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Abstract
In this study, we give a kind of sharp Wirtinger inequality

‖f‖p ≤ Cr,p,q
∥
∥f (r)

∥
∥
q for all 1 ≤ p,q ≤ ∞,

where f is defined on [0, 1] and satisfies
f (k1)(0) = f (k2)(0) = · · · = f (ks)(0) = f (ms+1)(1) = · · · = f (mr )(1) = 0 with
0 ≤ k1 < k2 < · · · < ks ≤ r – 1 and 0≤ ms+1 <ms+2 < · · · <mr ≤ r – 1. First, based on the
Birkhoff interpolation, we refer the computation of Cr,p,q to the norm of an
integral-type operator. Second, we refer the values of Cr,1,1 and Cr,∞,∞ to explicit
integral expressions and the value of Cr,2,2 to the computation of the maximal
eigenvalue of a Hilbert–Schmidt operator. Finally, we give three examples to show
our method.
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1 Introduction
Let N and R be the sets of positive integers and real numbers, respectively. For 1 ≤ p ≤ ∞,
let Lp[a, b] be the space of pth-power Lebesgue-integrable functions f : [a, b] → R with
the corresponding Lp-norms ‖ · ‖p. Denote by W r

p , r ∈ N, the class of all continuous real-
valued functions f defined on the interval [a, b] such that f (r–1) (with f (0) := f ) is absolutely
continuous and ‖f (r)‖p < ∞.

The relationships among the norms of a function and its derivatives play an impor-
tant role in the study of harmonic analysis and function approximation theory. There are
many well-known inequalities in this area, for example, the Landau–Kolmogorov, Gorny,
Wirtinger, Schmidt, Sobolev, Bernstein, and Markov inequalities. Wirtinger-type inequal-
ities is a kind of the most important inequalities in this aspect. The first result appeared
in [1, p. 105]: for every locally absolutely continuous and 2π-periodic function f with the
first-order derivative f ′ ∈ L2[0, 2π ] and

∫ 2π

0 f (x) dx = 0, we have

‖f ‖2 ≤ ∥
∥f ′∥∥

2,

where the equality is valid if and only if f ∈ span{cos, sin}.
Since then, many results on Wirtinger-type inequalities appeared. For example, in the

case r = 1, Schmidt [2] proved the following two results.
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Let 0 < p ≤ ∞ and 1 ≤ q ≤ ∞. Then for an arbitrary function f ∈ W 1
q [a,b] satisfying

f (a) = 0 (or equivalently f (b) = 0), we have the sharp inequality

‖f ‖p ≤ (1/p + 1/q′)–1/p–1/q′ (1/p)1/p(1/q′)1/q′
Γ (1 + 1/p + 1/q′)

Γ (1 + 1/p)Γ (1 + 1/q′)

× (b – a)1+1/p–1/q∥∥f ′∥∥
q, (1.1)

where q′ is the conjugate exponent of q, and 1/∞ is to be interpreted (in the usual way)
as 0. At the same time, for an arbitrary function f ∈ W 1

q [a, b] satisfying f (a) = f (b) = 0, we
have the sharp inequality

‖f ‖p ≤ 1
2

(1/p + 1/q′)–1/p–1/q′ (1/p)1/p(1/q′)1/q′
Γ (1 + 1/p + 1/q′)

Γ (1 + 1/p)Γ (1 + 1/q′)

× (b – a)1+1/p–1/q∥∥f ′∥∥
q. (1.2)

Further generalizations and applications of (1.1) and (1.2) can be found in [3–12].
In the case r > 1 the most important result is that if f ∈ W r

q [a, b] with zero a of multi-
plicity k and zero b of multiplicity r – k, 0 ≤ k ≤ r, and 1 ≤ p, q ≤ ∞, then we have the
inequality

‖f ‖p ≤ C(r, k, p, q)(b – a)r+1/p–1/q∥∥f (r)∥∥
q. (1.3)

But as far as we know, the best constants C(r, k, p, q) are known only for q = ∞ and in some
particular cases for r = 2. At the same time, some papers closely related to the Wirtinger
inequality, such as Shadrin [13] and Waldron [14], considered the problem of estimating
the best constant C(r, j, p, q) in the inequality

∥
∥(f – HΘ f )(j)∥∥

p ≤ C(r, j, p, q)(b – a)r–j+1/p–1/q∥∥f (r)∥∥
q for all f ∈ W r

q [a, b], (1.4)

where HΘ f is the Hermite interpolation to f at some multiset of r points in [a, b] and 0 ≤
j < r. However, the best constant was determined also only for p = q = ∞. Xu and Zhang
[15] considered the corresponding estimate of (1.4) for the cubic Hermite interpolation
(for which the number of points in the multiset is greater than r), but the best constant
was determined only in the cases p = q = ∞ and p = q = 1. Liu, Wu, and Xu [16] obtained
the constant in (1.3) for the particular case of k = r and p = q = 2. Recently, Xu, Liu, and
Xiong [17] obtained the best constant in (1.3) with zeros of multiplicity m at both a and b
for m + 1 ≤ r ≤ 2m + 2 and p = q = 2.

In this paper, we give an extension of (1.3). Let 1 ≤ s ≤ r – 1 be an integer, 0 ≤ k1 < k2 <
· · · < ks ≤ r – 1, and 0 ≤ ms+1 < ms+2 < · · · < mr ≤ r – 1. Let Dg denote the number of ki and
mj for which ki = g or mj = g . We assume that

m
∑

g=0

Dg ≥ m + 1 for all m = 0, 1, . . . , r – 1. (1.5)

For f ∈ W r
p[a, b] with f (ki)(a) = 0 for 1 ≤ i ≤ s and f (mj)(b) = 0 for s + 1 ≤ j ≤ r, we will

prove that (1.3) also holds and give the corresponding best constant.
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The paper is organized as follows. Section 2 contains our main theorem and its proof.
In Sect. 3, we give three examples to show our method.

2 Basic concepts and our main theorem
First, we introduce some known facts about Birkhoff interpolation related to our problems
(see [18]). Let x0, x1, . . . , xn be points of [a, b], not necessarily distinct. Also, let k0, k1, . . . , kn

be integers such that 0 ≤ ki ≤ n – 1, i = 0, 1, . . . , n. The n + 1 pairs of numbers (xi, ki)n
i=0

are supposed to be distinct. Furthermore, let Dg denote the number of pairs of the system
(xi, ki)n

i=0 for which ki = g . We assume that

m
∑

g=0

Dg ≥ m + 2 for all 0 ≤ m ≤ n – 1. (2.1)

Under assumption (2.1), for every f ∈ W n
p [a, b], from [18] we know that there exists a

unique polynomial (Birkhoff interpolation) Ln(f , t) of degree ≤ n that satisfies

L(ki)
n (f , xi) = f (ki)(xi) for all 0 ≤ i ≤ n. (2.2)

Now we introduce a remainder theorem about the Birkhoff interpolation (see [18]). De-
note li = n – ki – 1 for 0 ≤ i ≤ n, and let

�i = (–1)i

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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xl1
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1
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(li–1–1)! · · · xli–1–i+1
i–1

(li–1–i+1)!
xli–1–i

i–1
(li–1–i)! · · · xli–1–n+1

i–1
(li–1–n+1)!

xli+1
i+1

li+1!
xli+1–1

i+1
(li+1–1)! · · · xli+1–i+1

i+1
(li+1–i+1)!

xli+1–i
i+1

(li+1–i)! · · · xli+1–n+1
i+1

(li+1–n+1)!
· · · · · · · · · · · · · · · · · · · · ·
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∣
∣
∣
∣
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∣
∣
∣
∣
∣
∣

, (2.3)

where 1
s! = 0 for s < 0. Besides, we define the discontinuous function χt(s) as follows:

χt(s) =

⎧

⎨

⎩

1, t ≤ s,

0, t > s.

Then from (8) in [18] we obtain

n
∑

i=0

�i

(

f (ki)(xi) –
∫ b

a
f (n)(t) · χt(xi) · (xi – t)li

li!
dt

)

= 0. (2.4)

In particular, if f (ki)(xi) = 0 for 1 ≤ i ≤ n and �0 	= 0, x0 = x, k0 = 0, then (2.4) turns into

f (x) =
∫ b

a
f (n)(t)B(x, t) dt, (2.5)
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where

B(x, t) =
n

∑

i=0

χt(xi) · (xi – t)li

li!
�i

�0
.

Combining (2.3) with the last equality, we obtain

B(x, t) = �–1
0

∣
∣
∣
∣
∣
∣
∣
∣
∣
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∣
∣
∣
∣
∣
∣
∣

χt(x) · (x–t)n–1

(n–1)!
xn–1

(n–1)! · · · xn–i

(n–i)! · · · 1

χt(x1) · (x1–t)l1
l1!

xl1
1

l1! · · · xl1–i
1

(l1–i)! · · · xl1–n+1
1

(l1–n+1)!
· · · · · · · · · · · · · · · · · ·

χt(xi) · (xi–t)li
li !

xli
i

li !
· · · xli–i

i
(li–i)! · · · xli–n+1
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(li–n+1)!

· · · · · · · · · · · · · · · · · ·
χt(xn) · (xn–t)ln

ln !
xln !

n
ln ! · · · xln–i

n
(ln–i)! · · · xln–n+1

n
(ln–n+1)!
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∣
∣
∣

. (2.6)

In particular, for r pairs of numbers (0, k1), (0, k2), . . . , (0, ks), (1, ms+1), . . . , (1, mr), we ob-
tain the problem presented in the introduction (here a = 0 and b = 1). For simplicity, we
represent these r pairs of numbers as {k1, . . . , ks} ∪ {ms+1, . . . , mr}.

Now we introduce some information about the norms of the integral operators. Let
K(x, t) be a piecewise continuous function on [0, 1] × [0, 1]. We define

S(f , x) =
∫ 1

0
K(x, t)f (t) dt. (2.7)

It is known that S is a linear continuous operator from Lq[0, 1] to Lp[0, 1] for all 1 ≤ p, q ≤
∞. Let ‖S‖p,q be the operator norm of S from Lq[0, 1] to Lp[0, 1]. It is known that

‖S‖1,1 = sup
f ∈L1[0,1],f 	=0

‖Sf ‖1

‖f ‖1
= sup

0≤t≤1

∫ 1

0

∣
∣K(x, t)

∣
∣dx, (2.8)

‖S‖∞,∞ = sup
f ∈L∞[0,1],f 	=0

‖Sf ‖∞
‖f ‖∞

= sup
0≤x≤1

∫ 1

0

∣
∣K(x, t)

∣
∣dt. (2.9)

Besides, let S∗ be the dual operator of S, and let

W (f , x) := S∗S(f , x) =
∫ 1

0
K∗(x, t)f (t) dt, (2.10)

where

K∗(x, t) =
∫ 1

0
K(τ , x)K(τ , t) dτ .

Then W is a Hilbert–Schmidt operator. Let {(λj, ej)}j∈N be the sequence of eigenpairs of
W with nonincreasing eigenvalues, that is, λ1 ≥ λ2 ≥ · · · and W (ej) = λjej. Then (see [16])

‖S‖2,2 = sup
f ∈L2[0,1],f 	=0

‖Sf ‖2

‖f ‖2
=

√

λ1. (2.11)

In this paper, we obtain the following results.
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Theorem 2.1 Let {k1, . . . , ks} ∪ {ms+1, . . . , mr} satisfy (1.5). Then for an arbitrary f ∈
W r

q [0, 1] with f (ki)(0) = 0 for 1 ≤ i ≤ s and f (mj)(1) = 0 for s + 1 ≤ j ≤ r, we have the sharp
inequality

‖f ‖p ≤ C(p, q)
∥
∥f (r)∥∥

q for all 1 ≤ p, q ≤ ∞, (2.12)

where C(p, q) is the norm of the operator (with B(x, t) given by (2.6))

T(g, x) =
∫ 1

0
B(x, t)g(t) dt for x ∈ [0, 1] (2.13)

from Lq[0, 1] to Lp[0, 1], that is, C(p, q) = ‖T‖p,q depends on {k1, . . . , ks} ∪ {ms+1, . . . , mr}.
Furthermore, the following relations hold:

C(1, 1) = sup
0≤t≤1

∫ 1

0

∣
∣B(x, t)

∣
∣dx, (2.14)

C(∞,∞) = sup
0≤x≤1

∫ 1

0

∣
∣B(x, t)

∣
∣dt, (2.15)

C(2, 2) =
√

λ1, (2.16)

where λ1 is the maximal eigenvalue of the operator

W (g, x) =
∫ 1

0
K∗(x, t)g(t) dt for all x ∈ [0, 1] (2.17)

with kernel

K∗(x, t) =
∫ 1

0
B(τ , x)B(τ , t) dτ . (2.18)

Proof If f (ki)(0) = 0 for 1 ≤ i ≤ s and f (mj)(1) = 0 for s + 1 ≤ j ≤ r, then it follows from (2.5)
with n = r that

f (x) =
∫ 1

0
f (r)(t)B(x, t) dt = T

(

f (r), x
)

. (2.19)

From (2.19) and (2.13) we conclude that

‖f ‖p =
∥
∥Tf (r)∥∥

p ≤ C(p, q)
∥
∥f (r)∥∥

q. (2.20)

On the other hand, for any g ∈ Lq[0, 1], let

f̄ (x) =
1

(r – 1)!

∫ x

0
(x – t)r–1g(t) dt,

and let

f (x) = f̄ (x) – Lr(f̄ , x),
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where Lr is the Birkhoff interpolation based on {k1, . . . , ks}∪{ms+1, . . . , mr}. It is known that
Lr(f̄ , x) is an algebraic polynomial of degree at most n = r – 1. Then we easily check that
f (r) = g and f (ki)(0) = 0 for 1 ≤ i ≤ s and f (mj)(1) = 0 for s + 1 ≤ j ≤ r. Hence (2.19) becomes

f (x) = T
(

f (r), x
)

= T(g, x). (2.21)

From (2.21) we obtain

sup
f ∈W r

q [0,1],f (ki)(0)=f (mj)(1)=0,1≤i≤s,s+1≤j≤r

‖f ‖p

‖f (r)‖q
≥ sup

g∈Lq[0,1],g 	=0

‖Tg‖p

‖g‖q
= C(p, q). (2.22)

From (2.20) and (2.22) we obtain (2.12). Besides, from (2.13) and (2.8), (2.9), (2.11) we
obtain (2.14)–(2.16), respectively. This completes the proof of Theorem 2.1. �

For f ∈ W r
q [a, b] with f (ki)(a) = 0 for 1 ≤ i ≤ s and f (mj)(b) = 0 for s + 1 ≤ j ≤ r, letting

g(t) = f (a + (b – a)t), we obtain the following result.

Corollary 2.2 Let {k1, . . . , ks} ∪ {ms+1, . . . , mr} satisfy (1.5). Then for an arbitrary f ∈
W r

q [a, b] with f (ki)(a) = 0 for 1 ≤ i ≤ s and f (mj)(b) = 0 for s + 1 ≤ j ≤ r, we have the sharp
inequality

‖f ‖p ≤ C(p, q)(b – a)r+1/p–1/q∥∥f (r)∥∥
q for all 1 ≤ p, q ≤ ∞. (2.23)

Remark 2.3 It is obvious that if ki = i – 1 for 1 ≤ i ≤ s and mj = j – s – 1 for s + 1 ≤ j ≤ r, then
Corollary 2.2 is the case (1.3) for k = s. In this case, we give the best constant C(r, k, p, q)
in (1.3) by the corresponding C(p, q).

3 Some examples
In this section, we give three examples showing how to compute the values of C(1, 1),
C(∞,∞), and C(2, 2). It is obvious that these three examples are not in the case of (1.3).

Example 1 For {0} ∪ {1}, we have C(1, 1) = 1
2 , C(∞,∞) = 1

2 , and C(2, 2) = 4
π2 .

Proof Since x1 = 0, x2 = 1, k1 = 0, and k2 = 1, it follows from (2.6) that (2.13) holds with

B(x, t) =

∣
∣
∣
∣
∣

0 1
1 0

∣
∣
∣
∣
∣

–1
∣
∣
∣
∣
∣
∣
∣

χt(x)(x – t) x 1
0 0 1
1 1 0

∣
∣
∣
∣
∣
∣
∣

= – min{x, t}. (3.1)

We first consider C(1, 1). From (2.14) and (3.1) by a direct computation we obtain

C(1, 1) = ‖T‖1,1 = sup
0≤t≤1

∫ 1

0

∣
∣B(x, t)

∣
∣dx = sup

0≤t≤1

(

–
t2

2
+ t

)

=
1
2

. (3.2)

Now we consider C(∞,∞). From (2.15) and (3.1) it follows that

C(∞,∞) = ‖T‖∞,∞ = sup
0≤x≤1

∫ 1

0

∣
∣B(x, t)

∣
∣dt = sup

0≤x≤1

(

–
x2

2
+ x

)

=
1
2

. (3.3)
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Finally, we consider C(2, 2). Since min{x, t} is a reproducing kernel, it follows from the
computation of [19, p. 55] that

C(2, 2) = ‖T‖2,2 =
4
π2 .

This completes the proof of Example 1. �

Example 2 For {0, 2} ∪ {1}, we have C(1, 1) = 1
3 , C(∞,∞) = 1

3 , and C(2, 2) = 8
π3 .

Proof Since x1 = x2 = 0, x3 = 1, k1 = 0, k2 = 2, and k3 = 1, it follows from (2.6) that (2.13)
holds with

B(x, t) =

∣
∣
∣
∣
∣
∣
∣

0 0 1
1 0 0
1 1 0

∣
∣
∣
∣
∣
∣
∣

–1
∣
∣
∣
∣
∣
∣
∣
∣
∣

χt(x) · (x–t)2

2!
x2

2! x 1
0 0 0 1
0 1 0 0

1 – t 1 1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

⎧

⎨

⎩

(x–t)2

2! – x(1 – t), t ≤ x,

–x(1 – t), x < t.
(3.4)

We first consider C(1, 1). From (2.14) and (3.4) by a direct computation it follows that

C(1, 1) = sup
0≤t≤1

∫ 1

0

∣
∣B(x, t)

∣
∣dx = sup

0≤t≤1

(
t3

6
–

t2

2
+

1
3

)

=
1
3

. (3.5)

Now we consider C(∞,∞). From (2.15) and (3.4) by a direct computation it follows that

C(∞,∞) = sup
0≤x≤1

∫ 1

0

∣
∣B(x, t)

∣
∣dt = sup

0≤x≤1

(

–
x3

6
+

x
2

)

=
1
3

. (3.6)

Finally, we consider C(2, 2). We will use (2.16). From (3.4) and (2.18) by a direct compu-
tation we obtain

K∗(x, t) =
∫ 1

0
B(τ , t) · B(τ , x) dτ

=
2

15
–

x2

6
–

t2

6
+

x4

24
+

t4

24
+

x2t2

4

–
x2t2 · max{x, t}

12
–

xt · min{x3, t3}
24

–
max{x5, t5}

120
. (3.7)

Let g be an eigenvector corresponding to a positive eigenvalue λ of the operator W given
by (2.17), that is, λg(x) = W (g, x). Then from (3.7) and the relations max{a, b} = a+b+|a–b|

2
and min{a, b} = a+b–|a–b|

2 by a direct computation it follows that

λg(x) =
∫ x

0
(x – t)

(

–
x2t2

40
+

x3t
60

+
xt3

60
–

x4

240
–

t4

240

)

g(t) dt

+
∫ 1

x
(t – x)

(

–
x2t2

40
+

x3t
60

+
xt3

60
–

x4

240
–

t4

240

)

g(t) dt

– x5
∫ 1

0

1
240

g(t) dt + x4
∫ 1

0

(

–
t

48
+

1
24

)

g(t) dt – x3
∫ 1

0

t2

24
g(t) dt
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+ x2
∫ 1

0

(

–
t3

24
+

t2

4
–

1
6

)

g(t) dt – x
∫ 1

0

t4

48
g(t) dt

+
∫ 1

0

(

–
t5

240
+

t4

24
–

t2

6
+

2
15

)

g(t) dt. (3.8)

Taking x = 1 in (3.8), we obtain

g(1) = 0. (3.9)

Differentiating both sides of (3.8), we obtain

λg ′(x) =
∫ x

0

[(
x3t + xt3

60
–

x2t2

40
–

x4 + t4

240

)

+ (x – t)
(

t3

60
–

x3

60
–

xt2

20
+

x2t
20

)]

g(t) dt

+
∫ 1

x

[

–
(

x3t + xt3

60
–

x2t2

40
–

x4 + t4

240

)

+ (t – x)
(

–
xt2

20
+

x2t
20

+
t3

60
–

x3

60

)]

g(t) dt

– x4
∫ 1

0

1
48

g(t) dt + x3
∫ 1

0

(

–
t

12
+

1
6

)

g(t) dt – x2
∫ 1

0

t2

8
g(t) dt

+ x
∫ 1

0

(

–
t3

12
+

t2

2
–

1
3

)

g(t) dt –
∫ 1

0

t4

48
g(t) dt. (3.10)

Let x = 0 in (3.10). Then we obtain

g ′(0) = 0. (3.11)

Differentiating both sides of (3.10), we obtain

λg ′′(x) =
∫ x

0

[(

–
xt2

10
+

x2t
10

+
t3

30
–

x3

30

)

+ (x – t)
(

–
t2

20
+

xt
10

–
x2

20

)]

g(t) dt

+
∫ 1

x

[

–
(

–
xt2

10
+

x2t
10

+
t3

30
–

x3

30

)

+ (t – x)
(

–
t2

20
+

xt
10

–
x2

20

)]

g(t) dt

– x3
∫ 1

0

1
12

g(t) dt + x2
∫ 1

0

(

–
t
4

+
1
2

)

g(t) dt

– x
∫ 1

0

t2

4
g(t) dt +

∫ 1

0

(

–
t3

12
+

t2

2
–

1
3

)

g(t) dt. (3.12)

Let x = 1 in (3.12). Then we obtain

g ′′(1) = 0. (3.13)
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Differentiating both sides of (3.12), we obtain

λg(3)(x) =
∫ x

0

[(
t

10
–

x
10

)

(x – t) +
(

–
3t2

20
+

3xt
10

–
3x2

20

)]

g(t) dt

+
∫ 1

x

[(
t

10
–

x
10

)

(t – x) –
(

–
3t2

20
+

3xt
10

–
3x2

20

)]

g(t) dt

– x2
∫ 1

0

1
4

g(t) dt + x
∫ 1

0

(

–
t
2

+ 1
)

g(t) dt –
∫ 1

0

t2

4
g(t) dt. (3.14)

Let x = 0 in (3.14). Then we obtain

g(3)(0) = 0. (3.15)

Differentiating both sides of (3.14), we obtain

λg(4)(x) =
∫ x

0

t – x
2

g(t) dt +
∫ 1

x

x – t
2

g(t) dt –
x
2

∫ 1

0
g(t) dt +

∫ 1

0

(

–
t
2

+1
)

g(t) dt. (3.16)

Let x = 1 in (3.16). Then we obtain

g(4)(1) = 0. (3.17)

Differentiating both sides of (3.16), we obtain

λg(5)(x) = –
∫ x

0

1
2

g(t) dt +
∫ 1

x

1
2

g(t) dt –
∫ 1

0

1
2

g(t) dt. (3.18)

Let x = 0 in (3.18). Then we obtain

g(5)(0) = 0. (3.19)

Differentiating both sides of (3.18), we obtain

λg(6)(x) = –g(x). (3.20)

Let μ = 1
6√

λ
. Then the general solution of equation (3.20) is

g(x) = C1 cosμx + C2 sinμx

+ e
√

3
2 μx

(

C3 cos
μx
2

+ C4 sin
μx
2

)

+ e–
√

3
2 μx

(

C5 cos
μx
2

+ C6 sin
μx
2

)

. (3.21)

From (3.21) it follows that

g ′(x) = μ(C2 cosμx – C1 sinμx)

+ μe
√

3
2 μx

((√
3C3

2
+

C4

2

)

cos
μx
2

+
(√

3C4

2
–

C3

2

)

sin
μx
2

)

+ μe–
√

3
2 μx

((

–
√

3C5

2
+

C6

2

)

cos
μx
2

+
(

–
√

3C6

2
–

C5

2

)

sin
μx
2

)

, (3.22)
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g ′′(x) = –μ2(C1 cosμx + C2 sinμx)

+ μ2e
√

3
2 μx

((√
3C4

2
+

C3

2

)

cos
μx
2

+
(

C4

2
–

√
3C3

2

)

sin
μx
2

)

+ μ2e–
√

3
2 μx

((
C5

2
–

√
3C6

2

)

cos
μx
2

+
(

C6

2
+

√
3C5

2

)

sin
μx
2

)

, (3.23)

g(3)(x) = –μ3(C2 cosμx – C1 sinμx)

+ μ3e
√

3
2 μx

(

C4 cos
μx
2

– C3 sin
μx
2

)

+ μ3e–
√

3
2 μx

(

C6 cos
μx
2

– C5 sin
μx
2

)

, (3.24)

g(4)(x) = μ4(C1 cosμx + C2 sinμx)

+ μ4e
√

3
2 μx

((√
3C4

2
–

C3

2

)

cos
μx
2

+
(

–
C4

2
–

√
3C3

2

)

sin
μx
2

)

+ μ4e–
√

3
2 μx

((

–
C5

2
–

√
3C6

2

)

cos
μx
2

+
(

–
C6

2
+

√
3C5

2

)

sin
μx
2

)

, (3.25)

g(5)(x) = μ5(C2 cosμx – C1 sinμx)

+ μ5e
√

3
2 μx

((
C4

2
–

√
3C3

2

)

cos
μx
2

+
(

–
√

3C4

2
–

C3

2

)

sin
μx
2

)

+ μ5e–
√

3
2 μx

((√
3C5

2
+

C6

2

)

cos
μx
2

+
(√

3C6

2
–

C5

2

)

sin
μx
2

)

. (3.26)

Substituting (3.9), (3.11), (3.13), (3.15), (3.17), and (3.19) into (3.21)–(3.26), respectively,
by a simplification we obtain the following linear equations in the six unknown numbers
Cj, 1 ≤ j ≤ 6:

C1 cosμ + C2 sinμ

= –e
√

3
2 μ

(

C3 cos
μ

2
+ C4 sin

μ

2

)

– e–
√

3
2 μ

(

C5 cos
μ

2
+ C6 sin

μ

2

)

, (3.27)

2C2 +
√

3C3 + C4 –
√

3C5 + C6 = 0, (3.28)

C1 cosμ + C2 sinμ

= e
√

3
2 μ

((√
3C4

2
+

C3

2

)

cos
μ

2
+

(
C4

2
–

√
3C3

2

)

sin
μ

2

)

+ e–
√

3
2 μ

((
C5

2
–

√
3C6

2

)

cos
μ

2
+

(
C6

2
+

√
3C5

2

)

sin
μ

2

)

, (3.29)

C2 – C4 – C6 = 0. (3.30)

C1 cosμ + C2 sinμ

= –e
√

3
2 μ

((√
3C4

2
–

C3

2

)

cos
μ

2
+

(

–
C4

2
–

√
3C3

2

)

sin
μ

2

)

– e–
√

3
2 μ

((

–
C5

2
–

√
3C6

2

)

cos
μ

2
+

(√
3C5

2
–

C6

2

)

sin
μ

2

)

, (3.31)
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–2C2 +
√

3C3 – C4 –
√

3C5 – C6 = 0. (3.32)

Subtracting two sides of equation (3.31) from two sides of equation (3.29), by a simple
simplification we obtain

C3e
√

3
2 μ sin

μ

2
– C4e

√
3

2 μ cos
μ

2
– C5e–

√
3

2 μ sin
μ

2
+ C6e–

√
3

2 μ cos
μ

2
= 0. (3.33)

Subtracting two sides of equation (3.27) from two sides of equation (3.29) and adding
√

3
2

times two sides of equation (3.33), we obtain

C3e
√

3
2 μ cos

μ

2
+ C4e

√
3

2 μ sin
μ

2
+ C5e–

√
3

2 μ cos
μ

2
+ C6e–

√
3

2 μ sin
μ

2
= 0. (3.34)

Equations (3.27) and (3.34) imply that

C1 cosμ + C2 sinμ = 0. (3.35)

Thus by (3.28), (3.30), (3.32), (3.33), (3.34), and (3.35), if λ is a positive eigenvalue of the
operator W and g is a nonzero eigenfunction corresponding to λ, then μ = λ– 1

6 is a positive
zero of the function F defined by

F(t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 2
√

3 1 –
√

3 1
0 1 0 –1 0 –1
0 –2

√
3 –1 –

√
3 –1

0 0 e
√

3
2 t sin t

2 –e
√

3
2 t cos t

2 –e–
√

3
2 t sin t

2 e–
√

3
2 t cos t

2

0 0 e
√

3
2 t cos t

2 e
√

3
2 t sin t

2 e–
√

3
2 t cos t

2 e–
√

3
2 t sin t

2
cos t sin t 0 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= –6
√

3 cos t
(

(

e
√

3
2 t – e–

√
3

2 t)2
sin2 t

2
+

(

e
√

3
2 t + e–

√
3

2 t)2
cos2 t

2

)

. (3.36)

Due to (e
√

3
2 t – e–

√
3

2 t)2 sin2 t
2 + (e

√
3

2 t + e–
√

3
2 t)2 cos2 t

2 > 0, by (3.36) we see that the set of all
positive eigenvalues of W is a subset of the set

{((

k –
1
2

)

π

)–6

: k ∈N

}

, (3.37)

which is the set of all positive roots of the equation cos t = 0. Furthermore, it is easy to
verify that gk(x) = cos(k – 1

2 )πx is an eigenvector corresponding to the eigenvalue ((k –
1
2 )π )–6 for all k ∈ N. Therefore the set of all positive eigenvalues of W is given by (3.37),
and hence the maximal eigenvalue of W is λ1 = ( π

2 )–6. Combining this fact with (2.16), we
obtain that C(2, 2) = 8

π3 . �

Example 3 For {0, 1} ∪ {1}, we have C(1, 1) =
√

3
27 , C(∞,∞) = 1

12 , and

C(2, 2) = μ–3
1 , (3.38)
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where μ1 is the minimal positive root of the equation

(3 sin t –
√

3 cos t)e–
√

3t + 2
√

3 cos 2t – (3 sin t +
√

3 cos t)e
√

3t = 0.

Proof Since x1 = x2 = 0, x3 = 1, k1 = 0, and k2 = k3 = 1, it follows from (2.6) that (2.13) holds
with

B(x, t) =

∣
∣
∣
∣
∣
∣
∣

0 0 1
0 1 0
1 1 0

∣
∣
∣
∣
∣
∣
∣

–1
∣
∣
∣
∣
∣
∣
∣
∣
∣

χt(x) · (x–t)2

2!
x2

2! x 1
0 0 0 1
0 0 1 0

1 – t 1 1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

⎧

⎨

⎩

(x–t)2

2! – x2(1–t)
2 , t ≤ x,

– x2(1–t)
2 , x < t.

(3.39)

We first consider C(1, 1). From (2.14) and (3.39) by a direct computation it follows that

C(1, 1) = sup
0≤t≤1

∫ 1

0

∣
∣B(x, t)

∣
∣dx = sup

0≤t≤1

(
t3

6
–

t2

2
+

t
3

)

=
√

3
27

. (3.40)

Now we consider C(∞,∞). From (2.15) and (3.39) by a direct computation it follows
that

C(∞,∞) = sup
0≤x≤1

∫ 1

0

∣
∣B(x, t)

∣
∣dt = sup

0≤x≤1

(
x2

4
–

x3

6

)

=
1

12
. (3.41)

Finally, we consider C(2, 2). We will use (2.16). From (3.39) and (2.18) by a direct com-
putation we obtain

K∗(x, t) =
∫ 1

0
B(τ , t) · B(τ , x) dτ

=
2xt
15

–
xt2

6
–

x2t
6

+
x2t2

4
–

x5t
120

–
xt5

120

–
x2t2 max{x, t}

12
+

xt max{x3, t3}
24

+
min{x5, t5}

120
. (3.42)

Let g be an eigenvector corresponding to a positive eigenvalue λ of the operator W given
by (2.17). Then from (3.42) and the relations max{a, b} = a+b+|a–b|

2 and min{a, b} = a+b–|a–b|
2

by a direct computation it follows that

λg(x) =
∫ x

0
(x – t)

(

–
x2t2

40
+

x3t
60

+
xt3

60
–

x4

240
–

t4

240

)

g(t) dt

+
∫ 1

x
(t – x)

(

–
x2t2

40
+

x3t
60

+
xt3

60
–

x4

240
–

t4

240

)

g(t) dt

– x5
∫ 1

0

(
t

120
–

1
240

)

g(t) dt + x4
∫ 1

0

t
48

g(t) dt – x3
∫ 1

0

t2

24
g(t) dt

+ x2
∫ 1

0

(

–
t3

24
+

t2

4
–

t
6

)

g(t) dt + x
∫ 1

0

(

–
t5

120
+

t4

48
–

t2

6
+

2t
15

)

g(t) dt

+
∫ 1

0

t5

240
g(t) dt. (3.43)
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Taking x = 0, 1 in (3.43), we obtain

g(0) = g(1) = 0. (3.44)

Differentiating twice both sides of (3.43), we obtain

λg ′′(x) =
∫ x

0

[(

–
xt2

10
+

x2t
10

+
t3

30
–

x3

30

)

+ (x – t)
(

–
t2

20
+

xt
10

–
x2

20

)]

g(t) dt

+
∫ 1

x

[

–
(

–
xt2

10
+

x2t
10

+
t3

30
–

x3

30

)

+ (t – x)
(

–
t2

20
+

xt
10

–
x2

20

)]

g(t) dt

+ x3
∫ 1

0

(

–
t
6

+
1

12

)

g(t) dt + x2
∫ 1

0

t
4

g(t) dt – x
∫ 1

0

t2

4
g(t) dt

+
∫ 1

0

(

–
t3

12
+

t2

2
–

t
3

)

g(t) dt. (3.45)

Let x = 1 in (3.45). Then we obtain

g ′′(1) = 0. (3.46)

Differentiating both sides of (3.45), we obtain

λg(3)(x) =
∫ x

0

[(
t

10
–

x
10

)

(x – t) +
(

–
3t2

20
+

3xt
10

–
3x2

20

)]

g(t) dt

+
∫ 1

x

[(
t

10
–

x
10

)

(t – x) –
(

–
3t2

20
+

3xt
10

–
3x2

20

)]

g(t) dt

+ x2
∫ 1

0

(

–
t
2

+
1
4

)

g(t) dt + x
∫ 1

0

t
2

g(t) dt –
∫ 1

0

t2

4
g(t) dt. (3.47)

Let x = 0 in (3.47). Then we obtain

g(3)(0) = 0. (3.48)

Differentiating both sides of (3.47), we obtain

λg(4)(x) =
∫ x

0

t – x
2

g(t) dt +
∫ 1

x

x – t
2

g(t) dt + x
∫ 1

0

1 – 2t
2

g(t) dt +
∫ 1

0

t
2

g(t) dt. (3.49)

Let x = 0, 1 in (3.49). Then we obtain

g(4)(0) = g(4)(1) = 0. (3.50)

Differentiating twice both sides of (3.49), we obtain (3.21). By (3.21) we obtain (3.22)–
(3.26). Substituting (3.44), (3.46), (3.48), and (3.50) into (3.21), (3.23), (3.24), and (3.25),
respectively, by a simple simplification we obtain the following linear equations in the six
unknown numbers Cj, 1 ≤ j ≤ 6:

C1 = –C3 – C5, (3.51)
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C1 cosμ + C2 sinμ

= –e
√

3
2 μ

(

C3 cos
μ

2
+ C4 sin

μ

2

)

– e–
√

3
2 μ

(

C5 cos
μ

2
+ C6 sin

μ

2

)

, (3.52)

C1 cosμ + C2 sinμ

= e
√

3
2 μ

((√
3C4

2
+

C3

2

)

cos
μ

2
+

(
C4

2
–

√
3C3

2

)

sin
μ

2

)

+ e–
√

3
2 μ

((
C5

2
–

√
3C6

2

)

cos
μ

2
+

(
C6

2
+

√
3C5

2

)

sin
μ

2

)

, (3.53)

C2 = C4 + C6, (3.54)

C1 –
C3

2
+

√
3C4

2
–

C5

2
–

√
3C6

2
= 0, (3.55)

C1 cosμ + C2 sinμ

= –e
√

3
2 μ

((√
3C4

2
–

C3

2

)

cos
μ

2
+

(

–
C4

2
–

√
3C3

2

)

sin
μ

2

)

– e–
√

3
2 μ

((

–
C5

2
–

√
3C6

2

)

cos
μ

2
+

(√
3C5

2
–

C6

2

)

sin
μ

2

)

. (3.56)

Substituting (3.51) into (3.55), by a simple simplification we obtain

3C3 –
√

3C4 + 3C5 +
√

3C6 = 0. (3.57)

Subtracting both sides of equation (3.56) from both sides of equation (3.53), by a simple
simplification we obtain

C3e
√

3
2 μ sin

μ

2
– C4e

√
3

2 μ cos
μ

2
– C5e–

√
3

2 μ sin
μ

2
+ C6e–

√
3

2 μ cos
μ

2
= 0. (3.58)

Subtracting both sides of equation (3.52) from both sides of equation (3.53) and adding√
3

2 times both sides of equation (3.58), we obtain

C3e
√

3
2 μ cos

μ

2
+ C4e

√
3

2 μ sin
μ

2
+ C5e–

√
3

2 μ cos
μ

2
+ C6e–

√
3

2 μ sin
μ

2
= 0. (3.59)

Equations (3.51), (3.52), and (3.59) imply

C3 cosμ – C4 sinμ + C5 cosμ – C6 sinμ = 0. (3.60)

Thus by (3.51), (3.54), (3.57), (3.60), (3.58), and (3.59), if λ is a positive eigenvalue of the
operator W and if g is a nonzero eigenfunction corresponding to λ, then μ = λ–1/6 is a
positive zero of the function F1 defined by

F1(t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

3 –
√

3 3
√

3
cos t – sin t cos t – sin t

e
√

3
2 t sin t

2 –e
√

3
2 t cos t

2 –e–
√

3
2 t sin t

2 e–
√

3
2 t cos t

2

e
√

3
2 t cos t

2 e
√

3
2 t sin t

2 e–
√

3
2 t cos t

2 e–
√

3
2 t sin t

2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (3 sin t –
√

3 cos t)e–
√

3t + 2
√

3 cos 2t – (3 sin t +
√

3 cos t)e
√

3t .
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On the other hand, if F1(μ) = 0, then we can find C3, C4, C5, C6 such that (3.57)–(3.60)
hold, and let C1 = –C3 – C5, C2 = C4 + C6. Then, instead of C1, C2, C3, C4, C5, C6 in (3.21),
take C1, C2, C3, C4, C5, C6 such that the corresponding g(x) satisfies (3.44), (3.46), (3.48),
and (3.50). It is easy to verify that this g(x) is an eigenfunction of W corresponding to the
eigenvalue λ = μ–6. Therefore the set of all positive eigenvalues of W is

{

λk = μ–6
k : k ∈N

}

,

where {μk} is the sequence of all positive zeros of the function F1, and μ1 ≤ μ2 ≤ · · · . This
shows that λ1 = μ–6

1 , and hence (2.16) implies (3.38). �
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