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Abstract
As is well known, fixed point theorems and problems play important roles in
differential equations, mathematical programming, control, and so on. In this paper,
by providing some unboundedness conditions and by using some inequality
techniques, we can give constructive proofs of the existence of fixed points on
unbounded non-convex sets via homotopy methods.
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1 Introduction
As is well known, fixed point theorems and problems play important roles in many areas
and have attracted extensive attention of more and more researchers [1–11]. The homo-
topy method now has become an important tool in handling various fixed point theorems
and problems, bilevel programming, and so on [12–19], because the general Brouwer fixed
point theorem does not require the convexity of the subsets of Rn, which is a necessary
condition for the constructive proofs of the Brouwer fixed point theorem given by the
classical homotopy methods and is difficult to remove. Recently, to remove the convexity
restriction, Yu et al. [20] introduced the normal cone condition and combined the interior
point methods with the classical homotopy methods, therefore gave a constructive proof
of the general Brouwer fixed point theorem on a class of non-convex sets.

In [21], we applied linear homotopy and Newton homotopy techniques and hence ex-
tended the results [20] from the cases only with inequality constraints to more gen-
eral cases with equality constraints. In [22], we furthermore introduced C2 mappings
ξi(x, yi) ∈ Rn, i = 1, . . . , m, ηj(x, zj) ∈ Rn, j = 1, . . . , m. With these new mappings, we were
able to handle the general Brouwer fixed point theorem in more general non-convex sets.
Moreover, we applied the perturbation techniques to the equality and inequality con-
straints to expand the scope of the choice of initial points. This point improves the compu-
tational efficiency of the algorithm greatly. However, to our knowledge, the global conver-
gence results in [21, 22] were obtained under the boundedness assumptions. In this paper,
we give two sets of unbounded conditions, with which we extend the results in [21, 22]
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from the boundedness cases to the unboundedness ones, respectively. Our results may be
helpful in dealing with important nonlinear problems because fixed point theorems are
widely applied in differential equations, economics, and so on.

Throughout this paper, we need the following notations: Ω = {x ∈ Rn : gi(x) ≤ 0, i =
1, . . . , m, hj(x) = 0, j = 1, . . . , l}, Ω0 = {x ∈ Rn : gi(x) < 0, i = 1, . . . , m, hj(x) = 0, j = 1, . . . , l} and
∂Ω = Ω\Ω0. The index set is B(x) = {i ∈ {1, . . . , m} : gi(x) = 0}.

2 Main results
In [21], we gave a constructive proof of the existence of fixed points on a class of non-
convex set Ω . The assumptions are listed as follows:

(A1) Ω0 is nonempty and Ω is bounded;
(A2) For any x ∈ Ω , if

∑

i∈I(x,μ)

yi∇gi(x) + ∇h(x)z = 0, yi ≥ 0,

then yi = 0, ∀i ∈ I(x), z = 0;
(A3) For any x ∈ Ω and for all (x, y, z) ∈ Ω × Rm

+ × Rl , we have

{
x +

∑

i∈B(x)

∇gi(x)yi + ∇h(x)z
}

∩ Ω = {x}.

Then the homotopy is constructed as follows:

H
(
w, w(0),μ

)
=

⎛

⎜⎝
(1 – μ)(x – F(x) + ∇g(x)y) + ∇h(x)z + μ(x – x(0))

h(x)
Yg(x) – μY (0)g(x(0))

⎞

⎟⎠ = 0, (1)

where g(x) = (g1(x), . . . , gm(x))T , h(x) = (h1(x), . . . , hm(x))T , ∇g(x) = (∇g1(x), . . . ,∇gm(x)) ∈
Rn×m, Y = diag(y) ∈ Rm×m, Y (0) = diag(y(0)) ∈ Rm×m, and μ ∈ (0, 1].

In this paper, to extend the results in [21] to the unbounded non-convex sets, we use the
idea of infinite solutions in [23, 24] and replace the boundedness condition (A1) with the
following unboundedness one:

(A′
1) Ω0 is nonempty; for any given η ∈ Ω and for any sequences {x(k)} ⊂ Ω ,

(
x(k) – η

)T∇h
(
x(k)) ≥ h

(
x(k))T – h(η)T .

Moreover, there are no sequences {x(k)} ⊂ Ω , if ‖x(k)‖ → ∞ as k → ∞, such that there
exist y(k) ∈ Rm

+ and z(k) ∈ Rl satisfying

lim
k→∞

(
η – x(k))T(

x(k) – F
(
x(k)) + ∇g

(
x(k))y(k) + ∇h

(
x(k))z(k)) ≥ 0.

Using assumptions (A′
1), (A2), and (A3), we show that a smooth curve Γw0 starting from

(w(0), 1) exists by a similar analysis to that in [21].

Lemma 2.1 Let assumptions (A′
1), (A2), and (A3) hold. Then, for almost all w(0), the pro-

jection of the smooth curve Γw(0) onto the x-plane is bounded.
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Proof If the conclusion does not hold, there exists a sequence of points {(x(k), y(k), z(k),
μk)}∞k=1 such that ‖x(k)‖ → ∞ as k → ∞.

The following conclusion is easily obtained by simple computation:

∥∥x(k) – η
∥∥2 –

∥∥x(0) – η
∥∥2 ≤ 2

(
x(k) – η

)T(
x(k) – x(0)). (2)

Then we obtain

(1 – μk)
(
x(k) – F

(
x(k)) + ∇g

(
x(k))y(k)) + ∇h

(
x(k))z(k) + μ

(
x(k) – x(0)) = 0, (3)

h
(
x(k)) = 0, (4)

Y (k)g
(
x(k)) – μkY (0)g

(
x(0)) = 0. (5)

Multiplying (3) by (x(k) – η)T , we obtain

(1 – μk)
(
x(k) – η

)T(
x(k) – F

(
x(k)) + ∇g

(
x(k))y(k))

+
(
x(k) – η

)T∇h
(
x(k))z(k) + μk

(
x(k) – η

)T(
x(k) – x(0)) = 0, (6)

i.e.,

μk
(
x(k) – η

)T(
x(k) – x(0)) = –(1 – μk)

(
x(k) – η

)T(
x(k) – F

(
x(k)) + ∇g

(
x(k))y(k))

–
(
x(k) – η

)T∇h
(
x(k))z(k). (7)

So

μk
(∥∥x(k) – η

∥∥2 –
∥∥x(0) – η

∥∥2)

≤ 2μk
(
x(k) – η

)T(
x(k) – x(0))

= –2(1 – μk)
(
x(k) – η

)T(
x(k) – F

(
x(k)) + ∇g

(
x(k))y(k)) – 2

(
x(k) – η

)T∇h
(
x(k))z(k)

= –2(1 – μk)
(
x(k) – η

)T(
x(k) – F

(
x(k)) + ∇g

(
x(k))y(k))

– 2(1 – μk)
(
x(k) – η

)T∇h
(
x(k))z(k) + 2μk

(
η – x(k))T∇h

(
x(k))z(k)

≤ –2(1 – μk)
(
x(k) – η

)T(
x(k) – F

(
x(k)) + ∇g

(
x(k))y(k) + ∇h

(
x(k))z(k))

+ 2μk
(
h(η)T – h

(
x(k))T)

z(k)

= –2(1 – μk)
(
x(k) – η

)T(
xk – F

(
x(k)) + ∇g

(
x(k))yk + ∇h

(
x(k))z(k)). (8)

From (8), we obtain

(
η – x(k))T(

x(k) – F
(
x(k)) + ∇g

(
x(k))y(k) + ∇h

(
x(k))z(k))

≥ μk

2(1 – μk)
(∥∥x(k) – η

∥∥2 –
∥∥x(0) – η

∥∥2). (9)
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When ‖x(k)‖ → ∞, from (9), we obtain

lim
k→∞

(
η – x(k))T(

x(k) – F
(
x(k)) + ∇g

(
x(k))y(k) + ∇h

(
x(k))z(k))

≥ lim
k→∞

μk

2(1 – μk)
(∥∥x(k) – η

∥∥2 –
∥∥x(0) – η

∥∥2) ≥ 0, (10)

which contradicts assumption (A′
1). �

Then by a similar analysis to that in [21], we show that the projections of the smooth
curve Γw(0) onto the y and z planes are also bounded, and we can also find a fixed point
following the curve Γw(0) . As for how to trace Γw(0) , one can refer to [25, 26].

To give a constructive proof of the general Brouwer fixed point theorem in more general
non-convex sets and to expand the scope of the choice of initial points of the homotopy
method, in [22], we introduced continuous mappings ξ (x, u) = (ξ1(x, u1), . . . , ξm(x, um)) ∈
Rn×m and η(x, v) = (η1(x, v1), . . . ,ηl(x, vl)) ∈ Rn×l , then applied proper perturbations to the
constrained functions g(x) and h(x) by using the following parameters:

γi =

⎧
⎪⎪⎨

⎪⎪⎩

2gi(x(0)), gi(x(0)) > 0,

1, gi(x(0)) = 0,

0, gi(x(0)) < 0,

i = 1, . . . , m,

θj =

⎧
⎨

⎩
1, hj(x(0)) = 0,

0, hj(x(0)) = 0,
j = 1, . . . , l.

Then let

em = (1, . . . , 1)T ∈ Rm, Υ = diag(γ1, . . . ,γm) ∈ Rm×m,

Θ = diag(θ1, . . . , θl)T ∈ Rl×l,

Ω(μ) =
{

x ∈ Rn : g(x) – μΥ
(
g
(
x(0)) + em

) ≤ 0, h(x) – μΘh
(
x(0)) = 0

}
,

Ω0(μ) =
{

x ∈ Rn : g(x) – μΥ
(
g
(
x(0)) + em

)
< 0, h(x) – μΘh

(
x(0)) = 0

}
,

I(x,μ) =
{

i ∈ {1, . . . , m} : gi(x) – μγi
(
gi

(
x(0)) + 1

)
= 0

}
.

In [22], we made the following assumptions:
(C1) Ω0(μ) is nonempty and Ω(μ) is bounded;
(C2) ξi(x, 0) = 0, i = 1, . . . , m, ηj(x, 0) = 0, j = 1, . . . , l; besides, for any x ∈ Ω(μ), if

‖(y, z, u, v)‖ → ∞, then
∥∥∥∥

∑

i∈I(x,μ)

(
yi∇gi(x) + ξi(x, ui)

)
+ ∇h(x)z + η(x, v)

∥∥∥∥ → ∞;

(C3) For any x ∈ Ω(μ), if

∑

i∈I(x,μ)

(
yi∇gi(x) + ξi(x, ui)

)
+ ∇h(x)z + η(x, v) = 0, yi ≥ 0, ui ≥ 0,

then yi = 0, ui = 0, ∀i ∈ I(x,μ), z = 0, v = 0;
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(C4) When μ = 0, 1, for any x ∈ Ω(μ), we have

{
x +

∑

i∈I(x,μ)

ξi(x, ui) + η(x, v) : ui ≥ 0 for i ∈ I(x,μ), v ∈ Rl
}

∩ Ω(μ) = {x}.

Furthermore, we construct the following homotopy:

H
(
w, w(0),μ

)
=

⎛

⎜⎜⎜⎝

(1 – μ)(x – F(x) + (1 – μ)μ∇g(x)y) +
∑m

i=1 ξi(x, (1 – μ)yi)
+ (1 – μ)μ(∇h(x)z + β) + η(x, z) + μ(x – x(0))

h(x) – μΘh(x(0))
Y (g(x) – μΥ (g(x(0)) + em)) – μY (0)(g(x(0)) – Υ (g(x(0)) + em))

⎞

⎟⎟⎟⎠

= 0, (11)

where β ∈ Rn is a given constant vector.
In this paper, to extend the results in [22] to the unbounded sets, we replace the bound-

edness condition (C1) with the following unboundedness one:
(C′

1) Ω0(μ) is nonempty; for any given α ∈ Ω(μ),

(α – x)Tξi(x, ui) ≤ ((
gi(α) – μγi

(
gi

(
x(0)) + 1

))T

–
(
gi(x) – μγi

(
gi

(
x(0)) + 1

))T)
ui, i = 1, . . . , m,

and

(α – x)Tη(x, v) ≤ (
h(x) – μΘh

(
x(0)))T v –

(
hj(α) – μΘh

(
x(0)))T v.

In addition, there are no sequences {x(k)} ⊂ Ω , if ‖x(k)‖ → ∞ as k → ∞, such that
there exist u(k) ∈ Rm

+ and v(k) ∈ Rl satisfying

lim
k→∞

(
x(k) – α

)T(
x(k) – F

(
x(k)) + ∇g

(
x(k))u(k) + ∇h

(
x(k))v(k) + μβ

) ≤ 0.

In the following, we are devoted to proving the boundedness of x-component of w.

Lemma 2.2 Let H be defined as in (11), let gi(x), i = 1, . . . , m, and hj(x), j = 1, . . . , l be C3

functions, let assumptions (C′
1), (C2)–(C4) hold, and let ξi(x, ui), i = 1, . . . , m, and ηj(x, vj),

j = 1, . . . , l, be C2 functions. Then, for almost all w(0), the x-component of w is bounded.

Proof If the conclusion does not hold, then there exists a sequence of points {(x(k), y(k), z(k),
μk)}∞k=1 such that ‖x(k)‖ → ∞ as k → ∞. From the first equation in (11), we obtain

(1 – μk)
(
x(k) – F

(
x(k)) + (1 – μk)μk∇g

(
x(k))y(k)) +

m∑

i=1

ξi
(
x(k), (1 – μk)y(k)

i
)

+ (1 – μk)μk
(∇h

(
x(k))z(k) + β

)
+ η

(
x, z(k)) + μk

(
x(k) – x(0)) = 0. (12)
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Multiplying (12) by (x(k) – α)T , we obtain

(1 – μk)
(
x(k) – α

)T(
x(k) – F

(
x(k)) + (1 – μk)μk∇g

(
x(k))y(k))

+
m∑

i=1

(
x(k) – α

)T
ξi

(
x(k), (1 – μk)y(k)

i
)

+ (1 – μk)μk
(
x(k) – α

)T(∇h
(
x(k))z(k) + β

)

+
(
x(k) – α

)T
η
(
x, z(k)) + μk

(
x(k) – α

)T(
x(k) – x(0)) = 0. (13)

Furthermore, rewrite (13) as

μk
(
x(k) – α

)T(
x(k) – x(0))

= –(1 – μk)
(
x(k) – α

)T(
x(k) – F

(
x(k)) + (1 – μk)μk∇g

(
x(k))y(k))

–
m∑

i=1

(
x(k) – α

)T
ξi

(
x(k), (1 – μk)y(k)

i
)

– (1 – μk)μk
(
x(k) – α

)T(∇h
(
x(k))z(k) + β

)

–
(
x(k) – α

)T
η
(
x, z(k)). (14)

By a simple computation, we derive

∥∥x(k) – α
∥∥2 –

∥∥x(0) – α
∥∥2 ≤ 2

(
x(k) – α

)T(
x(k) – x(0)). (15)

Combining (14) and (15), we conclude

μk
(∥∥x(k) – α

∥∥2 –
∥∥x(0) – α

∥∥2)

≤ 2μk
(
x(k) – α

)T(
x(k) – x(0))

= –2(1 – μk)
(
x(k) – α

)T(
x(k) – F

(
x(k)) + (1 – μk)μk∇g

(
x(k))y(k))

–
m∑

i=1

2
(
x(k) – α

)T
ξi

(
x(k), (1 – μk)y(k)

i
)

– 2(1 – μk)μk
(
x(k) – α

)T(∇h
(
x(k))z(k) + β

)
– 2

(
x(k) – α

)T
η
(
x, z(k))

= –2(1 – μk)
(
x(k) – α

)T(
x(k) – F

(
x(k))

+ (1 – μk)μk∇g
(
x(k))y(k) + μk

(∇h
(
x(k))z(k) + β

))

–
m∑

i=1

2
(
x(k) – α

)T
ξi

(
x(k), (1 – μk)y(k)

i
)

– 2
(
x(k) – α

)T
η
(
x, z(k)). (16)

By assumption (C′
1) and (16), we obtain

μk
(∥∥x(k) – α

∥∥2 –
∥∥x(0) – α

∥∥2)

≤ –2(1 – μk)
(
x(k) – α

)T(
x(k) – F

(
x(k)) + ∇g

(
x(k))((1 – μk)μky(k))

+ ∇h
(
x(k))(μkz(k)) + μkβ

)
+

m∑

i=1

2
((

gi(α) – μkγi
(
gi

(
x(0)) + 1

))T
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–
(
gi

(
x(k)) – μkγi

(
gi

(
x(0)) + 1

))T)
(1 – μk)y(k)

i

+
(
h(α) – μkΘh

(
x(0)))T z(k) –

(
h
(
x(k)) – μkΘh

(
x(0)))T z(k). (17)

Because gi(α) – μkγi(gi(x(0)) + 1) ≤ 0 and y(k)
i ≥ 0, i = 1, . . . , m, then

μk
(∥∥x(k) – α

∥∥2 –
∥∥x(0) – α

∥∥2)

≤ –2(1 – μk)
(
x(k) – α

)T(
x(k) – F

(
x(k)) + ∇g

(
x(k))((1 – μk)μky(k))

+ ∇h
(
x(k))(μkz(k)) + μkβ

)

–
m∑

i=1

2(
(
gi

(
x(k)) – μkγi

(
gi

(
x(0)) + 1

))T (1 – μk)y(k)
i . (18)

It follows from the third equation in (11) that

(
gi

(
x(k)) – μkγi

(
gi

(
x(0)) + 1

))
y(k)

i = –μk(gi
(
x(0)) – γi

(
gi

(
x(0)) + 1

)
y(0)

i . (19)

Then (18) becomes

μk
(∥∥x(k) – α

∥∥2 –
∥∥x(0) – α

∥∥2)

≤ –2(1 – μk)
(
x(k) – α

)T(
x(k) – F

(
x(k)) + ∇g

(
x(k))((1 – μk)μky(k))

+ ∇h
(
x(k))(μkz(k)) + μkβ

)
+

m∑

i=1

2(1 – μk)μk(
(
gi

(
x(0)) – μkγi

(
gi

(
x(0)) + 1

))T y(0)
i

≤ –2(1 – μk)
(
x(k) – α

)T(
x(k) – F

(
x(k)) + ∇g

(
x(k))((1 – μk)μky(k))

+ ∇h
(
x(k))(μkz(k)) + μkβ

)
. (20)

Dividing two sides of (20) by the item 2(1 – μk), one obtains

(
α – x(k))T(

x(k) – F
(
x(k)) + ∇g

(
x(k))((1 – μk)μky(k)) + ∇h

(
x(k))(μkz(k)) + μkβ

)

≥ μk

2(1 – μk)
(∥∥x(k) – α

∥∥2 –
∥∥x(0) – α

∥∥2). (21)

From (21), as ‖x(k)‖ → ∞, one obtains

lim
k→∞

(
α – x(k))T(

x(k) – F
(
x(k)) + ∇g

(
x(k))((1 – μk)μky(k)) + ∇h

(
x(k))(μkz(k)) + μkβ

)

≥ lim
k→∞

μk

2(1 – μk)
(∥∥x(k) – α

∥∥2 –
∥∥x(0) – α

∥∥2) ≥ 0.

By assumption (C′
1), this is not possible. �

The following analysis is similar to that in [22], so we omit it in this paper.
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