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Abstract

In the article, we prove that λ1 = 1/2 +
√
[(
√
2 + log(1 +

√
2))/2]1/ν – 1/2,

μ1 = 1/2 +
√
6ν/(12ν), λ2 = 1/2 +

√
[(π + 2)/4]1/ν – 1/2 and μ2 = 1/2 +

√
3ν/(6ν) are

the best possible parameters on the interval [1/2, 1] such that the double inequalities

Cν
[
λ1x + (1 – λ1)y,λ1y + (1 – λ1)x

]
A1–ν (x, y)

<RQA(x, y) < Cν
[
μ1x + (1 –μ1)y,μ1y + (1 –μ1)x

]
A1–ν (x, y),

Cν
[
λ2x + (1 – λ2)y,λ2y + (1 – λ2)x

]
A1–ν (x, y)

<RAQ(x, y) < Cν
[
μ2x + (1 –μ2)y,μ2y + (1 –μ2)x

]
A1–ν (x, y)

hold for all x, y > 0 with x �= y and ν ∈ [1/2,∞), where A(x, y) is the arithmetic mean,
C(x, y) is the contraharmonic mean, andRQA(x, y) andRAQ(x, y) are two Neuman
means.
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1 Introduction
Let x, y > 0. Then the arithmetic mean A(x, y), quadratic mean Q(x, y) [1], contraharmonic
mean C(x, y) [2, 3], and Schwab–Borchardt mean SB(x, y) [4] are given by

A(x, y) =
x + y

2
, Q(x, y) =

√
x2 + y2

2
, C(x, y) =

x2 + y2

x + y
,

SB(x, y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

√
y2–x2

arccos (x/y) , x < y,

x, x = y,√
x2–y2

cosh–1 (x/y) , x > y,

(1.1)

respectively, where cosh–1(σ ) = log(σ +
√

σ 2 – 1) is the inverse hyperbolic cosine function.
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The Gaussian arithmetic–geometric mean AGM(x, y) [5–7] of two positive real numbers
x and y is defined by the common limit of the sequences {xn}∞n=0 and {yn}∞n=0, which are
given by

x0 = x, y0 = y, xn+1 =
xn + yn

2
, yn+1 =

√
xnyn.

It is well known that the bivariate means have wide applications in mathematics, physics,
engineering, and other natural sciences [8–55], many special functions can be expressed
using bivariate means, for example, the complete elliptic integral

K(r) =
∫ π/2

0

dt√
1 – r2 sin2(t)

(0 < r < 1)

of the first kind [56–61] and the modulus μ(r) of the plane Grötzsch ring [62, 63] can
be expressed by the Gaussian arithmetic–geometric mean AGM(x, y), the formula of the
perimeter of an ellipse and the complete elliptic integral

E(r) =
∫ π/2

0

√
1 – r2 sin2(t) dt

of the second kind [64–70] can be given in terms of the Toader mean [71–74]

T(a, b) =
2
π

∫ π/2

0

√
a2 cos2(t) + b2 sin2(t) dt.

Indeed, we have

K(r) =
π

2
1

AGM(1,
√

1 – r2)
, μ(r) =

π

2
AGM(1,

√
1 – r2)

AGM(1, r)
,

L(x, y) = 2πT(x, y), E(r) =
π

2
T

(
1,

√
1 – r2

)
.

Recently, the inequalities for bivariate means have attracted the attention of many math-
ematicians. Neuman [75] introduced the Neuman means

RQA(x, y) =
1
2

[
Q(x, y) +

A2(x, y)
SB(Q(x, y), A(x, y))

]
,

RAQ(x, y) =
1
2

[
A(x, y) +

Q2(x, y)
SB(A(x, y), Q(x, y))

]

and provided the formulas

RQA(x, y) =
1
2

A(x, y)
[√

1 + u2 +
sinh–1(u)

u

]
, (1.2)

RAQ(x, y) =
1
2

A(x, y)
[

1 +
(1 + u2) arctan(u)

u

]
(1.3)
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if x > y > 0, where u = (x – y)/(x + y) and sinh–1(σ ) = log(σ +
√

σ 2 + 1) is the inverse hyper-
bolic sine function. Neuman [4] proved that the inequalities

A(x, y) < RQA(x, y) < RAQ(x, y) < Q(x, y) (1.4)

hold for x, y > 0 with x �= y.

Zhang et al. [76] proved that α1 = 1/2 +
√

2
√

2 log(1 +
√

2) + log2(1 +
√

2) – 2/4 =
0.7817 . . . , β1 = 1/2 +

√
3/6 = 0.7886 . . . , α2 = 1/2 +

√
π2 + 4π – 12/8 = 0.9038 . . . and

β2 = 1/2 +
√

6/6 = 0.9082 . . . are the best possible parameters on the interval [1/2, 1] such
that the double inequalities

Q
[
α1x + (1 – α1)y,α1y + (1 – α1)x

]

< RQA(x, y) < Q
[
β1x + (1 – β1)y,β1y + (1 – β1)x

]
, (1.5)

Q
[
α2x + (1 – α2)y,α2y + (1 – α2)x

]

< RAQ(x, y) < Q
[
β2x + (1 – β2)y,β2y + (1 – β2)x

]
(1.6)

hold for x, y > 0 with x �= y.
In [77], Yang et al. proved that the double inequalities

α

[
C(x, y)

3
+

2A(x, y)
3

]
+ (1 – α)C1/3(x, y)A2/3(x, y)

< RAQ(x, y) < β

[
C(x, y)

3
+

2A(x, y)
3

]
+ (1 – β)C1/3(x, y)A2/3(x, y),

λ

[
C(x, y)

6
+

5A(x, y)
6

]
+ (1 – λ)C1/6(x, y)A5/6(x, y)

< RQA(x, y) < μ

[
C(x, y)

6
+

5A(x, y)
6

]
+ (1 – μ)C1/6(x, y)A5/6(x, y)

hold for for x, y > 0 with x �= y if and only if α ≤ (3π + 6 – 12 3√2)/(16 – 12 3√2) = 0.3470 . . . ,
β ≥ 2/5, λ ≤ [3

√
2 + 3 log(1 +

√
2) – 6 6√2]/(7 – 6 6√2) = 0.5730 . . . and μ ≥ 16/25.

The main purpose of the article is to generalize inequalities (1.5) and (1.6). To achieve
this goal, we define the two-parameter contraharmonic and arithmetic mean Wλ,ν(x, y) as
follows:

Wλ,ν(x, y) = Cν
[
λx + (1 – λ)y,λy + (1 – λ)x

]
A1–ν(x, y), (1.7)

where λ ∈ [1/2, 1] and ν ∈ [1/2,∞). We clearly see that the function λ → Wλ,ν(x, y) is
strictly increasing on [1/2, 1] for ν ∈ [1/2,∞) and x, y > 0 with x �= y.

It follows from (1.1), (1.4) and (1.7) that

Wλ,1/2(x, y) = Q
[
λx + (1 – λ)y,λy + (1 – λ)x

]
, (1.8)

Wλ,1(x, y) = C
[
λx + (1 – λ)y,λy + (1 – λ)x

]
, (1.9)

W1/2,ν(x, y) = A(x, y),
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W1,ν(x, y) = Cν(x, y)A1–ν(x, y) = A(x, y)
[

Q(x, y)
A(x, y)

]2ν

≥ Q(x, y),

W1/2,ν(x, y) < RQA(x, y) < RAQ(x, y) < W1,ν(x, y). (1.10)

Inequalities (1.5), (1.6), and (1.10) give us the motivation to discuss the question: What
are the best possible parameters λ1 = λ1(ν), μ1 = μ1(ν), λ2 = λ2(ν) and μ2 = μ2(ν) on the
interval [1/2, 1] such that the double inequalities

Wλ1,ν(x, y) < RQA(x, y) < Wμ1,ν(x, y),

Wλ2,ν(x, y) < RAQ(x, y) < Wμ2,ν(x, y)

hold for all x, y > 0 with x �= y and ν ∈ [1/2,∞)?

2 Lemmas
In order to prove our main results, we need to introduce and establish five lemmas which
we present in this section.

Lemma 2.1 ([78, Theorem 1.25]) Let α,β ∈R with α < β , Γ ,Ψ : [α,β] →R be continuous
on [α,β] and differentiable on (α,β) with Ψ ′(τ ) �= 0 on (α,β). Then the functions

Γ (τ ) – Γ (α)
Ψ (τ ) – Ψ (α)

,
Γ (τ ) – Γ (β)
Ψ (τ ) – Ψ (β)

are (strictly) increasing (decreasing) on (α,β) if Γ ′(τ )/Ψ ′(τ ) is (strictly) increasing (decreas-
ing) on (α,β).

Lemma 2.2 The function

φ(t) =
√

1 + t2 sinh–1(t)
t

is strictly increasing from (0, 1) onto (1,
√

2 log(1 +
√

2)).

Proof Differentiating φ(t) gives

φ′(t) =
φ1(t)

t
√

1 + t2
, (2.1)

where

φ1(t) = t
√

1 + t2 – sinh–1(t). (2.2)

It follows from (2.2) that

φ1
(
0+)

= 0, (2.3)

φ′
1(t) =

2t2
√

1 + t2
> 0 (2.4)

for all t ∈ (0, 1).
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Note that

φ
(
0+)

= 1, φ
(
1–)

=
√

2 log(1 +
√

2). (2.5)

Therefore, Lemma 2.2 follows from (2.1) and (2.3)–(2.5). �

Lemma 2.3 The function

ϕ(t) =
t3

(1 + t2) arctan(t) – t

is strictly increasing from (0, 1) onto (3/2, 2/(π – 2)).

Proof Let ϕ1(t) = t3 and ϕ2(t) = (1 + t2) arctan(t) – t. Then we clearly see that

ϕ1
(
0+)

= ϕ2
(
0+)

, ϕ(t) =
ϕ1(t)
ϕ2(t)

, (2.6)

ϕ′
1(t)

ϕ′
2(t)

=
3t

2 arctan(t)
. (2.7)

It is not difficult to verify that the function t 
→ t/ arctan(t) is strictly increasing from
(0, 1) onto (1, 4/π ). Then equation (2.7) leads to the conclusion that ϕ′

1(t)/ϕ′
2(t) is strictly

increasing on (0, 1).
Note that

ϕ
(
0+)

=
3
2

, ϕ
(
1–)

=
2

π – 2
. (2.8)

Therefore, Lemma 2.3 follows from Lemma 2.1, (2.6), (2.8), and the monotonicity of
ϕ′

1(t)/ϕ′
2(t). �

Lemma 2.4 Let θ ∈ [0, 1], ν ∈ [1/2,∞), t ∈ (0, 1) and

fθ ,ν(t) = ν log
(
1 + θ t2) – log

[
t
√

1 + t2 + sinh–1(t)
]

+ log t + log 2. (2.9)

Then we have the following two conclusions:
(1) fθ ,ν(t) > 0 for all t ∈ (0, 1) if and only if θ ≥ 1/(6ν);
(2) fθ ,ν(t) < 0 for all t ∈ (0, 1) if and only if θ ≤ [(

√
2 + log(1 +

√
2))/2]1/ν – 1.

Proof It follows from (2.9) that

fθ ,ν
(
0+)

= 0, (2.10)

fθ ,ν
(
1–)

= ν log(1 + θ ) – log
[√

2 + log(1 +
√

2)
]

+ log 2, (2.11)

f ′
θ ,ν(t) =

t[(2ν – 1)(t
√

1 + t2 – sinh–1(t)) + 4ν sinh–1(t)]
(1 + θ t2)[t

√
1 + t2 + sinh–1(t)]

[
θ – fν(t)

]
, (2.12)

where

fν(t) =
t
√

1 + t2 – sinh–1(t)
(2ν – 1)t2[t

√
1 + t2 – sinh–1(t)] + 4νt2 sinh–1(t)

.
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Let ψ1(t) = t
√

1 + t2 –sinh–1(t) and ψ2(t) = (2ν –1)t2[t
√

1 + t2 –sinh–1(t)]+4νt2 sinh–1(t).
Then

ψ1
(
0+)

= ψ2
(
0+)

= 0, fν(t) =
ψ1(t)
ψ2(t)

, (2.13)

ψ ′
1(t)

ψ ′
2(t)

=
1

(2ν + 1)φ(t) + 2(2ν – 1)t2 + 4ν – 1
, (2.14)

where φ(t) is defined in Lemma 2.2.
Equation (2.14) and Lemma 2.2 imply that ψ ′

1(t)/ψ ′
2(t) is strictly decreasing on (0, 1).

Therefore, the conclusion that fν(t) is strictly decreasing on (0, 1) follows from Lemma 2.1
and (2.13), together with the monotonicity of ψ ′

1(t)/ψ ′
2(t) on the interval (0, 1). Moreover,

making use of L’Hôpital’s rule, we have that

fν
(
0+)

=
1

6ν
, (2.15)

fν
(
1–)

=
√

2 – log(1 +
√

2)
(2ν – 1)

√
2 + (2ν + 1) log(1 +

√
2)

=: θ0. (2.16)

We divide the proof into three cases.
Case 1. θ ≥ 1/(6ν). Then (2.12) and (2.15), together with the monotonicity of fν(t) on the

interval (0, 1), lead to the conclusion that fθ ,ν(t) is strictly increasing on (0, 1). Therefore,
fθ ,ν(t) > 0 for all t ∈ (0, 1) follows from (2.10) and the monotonicity of fθ ,ν(t) on the interval
(0, 1).

Case 2. θ ≤ θ0. Then from (2.12) and (2.16), together with the monotonicity of fν(t)
on the interval (0, 1), we clearly see that fθ ,ν(t) is strictly decreasing on (0, 1). Therefore,
fθ ,ν(t) < 0 for all t ∈ (0, 1) follows from (2.10) and the monotonicity of fθ ,ν(t) on the interval
(0, 1).

Case 3. θ0 < θ < 1/(6ν). Then from (2.12), (2.15), (2.16), and the monotonicity of fν(t)
on the interval (0, 1), we clearly see that there exists t0 ∈ (0, 1) such that fθ ,ν(t) is strictly
decreasing on (0, t0) and strictly increasing on (t0, 1).

We divide the proof into two subcases.
Subcase 3.1. [(

√
2 + log(1 +

√
2))/2]1/ν – 1 < θ < 1/(6ν). Then (2.11) leads to

fθ ,ν
(
1–)

> 0. (2.17)

Therefore, there exists t∗ ∈ (t0, 1) such that fθ ,ν(t) < 0 for t ∈ (0, t∗) and fθ ,ν(t) > 0 for
t ∈ (t∗, 1) follows from (2.10) and (2.17), together with the piecewise monotonicity of fθ ,ν(t)
on the interval (0, 1).

Subcase 3.2. θ0 < θ ≤ [(
√

2 + log(1 +
√

2))/2]1/ν – 1. Then (2.11) leads to

fθ ,ν
(
1–) ≤ 0. (2.18)

Therefore, fθ ,ν(t) < 0 for all t ∈ (0, 1) follows from (2.10) and (2.18), together with the
piecewise monotonicity of fθ ,ν(t) on the interval (0, 1). �

Lemma 2.5 Let ϑ ∈ [0, 1], ν ∈ [1/2,∞), t ∈ (0, 1) and

gϑ ,ν(t) = ν log
(
1 + ϑt2) – log

[
t +

(
1 + t2) arctan(t)

]
+ log(t) + log 2. (2.19)
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Then the following statements are true:
(1) gϑ ,ν(t) > 0 for all t ∈ (0, 1) if and only if ϑ ≥ 1/(3ν);
(2) gϑ ,ν(t) < 0 for all t ∈ (0, 1) if and only if ϑ ≤ [(π + 2)/4]1/ν – 1.

Proof It follows from (2.19) that

gϑ ,ν
(
0+)

= 0, (2.20)

gϑ ,ν
(
1–)

= ν log(1 + ϑ) – log

(
π + 2

4

)
, (2.21)

g ′
ϑ ,ν(t) =

t[((2ν – 1)t2 + 2ν + 1) arctan(t) + (2ν – 1)t]
(1 + ϑt2)[t + (1 + t2) arctan(t)]

[
ϑ – gν(t)

]
, (2.22)

where

gν(t) =
t – (1 – t2) arctan(t)

t2[((2ν – 1)t2 + 2ν + 1) arctan(t) + (2ν – 1)t]
.

Let ω1(t) = [t – (1 – t2) arctan(t)]/t2 and ω2(t) = [(2ν – 1)t2 + 2ν + 1] arctan(t) + (2ν – 1)t.
Then elaborate computations lead to

ω1
(
0+)

= ω2
(
0+)

= 0, gν(t) =
ω1(t)
ω2(t)

, (2.23)

ω′
1(t)

ω′
2(t)

=
1

2[(2ν – 1)t2 + ν]ϕ(t) + (2ν – 1)t4 , (2.24)

where ϕ(t) is defined in Lemma 2.3.
From Lemma 2.3 and (2.24) we know that ω′

1(t)/ω′
2(t) is strictly decreasing on (0, 1).

Therefore, the conclusion that gν(t) is strictly decreasing on (0, 1) follows from Lemma 2.1
and (2.23), together with the monotonicity of ω′

1(t)/ω′
2(t) on the interval (0, 1). Moreover,

making use of L’Hôpital’s rule, we have that

gν

(
0+)

=
1
3v

, (2.25)

gν

(
1–)

=
1

(π + 2)ν – 1
. (2.26)

We divide the proof into three cases.
Case 1. ϑ ≥ 1/(3ν). Then (2.22) and (2.25), together with the monotonicity of gν(t) on the

interval (0, 1), lead to the conclusion that gϑ ,ν(t) is strictly increasing on (0, 1). Therefore,
gϑ ,ν(t) > 0 for all t ∈ (0, 1) follows from (2.20) and the monotonicity of gϑ ,ν(t) on the interval
(0, 1).

Case 2. ϑ ≤ 1/[(π + 2)ν – 1]. Then from (2.22) and (2.26), together with the monotonic-
ity of gν(t) on the interval (0, 1), we clearly see that gϑ ,ν(t) is strictly decreasing on (0, 1).
Therefore, gϑ ,ν(t) < 0 for all t ∈ (0, 1) follows from (2.20) and the monotonicity of gϑ ,ν(t)
on the interval (0, 1).

Case 3. 1/[(π + 2)ν – 1] < ϑ < 1/(6ν). Then it follows from (2.22), (2.25), (2.26), and the
monotonicity of gν(t) on the interval (0, 1) that there exists ρ0 ∈ (0, 1) such that gϑ ,ν(t) is
strictly decreasing on (0,ρ0) and strictly increasing on (ρ0, 1).
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We divide the proof into two subcases.
Subcase 3.1. [(π + 2)/4]1/ν – 1 < ϑ < 1/(6ν). Then (2.21) leads to

gϑ ,ν
(
1–)

> 0. (2.27)

Therefore, there exists ρ∗ ∈ (ρ0, 1) such that gϑ ,ν(t) < 0 for t ∈ (0,ρ∗) and gϑ ,ν(t) > 0 for t ∈
(ρ∗, 1) follows from (2.20) and (2.27), together with the piecewise of gϑ ,ν(t) on the interval
(0, 1).

Subcase 3.2. 1/[(π + 2)ν – 1] < ϑ ≤ [(π + 2)/4]1/ν – 1. Then (2.21) gives

gϑ ,ν
(
1–) ≤ 0. (2.28)

Therefore, gϑ ,ν(t) < 0 for all t ∈ (0, 1) follows from (2.20) and (2.28), together with the
piecewise of gϑ ,ν(t) on the interval (0, 1). �

3 Main results
Theorem 3.1 Let λ1,μ1 ∈ [1/2, 1] and ν ∈ [1/2,∞). Then the double inequality

Wλ1,ν(x, y) < RQA(x, y) < Wμ1,ν(x, y) (3.1)

holds for all x, y > 0 with x �= y if and only if λ1 ≤ 1/2 +
√

[(
√

2 + log(1 +
√

2))/2]1/ν – 1/2
and μ1 ≥ 1/2 +

√
6ν/(12ν).

Proof Since both Wθ ,ν(x, y) and RQA(x, y) are symmetric and homogenous of degree 1,
without loss of generality, we assume that x > y > 0. Let t = (x – y)/(x + y) ∈ (0, 1) and
θ ∈ [1/2, 1]. Then from (1.1), (1.2), and (1.7) we get

Wθ ,ν(x, y))
A(x, y)

=
[
1 + (2θ – 1)2t2]ν , (3.2)

RQA(x, y)
A(x, y)

=
1
2

[√
1 + t2 +

sinh–1(t)
t

]
. (3.3)

It follows from (3.2) and (3.3) that

log

[
Wθ ,ν(x, y)
RQA(x, y)

]
= log

[
Wθ ,ν(x, y)

A(x, y)

]
– log

[RQA(x, y)
A(x, y)

]

= ν log
[
1 + (2θ – 1)2t2] – log

[
t
√

1 + t2 + sinh–1(t)
]

+ log(t) + log 2. (3.4)

Therefore, Theorem 3.1 follows easily from Lemma 2.4 and (3.4). �

Theorem 3.2 Let λ2,μ2 ∈ [1/2, 1] and ν ∈ [1/2,∞). Then the double inequality

Wλ2,ν(x, y) < RAQ(x, y) < Wμ2,ν(x, y) (3.5)

holds for all x, y > 0 with x �= y if and only if λ2 ≤ 1/2 +
√

[(π + 2)/4]1/ν – 1/2 and μ2 ≥
1/2 +

√
3ν/(6ν).
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Proof Since both Wϑ ,ν(x, y) and RAQ(x, y) are symmetric and homogenous of degree 1,
without loss of generality, we assume that x > y > 0. Let t = (x – y)/(x + y) ∈ (0, 1) and
ϑ ∈ [1/2, 1]. Then it follows from (1.1), (1.3), and (1.7) that

Wϑ ,ν(x, y))
A(x, y)

=
[
1 + (2ϑ – 1)2t2]ν , (3.6)

RAQ(x, y)
A(x, y)

=
1
2

[
1 +

(1 + t2) arctan(t)
t

]
. (3.7)

From (3.6) and (3.7) we have

log

[
Wϑ ,ν(x, y))
RAQ(x, y)

]
= log

[
Wϑ ,ν(x, y)

A(x, y)

]
– log

[RAQ(x, y)
A(x, y)

]

= ν log
[
1 + (2ϑ – 1)2t2] – log

[
t +

(
1 + t2) arctan(t)

]

+ log(t) + log 2. (3.8)

Therefore, Theorem 3.2 follows easily from Lemma 2.5 and (3.8). �

Remark 3.3 Let ν = 1/2. Then from (1.8) we clearly see that Theorems 3.1 and 3.2 become
(1.5) and (1.6), respectively.

Let ν = 1. Then from (1.9) and Theorems 3.1 and 3.2 we get Corollary 3.4 immediately.

Corollary 3.4 Let λ1,μ1,λ2,μ2 ∈ [1/2, 1]. Then the double inequalities

C
[
λ1x + (1 – λ1)y,λ1y + (1 – λ1)x

]
< RQA(x, y) < C

[
μ1x + (1 – μ1)y,μ1y + (1 – μ1)x

]
,

C
[
λ2x + (1 – λ2)y,λ2y + (1 – λ2)x

]
< RAQ(x, y) < C

[
μ2x + (1 – μ2)y,μ2y + (1 – μ2)x

]

hold for all x, y > 0 with x �= y if and only if λ1 ≤ 1/2 +
√

[(
√

2 + log(1 +
√

2))/2] – 1/2 =
0.6922 . . . , μ1 ≥ 1/2 +

√
6/12 = 0.7041 . . . , λ2 ≤ 1/2 +

√
[(π + 2)/4] – 1/2 = 0.7671 . . . and

μ2 ≥ 1/2 +
√

3/6 = 0.7886 . . . .

Let u ∈ (0, 1), x = 1 + u, y = 1 – u, λ1 = 1/2 +
√

[(
√

2 + log(1 +
√

2))/2]1/ν – 1/2, μ1 = 1/2 +√
6ν/(12ν), λ2 = 1/2 +

√
[(π + 2)/4]1/ν – 1/2 and μ2 = 1/2 +

√
3ν/(6ν). Then (1.2), (1.3), and

Theorems 3.1 and 3.2 lead to Corollary 3.5.

Corollary 3.5 The double inequalities

2
[(

1 – u2) +
(√

2 + log(1 +
√

2)
2

)1/ν

u2
]ν

–
√

1 + u2

<
sinh–1(u)

u
< 2

(
1 +

u2

6ν

)ν

–
√

1 + u2,

2[(1 – u2) + ( 2+π
4 )1/νu2]ν – 1

1 + u2 <
arctan(u)

u
<

2(1 + 1
3ν

u2)ν – 1
1 + u2

hold for all u ∈ (0, 1) and ν ∈ [1/2,∞).
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4 Results and discussion
In the article, we give the sharp bounds for the Neuman means

RQA(x, y) =
1
2

[
Q(x, y) +

A2(x, y)
SB(Q(x, y), A(x, y))

]

and

RAQ(x, y) =
1
2

[
A(x, y) +

Q2(x, y)
SB(A(x, y), Q(x, y))

]

in terms of the two-parameter contraharmonic and arithmetic mean

Wλ,ν(x, y) = Cν
[
λx + (1 – λ)y,λy + (1 – λ)x

]
A1–ν(x, y),

and find new bounds for the functions sinh(u)/u and arctan(u)/u on the interval (0, 1).

5 Conclusion
In the article, we prove that the double inequalities

Wλ1,ν(x, y) < RQA(x, y) < Wμ1,ν(x, y), Wλ2,ν(x, y) < RAQ(x, y) < Wμ2,ν(x, y)

hold for all x, y > 0 with x �= y if and only if λ1 ≤ 1/2 +
√

[(
√

2 + log(1 +
√

2))/2]1/ν – 1/2,
μ1 ≥ 1/2 +

√
6ν/(12ν), λ2 ≤ 1/2 +

√
[(π + 2)/4]1/ν – 1/2 and μ2 ≥ 1/2 +

√
3ν/(6ν) if

λ1,μ1,λ2,μ2 ∈ [1/2, 1] and ν ∈ [1/2,∞). Our results are a natural generalization of some
previously known results, and our approach may lead to many follow-up studies.

Acknowledgements
The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful
comments and suggestions.

Funding
The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176,
11626101, 11601485) and the Natural Science Foundation of Huzhou City (Grant No. 2018YZ07).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1School of Continuing Education, Huzhou Vocational & Technical College, Huzhou, China. 2College of Mathematics and
Econometrics, Hunan University, Changsha, China. 3School of Mathematics and Statistics, Changsha University of Science
& Technology, Changsha, China. 4Department of Mathematics, Huzhou University, Huzhou, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 April 2019 Accepted: 4 June 2019



Qian et al. Journal of Inequalities and Applications        (2019) 2019:168 Page 11 of 13

References
1. Chu, H.-H., Qian, W.-M., Chu, Y.-M., Song, Y.-Q.: Optimal bounds for a Toader-type mean in terms of one-parameter

quadratic and contraharmonic means. J. Nonlinear Sci. Appl. 9(5), 3424–3432 (2016)
2. Chu, Y.-M., Hou, S.-W.: Sharp bounds for Seiffert mean in terms of contraharmonic mean. Abstr. Appl. Anal. 2012,

Article ID 425175 (2012)
3. Chu, Y.-M., Wang, M.-K., Ma, X.-Y.: Sharp bounds for Toader mean in terms of contraharmonic mean with applications.

J. Math. Inequal. 7(2), 161–166 (2013)
4. Neuman, E., Sándor, J.: On the Schwab–Borchardt mean. Math. Pannon. 14(2), 253–266 (2003)
5. Chu, Y.-M., Wang, M.-K.: Inequalities between arithmetic–geometric, Gini, and Toader means. Abstr. Appl. Anal. 2012,

Article ID 830585 (2012)
6. Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric

means with two parameters. J. Inequal. Appl. 2017, Article ID 274 (2017)
7. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic–geometric mean and complete

elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018)
8. Lin, L., Liu, Z.-Y.: An alternating projected gradient algorithm for nonnegative matrix factorization. Appl. Math.

Comput. 217(24), 9997–10002 (2011)
9. Liu, Z.-Y., Santos, J., Ralha, R.: On computing complex square roots of real matrices. Appl. Math. Lett. 25(10),

1565–1568 (2012)
10. Jiang, Y.-J., Ma, J.-T.: Spectral collocation methods for Volterra-integro differential equations with noncompact kernels.

J. Comput. Appl. Math. 244, 115–124 (2013)
11. Li, X.-F., Tang, G.-J., Tang, B.-Q.: Stress field around a strike–slip fault in orthotropic elastic layers via a hypersingular

integral equation. Comput. Math. Appl. 66(11), 2317–2326 (2013)
12. Qin, G.-X., Huang, C.-X., Xie, Y.-Q., Wen, F.-H.: Asymptotic behavior for third-order quasi-linear differential equations.

Adv. Differ. Equ. 2013, Article ID 305 (2013)
13. Tang, W.-S., Sun, Y.-J.: Construction of Runge–Kutta type methods for solving ordinary differential equations. Appl.

Math. Comput. 234, 179–191 (2014)
14. Huang, C.-X., Yang, Z.-C., Yi, T.-S., Zou, X.-F.: On the basins of attraction for a class of delay differential equations with

non-monotone bistable nonlinearities. J. Differ. Equ. 256(7), 2101–2114 (2014)
15. Huang, C.-X., Guo, S., Liu, L.-Z.: Boundedness on Morrey space for Toeplitz type operator associated to singular

integral operator with variable Calderón–Zygmund kernel. J. Math. Inequal. 8(3), 453–464 (2014)
16. Xie, D.-Q., Li, J.: A new analysis of electrostatic free energy minimization and Poisson–Boltzmann equation for protein

in ionic solvent. Nonlinear Anal., Real World Appl. 21, 185–196 (2015)
17. Dai, Z.-F., Chen, X.-H., Wen, F.-H.: A modified Perry’s conjugate gradient method-based derivative-free method for

solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270, 378–386 (2015)
18. Wang, W.-S.: High order stable Runge–Kutta methods for nonlinear generalized pantograph equations on the

geometric mesh. Appl. Math. Model. 39(1), 270–283 (2015)
19. Tang, Y.-X., Jing, K.: Existence and global exponential stability of almost periodic solution for delayed competitive

neural networks with discontinuous activations. Math. Methods Appl. Sci. 39(11), 2821–2839 (2016)
20. Li, J.-L., Sun, G.-Y., Zhang, R.-M.: The numerical solution of scattering by infinite rough interfaces based on the integral

equation method. Comput. Math. Appl. 71(7), 1491–1502 (2016)
21. Dai, Z.-F.: Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties.

Appl. Math. Comput. 276, 297–300 (2016)
22. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017,

Article ID 210 (2017)
23. Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex

functions with applications. Open Math. 15(1), 1414–1430 (2017)
24. Li, J., Liu, F.-W., Feng, L.-B., Turner, I.W.: A novel finite volume method for the Riesz space distributed-order

advection–diffusion equation. Appl. Math. Model. 46, 536–553 (2017)
25. Liu, Z.-Y., Qin, X.-R., Wu, N.-C., Zhang, Y.-L.: The shifted classical circulant and skew circulant splitting iterative methods

for Toeplitz matrices. Can. Math. Bull. 60(4), 807–815 (2017)
26. Duan, L., Huang, L.-H., Guo, Z.-Y., Fang, X.-W.: Periodic attractor for reaction–diffusion higher-order Hopfield neural

networks with time-varying delays. Comput. Math. Appl. 73(2), 233–245 (2017)
27. Yang, C., Huang, L.-H.: New criteria on exponential synchronization and existence of periodic solutions of complex

BAM networks with delays. J. Nonlinear Sci. Appl. 10(10), 5464–5482 (2017)
28. Duan, L., Huang, C.-X.: Existence and global attractivity of almost periodic solutions for a delayed differential

neoclassical growth model. Math. Methods Appl. Sci. 40(3), 814–822 (2017)
29. Huang, C.-X., Liu, L.-Z.: Boundedness of multilinear singular integral operator with a non-smooth kernel and mean

oscillation. Quaest. Math. 40(3), 295–312 (2017)
30. Xi, H.-Y., Huang, L.-H., Qiao, Y.-C., Li, H.-Y., Huang, C.-X.: Permanence and partial extinction in a delayed three-species

food chain model with stage structure and time-varying coefficients. J. Nonlinear Sci. Appl. 10(12), 6177–6191 (2017)
31. Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler–Mascheroni constant.

J. Inequal. Appl. 2018, Article ID 118 (2018)
32. Adil Khan, M., Chu, Y.-M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard

inequalities and their generalizations. J. Funct. Spaces 2018, Article ID 6928130 (2018)
33. Adil Khan, M., Khurshid, Y., Du, T.-S., Chu, Y.-M.: Generalization of Hermite–Hadamard type inequalities via

conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018)
34. Zhao, T.-H., Wang, M.-K., Zhang, W., Chu, Y.-M.: Quadratic transformation inequalities for Gaussian hypergeometric

function. J. Inequal. Appl. 2018, Article ID 251 (2018)
35. Tang, W.-S., Zhang, J.-J.: Symplecticity-preserving continuous-stage Runge–Kutta–Nyström methods. Appl. Math.

Comput. 233, 204–219 (2018)
36. Liu, Z.-Y., Wu, N.-C., Qin, X.-R., Zhang, Y.-L.: Trigonometric transform splitting methods for real symmetric Toeplitz

systems. Comput. Math. Appl. 75(8), 2782–2794 (2018)



Qian et al. Journal of Inequalities and Applications        (2019) 2019:168 Page 12 of 13

37. Zhu, K.-X., Xie, Y.-Q., Zhou, F.: Pullback attractors for a damped semilinear wave equation with delays. Acta Math. Sin.
34(7), 1131–1150 (2018)

38. Zhang, Y.: On products of consecutive arithmetic progressions II. Acta Math. Hung. 156(1), 240–254 (2018)
39. Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc.

146(11), 4667–4682 (2018)
40. Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional

integrals. J. Inequal. Appl. 2018, Article ID 70 (2018)
41. Huang, C.-X., Qiao, Y.-C., Huang, L.-H., Agarwal, R.P.: Dynamical behaviors of a food-chain model with stage structure

and time delays. Adv. Differ. Equ. 2018, Article ID 186 (2018)
42. Duan, L., Fang, X.-W., Huang, C.-X.: Global exponential convergence in a delayed almost periodic Nicholson’s blowflies

model with discontinuous harvesting. Math. Methods Appl. Sci. 41(5), 1954–1965 (2018)
43. Tan, Y.-X., Huang, C.-X., Sun, B., Wang, T.: Dynamics of a class of delayed reaction–diffusion system with Neumann

boundary condition. J. Math. Anal. Appl. 458(2), 1115–1130 (2018)
44. Qiu, S.-L., Ma, X.-Y., Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with

applications. J. Math. Anal. Appl. 474(2), 1306–1337 (2019)
45. Wang, M.-K., Chu, Y.-M., Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function.

Math. Inequal. Appl. 22(2), 601–617 (2019)
46. Li, J., Ying, J.-Y., Xie, D.-X.: On the analysis and applications of an ion size-modified Poisson–Boltzmann equation.

Nonlinear Anal., Real World Appl. 47, 188–203 (2019)
47. Li, Y., Li, J., Wen, P.H.: Finite and infinite block Petrov–Galerkin method for cracks in functionally graded materials. Appl.

Math. Model. 68, 306–326 (2019)
48. Jiang, Y.-J., Xu, X.-J.: A monotone finite volume methods for time fractional Fokker–Planck equations. Sci. China Math.

62(4), 783–794 (2019)
49. Peng, J., Zhang, Y.: Heron triangles with figurate numbers sides. Acta Math. Hung. 157(2), 478–488 (2019)
50. Wang, J.-F., Chen, X.-Y., Huang, L.-H.: The number and stability of limit cycles for planar piecewise linear systems of

node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019)
51. Wang, J.-F., Huang, C.-X., Huang, L.-H.: Discontinuity-induced limit cycles in a general planar piecewise linear system

of saddle-focus type. Nonlinear Anal. Hybrid Syst. 33, 162–178 (2019)
52. Zhao, T.-H., Zhou, B.-C., Wang, M.-K., Chu, Y.-M.: On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019,

Article ID 42 (2019)
53. Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral inequalities of the Hermite–Hadamard type in terms of

GG- and GA-convexities. J. Funct. Spaces 2019, Article ID 6926107 (2019)
54. Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z.A.: Hermite–Hadamard–Fejér inequalities for conformable fractional

integrals via preinvex functions. J. Funct. Spaces 2019, Article ID 3146210 (2019)
55. Zaheer Ullah, S., Adil Khan, M., Khan, Z.A., Chu, Y.-M.: Integral majorization type inequalities for the function in the

sense of strong convexity. J. Funct. Spaces 2019, Article ID 9487823 (2019)
56. Wang, M.-K., Chu, Y.-M., Qiu, Y.-F., Qiu, S.-L.: An optimal power mean inequality for the complete elliptic integrals. Appl.

Math. Lett. 24(6), 887–890 (2011)
57. Chu, Y.-M., Wang, M.-K., Qiu, Y.-F.: On Alzer and Qiu’s conjecture for complete elliptic integral and inverse hyperbolic

tangent function. Abstr. Appl. Anal. 2011, Article ID 697547 (2011)
58. Wang, M.-K., Chu, Y.-M., Qiu, S.-L., Jiang, Y.-P.: Convexity of the complete elliptic integrals of the first kind with respect

to Hölder means. J. Math. Anal. Appl. 388(2), 1141–1146 (2012)
59. Chu, Y.-M., Qiu, Y.-F., Wang, M.-K.: Hölder mean inequalities for the complete elliptic integrals. Integral Transforms

Spec. Funct. 23(7), 521–527 (2012)
60. Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals. Rocky Mt.

J. Math. 44(5), 1661–1667 (2014)
61. Yang, Z.-H., Qian, W.-M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of

the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018)
62. Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality for the Grötzsch ring function. Math. Inequal. Appl.

14(4), 833–837 (2011)
63. Qiu, S.-L., Qiu, Y.-F., Wang, M.-K., Chu, Y.-M.: Hölder mean inequalities for the generalized Grötzsch ring and

Hersch–Pfluger distortion functions. Math. Inequal. Appl. 15(1), 237–245 (2012)
64. Wang, M.-K., Qiu, S.-L., Chu, Y.-M., Jiang, Y.-P.: Generalized Hersch–Pfluger distortion function and complete elliptic

integrals. J. Math. Anal. Appl. 385(1), 221–229 (2012)
65. Chu, Y.-M., Wang, M.-K., Qiu, S.-L., Jiang, Y.-P.: Bounds for complete elliptic integrals of the second kind with

applications. Comput. Math. Appl. 63(7), 1177–1184 (2012)
66. Chu, Y.-M., Wang, M.-K., Jiang, Y.-P., Qiu, S.-L.: Concavity of the complete elliptic integrals of the second kind with

respect to Hölder means. J. Math. Anal. Appl. 395(2), 637–642 (2012)
67. Wang, M.-K., Chu, Y.-M.: Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl.

402(1), 119–126 (2013)
68. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its application.

J. Inequal. Appl. 2017, Article ID 106 (2017)
69. Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals.

J. Inequal. Appl. 2018, Article ID 239 (2018)
70. Yang, Z.-H., Chu, Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second

kind. Appl. Math. Comput. 348, 552–564 (2019)
71. Chu, Y.-M., Wang, M.-K., Qiu, S.-L., Qiu, Y.-F.: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl.

Anal. 2011, Article ID 605259 (2011)
72. Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader

mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012)
73. Chu, Y.-M., Wang, M.-K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3–4), 223–229 (2012)
74. Wang, J.-L., Qian, W.-M., He, Z.-Y., Chu, Y.-M.: On approximating the Toader mean by other bivariate means. J. Funct.

Spaces 2019, Article ID 6082413 (2019)



Qian et al. Journal of Inequalities and Applications        (2019) 2019:168 Page 13 of 13

75. Neuman, E.: On a new bivariate mean. Aequ. Math. 88(3), 277–289 (2014)
76. Zhang, Y., Chu, Y.-M., Jiang, Y.-L.: Sharp geometric means bounds for Neuman means. Abstr. Appl. Anal. 2014, Article

ID 949815 (2014)
77. Yang, Y.-Y., Qian, W.-M., Chu, Y.-M.: Refinements of bounds for Neuman means with applications. J. Nonlinear Sci. Appl.

9(4), 1529–1540 (2016)
78. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps.

Wiley, New York (1997)


	Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean
	Abstract
	MSC
	Keywords

	Introduction
	Lemmas
	Main results
	Results and discussion
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


