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In this study, we give a kind of sharp Wirtinger inequality
Ifllp < Cpg " |, foralll<pg=oo,

where f is defined on [0, 1] and satisfies

) = FR(0) = - - - = fRI(0) = F™+1)(1) = - .. = f™)(1) = 0 with
O0<ki<ky<---<ks<r-Tand0<mgq <Mgy<---<m, <r-1.First, based on the
Birkhoff interpolation, we refer the computation of 4 to the norm of an
integral-type operator. Second, we refer the values of C; 11 and G, s 00 t0 explicit
integral expressions and the value of C;,, to the computation of the maximal
eigenvalue of a Hilbert-Schmidt operator. Finally, we give three examples to show
our method.
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1 Introduction

Let N and R be the sets of positive integers and real numbers, respectively. For 1 < p < oo,
let L,[a, b] be the space of pth-power Lebesgue-integrable functions f : [4,b] — R with
the corresponding L,-norms || - ||,. Denote by Wy, reN, the class of all continuous real-
valued functions f defined on the interval [a, b] such that £~V (with f© := f) is absolutely
continuous and [|f"|| p < 00.

The relationships among the norms of a function and its derivatives play an impor-
tant role in the study of harmonic analysis and function approximation theory. There are
many well-known inequalities in this area, for example, the Landau—Kolmogorov, Gorny,
Wirtinger, Schmidt, Sobolev, Bernstein, and Markov inequalities. Wirtinger-type inequal-
ities is a kind of the most important inequalities in this aspect. The first result appeared
in [1, p. 105]: for every locally absolutely continuous and 27 -periodic function f with the
first-order derivative f’ € L,[0, 2] and fozn f(x)dx =0, we have

Fll2 < ],
where the equality is valid if and only if f € span{cos, sin}.

Since then, many results on Wirtinger-type inequalities appeared. For example, in the
case r = 1, Schmidt [2] proved the following two results.
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Let 0 < p <00 and 1 < g < oo. Then for an arbitrary function f € W/ql [a,b] satisfying
f(a) =0 (or equivalently f(b) = 0), we have the sharp inequality

If1l, < (U/p + 1/q) VPV (1/p)P(1/q)V" T (1 + 1/p + 1/q)
r—= r1+1/p)r1+1/q)
x (b_a)lﬂ/p—l/q”f/ ”q’ (1'1)

where ¢’ is the conjugate exponent of g, and 1/c0 is to be interpreted (in the usual way)
as 0. At the same time, for an arbitrary function f € qu [a, b] satisfying f(a) = f(b) = 0, we
have the sharp inequality

Ul < L WP+ Vg Q) Qg ) DA+ L + Lg)
r=2 F1+1/p)L1+1/q)

x (b—a)" v f] (1.2)

Further generalizations and applications of (1.1) and (1.2) can be found in [3-12].

In the case r > 1 the most important result is that if f € W/[a, b] with zero a of multi-
plicity k and zero b of multiplicity r — k, 0 < k <r, and 1 < p,q < oo, then we have the
inequality

Iflly < COr. ko )b = a) P2 f] . (1.3)

But as far as we know, the best constants C(r, k, p, ) are known only for g = oo and in some
particular cases for r = 2. At the same time, some papers closely related to the Wirtinger
inequality, such as Shadrin [13] and Waldron [14], considered the problem of estimating
the best constant C(r, j, p,q) in the inequality

”(f —H@f)(i) ||p <C(r,jp,q)(b - u)r—j+1/p—1/q Hf(r) ”q forallf e W;[a, bl, (1.4)

where Hgf is the Hermite interpolation to f at some multiset of r points in [a, 5] and 0 <
j < r. However, the best constant was determined also only for p = g = co. Xu and Zhang
[15] considered the corresponding estimate of (1.4) for the cubic Hermite interpolation
(for which the number of points in the multiset is greater than r), but the best constant
was determined only in the cases p = g = co and p = g = 1. Liu, Wu, and Xu [16] obtained
the constant in (1.3) for the particular case of k = r and p = g = 2. Recently, Xu, Liu, and
Xiong [17] obtained the best constant in (1.3) with zeros of multiplicity 7 at both 2 and b
form+1<r<2m+2andp=q=2.

In this paper, we give an extension of (1.3). Let 1 <s <r -1 be an integer, 0 < k; < ky <
co<ky<r—1,and 0 < mgy < Mg < --- <m, <r—1.Let D, denote the number of k; and
m; for which k; = g or m; = g. We assume that

m
Y Dyzm+1 forallm=0,1,...,r-1. (1.5)
g=0

For f € W;[a,b] with f&) (@) =0 for 1 <i<s andf(mi)(b) =0fors+1<j<r, wewil
prove that (1.3) also holds and give the corresponding best constant.
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The paper is organized as follows. Section 2 contains our main theorem and its proof.
In Sect. 3, we give three examples to show our method.

2 Basic concepts and our main theorem

First, we introduce some known facts about Birkhoff interpolation related to our problems
(see [18]). Let xp, %1, . ..,%, be points of [a, b], not necessarily distinct. Also, let ko, k1, ..., ky
be integers such that 0 < k; <n—1,i=0,1,...,n. The n + 1 pairs of numbers (x;, k;)7_,
are supposed to be distinct. Furthermore, let D, denote the number of pairs of the system
(%1, k)L for which k; = g. We assume that

m
ZDg2m+2 forall0<m<n-1. (2.1)
g=0

Under assumption (2.1), for every f € Wy [a, b], from [18] we know that there exists a

unique polynomial (Birkhoff interpolation) L,(f, t) of degree < u that satisfies
L9 (f,x;) = f* ) (x;) forall0<i<n. (2.2)

Now we introduce a remainder theorem about the Birkhoff interpolation (see [18]). De-
notel; =n—k;—1for0<i<wn,andlet

£ xéo—l xéo—nl xéo—i xéo—;ﬂl
Io! -t 7 (lo—i+1)! -t 7 (lo-n+1)!
ﬁ xlll_l xlll_Hl xlll—l xlll—ml
h! (L -1)! (lh—i+1)! (L i) (li—n+1)!
| L li1-1 L 1-i+l L i li_1-n+1
A; = (1) | x4 % = % = , (2.3)
lia! (-1 (i =i+1)! (=) (li—1—n+1)!
liv1 liy1-1 li1—-i+l lig1—i I 1-n+1
X1 il . il il . 5L++11
liy1! (=1t (i1 =i+D)! (i1 =0)! (lip1—n+1)!
& xily,—l o xi;q—i-d xiln—i o xlny,—m-l
T U-1)! (p—it1)! =) (Up-n+1)!
where % =0 for s < 0. Besides, we define the discontinuous function y;(s) as follows:
1, t<s,
xe(s) =
0, t>s.
Then from (8) in [18] we obtain
n b 2
ki (x;—1t)
> A,»(f< D(x) - / SO - xeloi) - == ) =0. (2.4)
i=0 @ v

In particular, iff(ki)(xi) =0forl1<i<mnand Ay #0, x9 = x, ko = 0, then (2.4) turns into

b
flx) = / F®)B(x, t) dt, (2.5)
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where

t)l
x) t) = Z Xt(xz A .
i- 0

Combining (2.3) with the last equality, we obtain

(x_t)n—l xn—l Pt

xe(x) - (=11 (n=1)! =) 1
wenh A o !

) - S gy @-D! G-+ D)

B(x’ t) = Aal ' 'l~. .Z"—l li-n+1 (2'6)

(xl'ft)ll‘ xil xil il

xe(x:) - T o (A —ni1)!
(a2 ! !

Xelow) - 20— Ty Un=0)! Un—rn+ D)

In particular, for r pairs of numbers (0, k1), (0, k2), . .., (0, ks), (1, m5,1), . ...
tain the problem presented in the introduction (here a = 0 and b = 1). For simplicity, we
;ks} U {ms+1: LR} mr}'

Now we introduce some information about the norms of the integral operators. Let

) (1’ mr)y we Ob'
represent these r pairs of numbers as {k, ...

K(x,t) be a piecewise continuous function on [0, 1] x [0, 1]. We define

1
S(f, %) = /0 K(x, O)f (¢) dt. (2.7)

It is known that S is a linear continuous operator from L,[0,1] to L,[0,1] forall 1 < p,q <
o0o. Let ||S|lp,4 be the operator norm of S from L,[0, 1] to L, [0, 1]. It is known that

1S 1] !
isihi= sp T sup [ a 2.8
fenonlf7o It o<e<1Jo
15/ 1l o
ISllooro = Fle _ / IK(x, )| d. 29)
feLooloalf70 [f lloo 0<x<1

Besides, let S* be the dual operator of S, and let

1
W(f,x) := S*S(f, x) :/ K*(x, t)f (¢) dt, (2.10)
0
where
1
K*(x,t) = / K(t,x)K(z,t)d.
0

Then W is a Hilbert—Schmidt operator. Let {(};,¢;)};en be the sequence of eigenpairs of

W with nonincreasing eigenvalues, thatis, A; > A, > --- and W(e;) = A¢;. Then (see [16])

1S£1]
[Sll22 = sup fzzw/kl. 211)
retaiotszo Ifll2

In this paper, we obtain the following results.
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Theorem 2.1 Let {ki,..., Kk} U {mg1,...,m,} satisfy (1.5). Then for an arbitrary f €
W,;[O, 1] with f%)(0) = 0 for 1 <i < s and f"(1) = 0 for s + 1 <j < r, we have the sharp
inequality

Ifll, < Clp, )| " Hq forall1 < p,q < oo, (2.12)
where C(p, q) is the norm of the operator (with B(x, t) given by (2.6))
1
T(g,x) :/ B(x,t)g(¢)dt forx €[0,1] (2.13)
0

from L4[0,1] to L,[0,1], that is, C(p,q) = | T ||pq depends on {ky,...,k} U {mg,1,...,m,}.
Furthermore, the following relations hold:

C(1,1) = sup / ’B(x,t)’dx, (2.14)
0<t<1
C(o = sup / ’Bx, }dt (2.15)
0<x<1
C(2,2) = /A4, (2.16)

where A1 is the maximal eigenvalue of the operator
1
Wi(g,x) = / K*(x,t)g(t)dt forallx € [0,1] (2.17)
0
with kernel
1
K*(x,t) = / B(z,x)B(t,t)dr. (2.18)
0

Proof If f&)(0)=0for1<i<s andf(’”i)(l) =0 for s+ 1 <j <r, then it follows from (2.5)
with #z = r that

1

flx) = / fO0Bx, t)dt = T(F, ). (2.19)

0

From (2.19) and (2.13) we conclude that

W1, = 1777, < Cw.  |F7] - (2.20)
On the other hand, for any g € L,[0, 1], let

Jor= 5 [0

SV gra

and let

f@) =f(x) - L.(f, %),
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where L, is the Birkhoff interpolation based on {k,..., k;} U {ms,1, ..., m,}. It is known that
L,(f,x) is an algebraic polynomial of degree at most # = r — 1. Then we easily check that
[ =gand f&)(0)=0for1<i<s andf(”’/)(l) =0fors+1<j<r.Hence (2.19) becomes

f@) =T(f",x) = T(g,%). (2.21)
From (2.21) we obtain

T
sup /1l > sup 178l =C(p,q). (2.22)

., —
W01/ 0)=F ") ()01 <i<sst1<j<r If"Nlg ~ gerglongo lIgllg

From (2.20) and (2.22) we obtain (2.12). Besides, from (2.13) and (2.8), (2.9), (2.11) we
obtain (2.14)—(2.16), respectively. This completes the proof of Theorem 2.1. O

For f € W[;[a, b] with f%)(a) =0 for1<i<s andf(mi)(b) =0fors+1<j<r,letting
g(t) =f(a + (b - a)t), we obtain the following result.

Corollary 2.2 Let {ky,...,k} U {ms1,...,m,} satisfy (1.5). Then for an arbitrary f €
Wq’[a, b) with f&)(a) =0 for 1 <i<s andf(m/')(b) =0 for s+ 1 <j <r, we have the sharp
inequality

Iflly < C.@)(b - ay 7"V fV - forall1<p,q =< oco. (2.23)

Remark 2.3 Itis obvious thatifk; =i—1for1 <i<sandm;=j—s—1fors+1<j<r, then
Corollary 2.2 is the case (1.3) for k = s. In this case, we give the best constant C(r, k, p,q)
in (1.3) by the corresponding C(p, g).

3 Some examples
In this section, we give three examples showing how to compute the values of C(1,1),
C(00,00), and C(2,2). It is obvious that these three examples are not in the case of (1.3).

Example 1 For {0} U {1}, we have C(1,1) = %, C(00,00) = =, and C(2,2) = %‘

1
2

Proof Since x1 =0,x, =1, k1 =0, and k; = 1, it follows from (2.6) that (2.13) holds with
-1 | X (%) (x — £)

0 1
B(x,t) =
(x,£) 1 o

x 1
0 1|=-min{x,¢t}. (3.1)
1 0

We first consider C(1,1). From (2.14) and (3.1) by a direct computation we obtain

1 £ 1
C(1,1) = ||T|l11 = sup / |B(x,t)|dx = sup <_§ +t) ==, (3.2)
0

0=<t<1 0<t<1 2

Now we consider C(00,00). From (2.15) and (3.1) it follows that

1 x2 1
C(00,00) = | T[loo00 = SUP / |B(x,t)|dt = sup <_E +x) =5 (3.3)
0

0<x<1 0<x<1
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Finally, we consider C(2,2). Since min{x, ¢} is a reproducing kernel, it follows from the
computation of [19, p. 55] that

4
C22) =Tl = —
T

This completes the proof of Example 1. O

Example 2 For {0,2} U {1}, we have C(1,1) = §, C(00,00) = 3, and C(2,2) = %.

1
3

Proof Since x; =x3 =0,x3 =1, k; =0, ky = 2, and k3 = 1, it follows from (2.6) that (2.13)

holds with
)2 2
@ GSE 5 w1
001 0 0 0 1] |&2_x1-0), t=<«
B(x,t)=|1 0 0 0 o ol 2 o (3.4)
11 0 —x(1-1), x <L
1-¢ 1 10

We first consider C(1,1). From (2.14) and (3.4) by a direct computation it follows that

c,1) / IB(x, )| d c_fL ! (3.5)
= Su X, X = SU —— =+ - ) ==. .
0<tl<)1 ()<t<p1 6 2 3 3

Now we consider C(0o, 00). From (2.15) and (3.4) by a direct computation it follows that

X x 1
C(00,00) = sup ’B x, t }dt =sup |-—+=)=-=. (3.6)
0<x<1 0<x<1 6 2 3

Finally, we consider C(2,2). We will use (2.16). From (3.4) and (2.18) by a direct compu-
tation we obtain

1
K*(x, t) :/ B(z,t) - B(t,x)dt
0

2 w2 2 X K
=y
15 6 6 24 24 4
2262 -max{x, ¢t} wt-min{x3, 3} max{x®, ¢’}
12 24 120

(3.7)

Let g be an eigenvector corresponding to a positive eigenvalue X of the operator W given
by (2.17), that is, Ag(x) = W(g, ). Then from (3.7) and the relations max{a, b} = M
and min{a, b} = W by a direct computation it follows that

x K22 KBt o«
rg(x) = | A A t)dt
g) /0 (e )( 40 60 T 60 240 240)g()

1 X2t %3t x> At t*
+ ] t=x)-——+—+——————|gO)dt
" 40 60 60 240 240

s P e [, J R
[ sggeodies | (‘@*ﬁ)g‘” =2 | gy
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1 t3 t2 1 1 t4
2 ——t——— |gt)dt - /— t)dt
+xf0(24+4 6)g() o[ 450
e 2 2
-+ — —— + — |g(t) dt. 3.8
+/0<240+24 6+15>g() 38
Taking x = 1 in (3.8), we obtain

g(1)=0. (3.9)

Differentiating both sides of (3.8), we obtain

, Tradt+ad K22 xtat B X atr Kt
A (x) = - tx-0—=-—=-—+—] |g®)dt
0 60 40 240 60 60 20 20

fl Bt+xt® K22 x4+t
+ — —_— e ——
x 60 40 240

2 2 3 3
+(L‘—x)(—Ji + i + L x—)i|g(t)dt

20 20 60 60

4 bl 3 ! t 1 2 e
_x/o 18Dt +x /0 (_ﬁ+g)g(t)dt_x/0 g8t

1 t3 t2 1 1t4
-——+t - == t)dt — —g(t)dt. 3.10
vx [ (-0 5 -3 )e0ae- [ e .10

Let x = 0 in (3.10). Then we obtain
g'0)=0. (3.11)

Differentiating both sides of (3.10), we obtain

Al )_/" xt? +x2t . £ KB c—t) £ N xt x> () dt
EW=1 110" 10 30 30)"" 2010 20/
1 2 2 8 3 2 VR
+/ (2 X +(t—x) AN g(e)dt
; 10 10 30 30 20 10 20
| Lre 1
-3 | =) dt 2[ — +— |g(t)dt
x/olzg() +x i 4+2g()

1tz 1 ts t2 1
—x/(; Zg(t)dt+/0 (_E to - §>g(t)dt. (3.12)

Let x = 1 in (3.12). Then we obtain

£'(1)=0. (3.13)

Page 8 of 15
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Differentiating both sides of (3.12), we obtain
S/ x 3t 3xt  3x?
e :/ Lo Yt (22 222 ey ae
€ @= | 1\10"10)* 2+ ("20 " 70 20 |2®
r/ e 3t 3xt 3«2
—_—— t-x - -—— + — = — t)dt
+/x [(10 10)( #) ( 20 T 10 20 )}g()
1 1 1 t 1 t2
e [ Agwares [ (-— : l)g(t)dt— | Getra
0 4 0 2 0 4

Let x = 0 in (3.14). Then we obtain
g0 =o.

Differentiating both sides of (3.14), we obtain

@y [ ¥ -t x 1(_5 )
Ag (x)—/0 5 g(t)dt+/x 5 g(t)dt 2[0 g(t)dt+/0 2+1 g(t)de.

Let x = 1 in (3.16). Then we obtain
gY@ =o.

Differentiating both sides of (3.16), we obtain

xq 1 1 1 1
1g2(x) = - f —g(t)dt + / —g(t)dt - / —g(¢t)dt.
0o 2 v 2 0 2
Let x = 0 in (3.18). Then we obtain
%0 =o.
Differentiating both sides of (3.18), we obtain
2g® (x) = —g(x).

Let u = "%/X Then the general solution of equation (3.20) is

g(x) = Cy cos pux + Cy sin ux

/3 x X 3 X . M
+em C300SM— +C4s1n'u— +e P C5cos'u— +Ce sin %),
2 2 2 2
From (3.21) it follows that

g'(x) = n(Cy cos pux — Cj sin ux)

B V3G G nx V3Cy G\ . px
+pe? +— Jcos == + - = )sin =
2 2 2 2 2 2

By V3Cs  Cs wx V3Cs G5\ . px
+pe 2t 2t 2 )cos— + | ——= - 2} sin==},
2 2 2 2 2 2

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

Page9of 15
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&' (%) = —*(Cy cos pux + Cy sin jux)

M((x/—CAI C3> ux (C4 \/§C3> . WC>
+M ez cos — + o5 T Ty sin —

2 2 2 2 2
V3 C 3C C 3C
+ ,u,ze‘T“x = V3G cos (=, V3Gs sin =¥ ), (3.23)
2 2 2 2 2 2

O (x) = —u3(C, cos ux — Cy sin px)

+ //,33\/;’““ Cycos K _ Cssin id

2 2
3 x x

+ Mse_Ts“x <C6 cos % — Cssin %), (3.24)

@) () — ;4 ;
g7 (x) = n*(Cy cos px + Cy sin pux)
3 \/_C4 G X Ci 3G\ . px
+utes coS— + | -—— - —— ) sin—
2 2 2 2 2 2

V3 C 3C, C 3C
+u"‘e'23wf<<__5 _ V3 6) cos ¥ 4 <——6 + \/; 5) sin %), (3.25)

2 2 2 2

®)(x) = u>(Cy cos px — Cy sin jux)

. M((C4 ﬁ@) X (\/§C4 Cs)./MC)
+uler cos— + [ ——— - =) sin—

2 2 2 2 2 2
Cs C 3Cs G
+ MSe’T“" f YO L 2% ) cos id + V3G — 2 )sin id . (3.26)
2 2 2 2 2

Substituting (3.9), (3.11), (3.13), (3.15), (3.17), and (3.19) into (3.21)—(3.26), respectively,
by a simplification we obtain the following linear equations in the six unknown numbers

C,1<j=<é6:
Cicosp+ Cysinpe
=—el/2_§" Cg,c:osﬁ +C4sinﬁ —e’l/fg" C5c:0sﬁ +Cs sinﬁ , (3.27)
2 2 2 2
2Cy +v/3C3 + C4 —V/3Cs + C =0, (3.28)

Crcosp+ Cysinp

3, V3Cy G iz Cs 3G\ . u
=e2 = cos= 4 =— - —=)sin—=
2 2 2 2 2 2

C 3C, C 3C,
+e 2“(( 25 J; 6)c0s%+<76+ \/—2 5>sin%), (3.29)

Cy—Cy—Cg=0. (3.30)

Cicospu + Cysin

B, V3C, G u Cs 3G\ . 1
=—e2 T )eos =4 [ —— - sin =
2 2 2 2 2 2

C 3C, 3C; G
_e‘éﬂ _—5——f )cos & + —f P2 )sink ’ (3.31)
2 2 2 2 2 2
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—2Cy +/3C5 = C4 —+/3C5 — C4 = 0. (3.32)

Subtracting two sides of equation (3.31) from two sides of equation (3.29), by a simple
simplification we obtain

V3, . V3 NE V3
Cze2 *sin % — Cye2 *cos K_ Cse” 2 #sin % + Cge™ 2 * cos g 0. (3.33)

Subtracting two sides of equation (3.27) from two sides of equation (3.29) and adding ¢T§
times two sides of equation (3.33), we obtain

NE) V3
CgeT3” cos s + C;;eé“ sin g + Cse_é" cos s + C6e’73“ sin Ko 0. (3.34)
2 2 2 2
Equations (3.27) and (3.34) imply that
Cicosp + Cysinp = 0. (3.35)
Thus by (3.28), (3.30), (3.32), (3.33), (3.34), and (3.35), if A is a positive eigenvalue of the

1
operator W and g is a nonzero eigenfunction corresponding to A, then = 176 is a positive
zero of the function F defined by

0 2 V3 1 -3 1
0 1 0 -1 0 -1
0o -2 V3 -1 -3 -1
)= 0 0 eétsiné —e®Ptcos t —e‘étsiné e‘étcosé
0 0 e‘{étcos% e%‘gtsing e"{é‘cos% e’l/fgtsiné
cost sint 0 0 0 0
= —6+/3cos t((e\/Tgt - e’\/Tg‘)2 sin? % + (e\/Tgt + e’ét)Zcos2 g) (3.36)

ﬁz)z

V3 V3 . NE)
Dueto (e —e 2% sin® £ + (2" +e 2 )?cos? £ >0, by (3.36) we see that the set of all

positive eigenvalues of W is a subset of the set

() )

which is the set of all positive roots of the equation cos¢ = 0. Furthermore, it is easy to
verify that gi(x) = cos(k — %)nx is an eigenvector corresponding to the eigenvalue ((k —
%)n)’6 for all k € N. Therefore the set of all positive eigenvalues of W is given by (3.37),
and hence the maximal eigenvalue of W is A1 = (%)‘6. Combining this fact with (2.16), we
obtain that C(2,2) = = O

a3

Example 3 For {0,1} U {1}, we have C(1,1) = %, C(o0, ) = ﬁ, and

C(2,2) = ui%, (3.38)
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where . is the minimal positive root of the equation
(3sint — +/3 cos t)e’ﬁ‘ +2+/3c0s 2t — (3sint + v/3 cos t)e‘/gt =0.

Proof Since x; = x5 =0,x3 = 1, k; =0, and k; = k3 = 1, it follows from (2.6) that (2.13) holds

with
@ SE 5 1
0 01 2 2 G-0?  22(1-)
O O O 1 21 - 2 ’ t = x’
B(x,t)=10 1 0 = xi(l—t) (3.39)
1 1 0 0 O 1 O — 3 , x<t.
1-¢ 1 0

We first consider C(1,1). From (2.14) and (3.39) by a direct computation it follows that

! £ 2 t\ 3
C(1,1) = su / B(x,t)|dx = su (— - —+ —) =—. (3.40)
0321 0 | ’ 05;21 6 2 3 27
Now we consider C(oc0,00). From (2.15) and (3.39) by a direct computation it follows
that
1 2 .3
Pl 1
C(00,00) = su / B(x,t)|dt = su <— - —) =—. (3.41)
Osxls)l 0 | | 05x£1 4 6 12

Finally, we consider C(2,2). We will use (2.16). From (3.39) and (2.18) by a direct com-
putation we obtain

1
K*(x,t) =/ B(z,t) - B(t,x)dt
0

22t max{x, ¢t}  wtmax{x® 3} min{x®, >}
- + + .
12 24 120

(3.42)

Let g be an eigenvector corresponding to a positive eigenvalue X of the operator W given
by (2.17). Then from (3.42) and the relations max{a, b} = w and min{a, b} = M
by a direct computation it follows that

1 x22 K8t xt® xP ¢
+/(t—x) ——t—t———— —— |g(¢)dt
x 40 60 60 240 240
1 t 1 1 t 1 t2
- ——— )g(®)dt 4/—tdt—3/—tdt
* /0 <120 240)g() B A geddi—x o 228
Ly 8 2 ¢ Lo ¢ 22 2
+x2/ —_— === g(t)dt+x/ ——t———+ — |g(t)dt
o\ 24" 4 &6 o, \120 48 6 15

1 45
+ /0 ——g(t)dt. (3.43)
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Taking x = 0,1 in (3.43), we obtain
g(0)=g(1)=0. (3.44)

Differentiating twice both sides of (3.43), we obtain
TOoar X B X8 £ M x?
rg'(x) = ——t—t = — N-——=+—=-=—= t)dt
g /0 [( 10 710 30 30)+(x )( 20 " 10 20>]g()
1 t2 2t t3 3 t2 t 2
+/ (R PR LY +(t—x) L ELE g(t)de
x 10 10 30 30 20 10 20
L/ 1 1y 12
3 ——+— |g(t)dt 2/—tdt—/—tdt
+xf0<6+12)g() e [ ewar-a [ Lot

Ly B3 2 ¢

Let x = 1 in (3.45). Then we obtain
(1) =0. (3.46)

Differentiating both sides of (3.45), we obtain
T/t 3¢2 3xt 3x?
®)(x) = — - ) x- o) gy de
() = / [(10 >( 0+ < 20 10 20 )]g()
Ir7 ¢ 3£2 3xt 3x2
— - t)dt
+/x [(10 10>( %)= ( 20 " 10 20 )}g()
5 1 t 1 1 t 1 t2
——+ = )gt)dt —g()dt— | —g(t)dt. 3.47
e [+ 3 )e0dees [ ear- [ e 647
Let x = 0 in (3.47). Then we obtain

®(0) = 0. (3.48)

Differentiating both sides of (3.47), we obtain

= Ly—t b1-2¢ Ly
2g® (x) = / P a(tydr + / Y lawdtvx | —La)de + / Lotydt. (3.49)
o 2 x 2 o 2 0o 2

Let x = 0,1 in (3.49). Then we obtain

@) =g® (1) =0. (3.50)
Differentiating twice both sides of (3.49), we obtain (3.21). By (3.21) we obtain (3.22)—
(3.26). Substituting (3.44), (3.46), (3.48), and (3.50) into (3.21), (3.23), (3.24), and (3.25),
respectively, by a simple simplification we obtain the following linear equations in the six

unknown numbers C;, 1 <j < 6:

C=-G-0Cs, (3.51)
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Cicospu + Cysin
V3 . V3 .
= —673“ (Cg cos % + Cy sin %) - e‘Ts“ (Cg cos % + Cg sin %), (3.52)

Crcosp + Cysinp

B, V3Ci G " Ci 3G\ . nu
=e?2 +—]coOS—+ | — — Sin —
2 2 2 2 2 2

C 3C C 3C
+e 2#(( 25 \/_2 6)COS%+<76+%)SHI%)’ (353)

C2 = C4 + Cﬁ, (3.54-)

C; V3G, Cs /3G
cl——3+f4——5—f6:0, (3.55)
2 2 2 2

Cicospu + Cysin

NEW V3Cy C3 w C4 \/_Cg .M
=—e2 —_— cos—+ | —— sin —
2 2 2 2 2

_e—?u<<_§_fc6> % fcs Cﬁ) inﬁ). (3.56)

2 2

Substituting (3.51) into (3.55), by a simple simplification we obtain
3C3 —+/3C4 +3Cs +v/3C5 = 0. (3.57)

Subtracting both sides of equation (3.56) from both sides of equation (3.53), by a simple
simplification we obtain

NE V3 NED V3
CgeTs" sin % —Cye o cos % — Cse” 7 sin % + Cge™ ol cos % =0. (3.58)

Subtracting both sides of equation (3.52) from both sides of equation (3.53) and adding
@ times both sides of equation (3.58), we obtain

V3 V3, . V3 NENS
CgeTSM cos s + C4eTS"“ sin d + Cse_TSM cos s + C6e‘73“ sin K 0. (3.59)
2 2 2 2
Equations (3.51), (3.52), and (3.59) imply
Czcosp — Cysinpu + Cscos i — Cgsinp = 0. (3.60)

Thus by (3.51), (3.54), (3.57), (3.60), (3.58), and (3.59), if A is a positive eigenvalue of the

operator W and if g is a nonzero eigenfunction corresponding to A, then p = A7/ is a

positive zero of the function F; defined by

3 -3 3 V3

cost —sint cost —sint
Fl(t) = ﬁt .t ﬁt t —ﬁt .t —ﬁt t
ez’sing —eZ’cosy —e 2'sing e 2'cosy

A3 /3, . _3 B,
ez'coss ez'sint e T'cost e 2'sinf

= (3sint — v/3cos t)e’“/gt +2+/3¢082t — (3sinf + /3 cos t)e*/gt.

Page 14 of 15
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On the other hand, if F;() = 0, then we can find Cs, Cs4, Cs, Cg such that (3.57)—(3.60)
hold, and let C; = —C5 — Cs, C, = C4 + Cs. Then, instead of C;, Cy, Cs, Ca, Cs, Cg in (3.21),
take C1, Cy, C3, C4, Cs, Ce such that the corresponding g(x) satisfies (3.44), (3.46), (3.48),
and (3.50). It is easy to verify that this g(x) is an eigenfunction of W corresponding to the
eigenvalue A = 14 =°. Therefore the set of all positive eigenvalues of W is

{)\.k:M;6:keN},

where {1} is the sequence of all positive zeros of the function F;, and ;1 < uy <--- . This
shows that A; = 7%, and hence (2.16) implies (3.38). a
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