(x0,μ)

]n+1–n/q}

≤ C
[
m(x0,μ)

]n–n/q.
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For the estimates of I1&I2, we need the following estimate:

∣
∣RL(y, x) – R0(y, x)

∣
∣ ≤ C

{
1

rn–1

∫

B(y,r)

dμ(z)
|z – y|n–1 +

(rm(x,μ))δ

rn

}
. (4.4)

For r = |x – y|/2,

∣∣RL(y, x) – R0(y, x)
∣∣ ≤ C

{
1

|x – y|n–1

∫

B(y,|x–y|/2)

dμ(z)
|z – y|n–1 +

(|x – y|m(x,μ))δ

|x – y|n
}

.

We get I1 ≤ ∫
B |a(y)|A1(y) dy, where

A1 :=
{∫

B∗

∣
∣RL(x, y) – R0(x, y)

∣
∣q dx

}1/q

.

Due to (4.4), we further obtain A1 ≤ U1 + U2, where
⎧
⎨

⎩
U1 := {∫B� |x – y|q(1–n)(

∫
B(x,|x–y|/2) |z – x|1–n dμ(z))q dx}1/q;

U2 := {∫B� (|x – y|m(y,μ))qδ|x – y|–qn dx}1/q.

For U2, if y ∈ B, then |y – x0| < r < 2ρ(x0) and m(y,μ) ∼ m(x0,μ). On the other hand,
because x ∈ B�, then |x – y| < 3/m(x0,μ). We can get

U2 ≤ Cm(x0,μ)δ
(∫

B�

|x – y|qδ–qn dx
)1/q

≤ Cm(x0,μ)n–n/q.

Now we estimate the term U1. Let Tj = B(y, 2j+2/m(x0,μ)). If y ∈ B and x ∈ B�, by the
triangle inequality, it is easy to see that B� ⊂ B(y, 4/m(x0,μ)). Also, for x ∈ Tj+1 \Tj, |x–y| ≥
2j+2/m(x0,μ). On the other hand, B(x, |x – y|/2) ⊂ B(y, 3|x – y|/2). Then

U1 ≤ C
0∑

j=–∞

(∫

Tj+1\Tj

1
|x – y|q(n–1)

(∫

B(x,|x–y|/2)

dμ(z)
|z – x|n–1

)q

dx
)1/q

≤ C
0∑

j=–∞

[
m(x0,μ)

2j

]n–1(∫

Tj+1\Tj

(∫

B(y,|x–y|/2)

dμ(z)
|z – x|n–1

)q

dx
)1/q

≤ C
0∑

j=–∞

[
m(x0,μ)

2j

]n–1(∫

Tj+1\Tj

(∫

B(y,2j+2/m(x0,μ))

dμ(z)
|z – x|n–1

)q

dx
)1/q

≤ C
0∑

j=–∞

[
m(x0,μ)

2j

]n–1
μ(3Tj+1)

2(j+2)(n–n/q–1)

[
m(x0,μ)

]n–n/q–1.

Notice that

μ(Tj+1) = μ
(
B
(
y, 2j+2/m(x0,μ)

)) ≤ (
2j+2)n–2+δm(x0,μ)2–n.

A direct computation gives

U1 ≤ C
0∑

j=–∞

[
m(x0,μ)

]n–n/q2j(n–2+δ′)2–j(2n–1/q–2)
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≤ C
[
m(x0,μ)

]n–n/q
0∑

j=–∞
2j(n–2+δ′–2n+n/q+2)

≤ C
[
m(x0,μ)

]n–n/q,

which implies that

I1 ≤ C
∫

B

∣∣a(y)
∣∣A1(y) dy ≤ C‖a‖1

[
m(x0,μ)

]n–n/q ≤ C
[
m(x0,μ)

]n–n/q.

The estimate for I2 is similar. Then we obtain ‖(RL – R0)a‖1/{n/q–n}
q ≥ C/m(x0,μ), which

means (RL – R0)a does not need the canceling condition. What is left to prove is the norm
‖| · –x0|nb(RL – R0)a‖q. We write ‖| · –x0|nb(RL – R0)a‖q ≤ E1 + E2, where

⎧
⎨

⎩
E1 := (

∫
B� |x – x0|qnb|(RL – R0)a(x)|q dx)1/q;

E2 := (
∫

(B�)c |x – x0|qnb|(RL – R0)a(x)|q dx)1/q.

By the Lp-boundedness of RL and R0, we get

E1 ≤ Cm(x0,μ)–nb∥∥(RL – R0)a
∥
∥

q ≤ Cm(x0,μ)–nb‖a‖q ≤ Cm(x0,μ)–nε .

For the term E2, we have E2 ≤ E2,1 + E2,2, where

⎧
⎨

⎩
E2,1 := (

∫
(B�)c |x – x0|qnb|RLa(x)|q dx)1/q;

E2,2 := (
∫

(B�)c |x – x0|qnb|R0a(x)|q dx)1/q.

A direct computation gives

E2,1 ≤ C
∫

B

∣∣a(y)
∣∣dy

(∫

(B�)c
|x – x0|qnb∣∣RL(x, y) – RL(x, x0)

∣∣q dx
)1/q

≤ C
∫

B

∣
∣a(y)

∣
∣|y – x0|δ

(∫

(B�)c

|x – x0|qnb

|x – x0|(n+δ)q dx
)1/q

dy ≤ Cm(x0,μ)–nε .

For E2,2, because R0 is a Calderón–Zygmund operator, the kernel K0(·, ·) satisfies

∣
∣R0(x, y) – R0(x, x0)

∣
∣ ≤ C|y – x0||x – x0|–n–1.

We can get

E2,2 ≤ C
∫

B

∣∣a(y)
∣∣
(∫

(B�)c
|x – x0|q(nb–n) dx

)1/q

dy

≤ Crn+1–n/q
(∫ ∞

2/m(x0,μ)
s–(q–1)n–q+nbq–1 ds

)1/q

≤ Cm(x0,μ)–nε .

Finally, we obtain that

NL
(
(RL – R0)a

) ≤ Cm(x0,μ)(n/q–n)(ε/b)m(x0,μ)nε(ε/b–1) ≤ C. �
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