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Abstract
The Lyapunov matrix differential equation plays an important role in many scientific
and engineering fields. In this paper, we first give a class relation between the
eigenvalue of functional matrix derivative and the derivative of functional matrix
eigenvalue. Using this relation, we convert the Lyapunov matrix differential equation
into an eigenvalue differential equation. Further, by the Schur theorem, combining
Hölder’s integral inequality with arithmetic–geometric average inequality, we provide
several lower and upper bounds on the eigenvalue product for the solution of the
Lyapunov matrix differential equation. As an application in control and optimization,
we show that our bounds can be used to discuss the stability of a class of
time-varying nonlinear systems. Finally, we illustrate the superiority and effectiveness
of the derived bounds by a numerical example.
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1 Introduction
Consider the following Lyapunov matrix differential equation [1]:

Ṗ(t) = AH (t)P(t) + P(t)A(t) + Q(t), P(t0) = P0 = PH
0 ≥ 0, (1)

where A(t) ∈ C
n×n, Q(t) = QH (t) ∈ C

n×n, and Q(t) ≥ 0 are continuous functions of t, and
P(t) ∈C

n×n is the Hermitian positive semidefinite solution of (1).
It is well known that the linear matrix differential equation (1) has many express styles,

and it usually can be found in time-varying nonlinear and linear systems. For one thing,
consider the time-varying nonlinear system

⎧
⎨

⎩

ẋ(t) = A(t)x(t) + �f (x(t),Φ(t)),

Φ̇(t) = –RBT (t)P(t)x(t)r(t)T ,
(2)

where x(t), r(t) ∈ C
n, and P(t) is the positive definite solution of the Lyapunov matrix dif-

ferential equation (1). Here �f (x(t),Φ(t)) is a nondeterministic term. In Sect. 5, we will
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show that the eigenvalue bounds of the Lyapunov matrix differential equation (1) can be
used to discuss the stability of the time-varying nonlinear system (2).

For another, sometimes we need to consider the time-varying linear system

ẋ(t) = A(t)x(t) + B(t)u(t), (3)

where A, B : [t0,∞) → C
n×n are given time-varying matrices. Based on (3), we will also

consider the optimal control problem

J(u) =
∫ tf

t0

[
xH (t)Q(t)x(t) + uH (t)R(t)u(t)

]
dt + xH (t)Sx(t), (4)

where Q(t) ∈ C
n×n is Hermitian positive semidefinite, and R(t), S ∈ C

n×n are Hermitian
positive definite.

Kucera [2] showed that the optimal value of (3) can be obtained by taking u(t) of thye
form

u(t) = –BH (t)P(t)x(t), t ∈ [t0, tf ],

where P(t) is the unique Hermitian positive definite solution of the following Riccati ma-
trix differential equation:

Ṗ(t) = AH (t)P(t) + P(t)A(t) + Q(t) + P(t)B(t)R–1(t)BH(t)P(t) (5)

with terminal condition P(t0) = S.
Observe that when B(t) = 0 and P(t0) = P0, (4) reduces to (1).
In addition, (1) is also expressed in the following form [3]:

Ṗ(t) = AHP(t) + P(t)A + Q, (6)

where A, Q ∈C
n×n, Q ≥ 0. Obviously, (1) is more general than (6).

Considering their applications, the authors of [1, 3–12] have paid their attention to the
bounds of the solution for the Lyapunov and Riccati matrix differential equations. These
include eigenvalue bounds (Mori et al. [3], Hmamed [4], Dai and Bai [5], Zhang and Liu
[6], Liu et al. [7]), trace bounds (Liu and He [8], Zhu and Pagilla [9]), norm bounds (Patel
and Toda [10]), and matrix bounds (Jodar and Ponsoda [1], Lee [11], Chen et al. [12]).

The paper is organized as follows. In Sect. 2, we show some notation and lemmas. In
Sect. 3, we derive lower bounds on the eigenvalue product for (1). In Sect. 4, we present
upper bounds on the eigenvalue product for (1). In Sect. 5, we show that our bounds can
be used to discuss the stability of a class of time-varying nonlinear systems. In Sect. 6, we
give a corresponding numerical example to show the superiority and effectiveness of the
derived bounds.

2 Notation and lemmas
Throughout this paper, let C denote the set of complex numbers and C

m×n denote the set
of m × n complex numbers. For a ∈C, Re(a) is the real part of a. Let x = (x1, x2, . . . , xn) be
a real n-element array reordered in nonincreasing order, that is, x[1] ≥ x[2] ≥ · · · ≥ x[n]. For
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X ∈C
n×n, we denote by XH , X–1, tr(X), and det(X) the conjugate transpose, the inverse, the

trace, and the determinant of X, respectively. Further, suppose the diagonal elements and
eigenvalues of X are d(X) = (d1(X), d2(X), . . . , dn(X)) and λ(X) = (λ1(X),λ2(X), . . . ,λn(X)),
respectively. Assume that Re(d[1](X)) ≥ Re(d[2](X)] ≥ · · · ≥ Re(d[n](X)), Re(λ[1](X)) ≥
Re(λ[2](X)) ≥ · · · ≥ Re(λ[n](X)). The inequality X > (≥) 0 means that X is a Hermitian pos-
itive (nonnegative) matrix. The identity matrix of appropriate dimensions is denoted I .

Let k be an integer with 1 ≤ k ≤ n. We denote by Qk,n the set of all increasing sequences,
that is,

Qk,n =
{
ω = {ω1, . . . ,ωk} : 1 ≤ ω1 < · · · < ωk ≤ n

}
.

Let A = (aij) ∈ C
m×n, and let k and r be integers satisfying 1 ≤ k ≤ m and 1 ≤ r ≤ n,

respectively. For α ∈ Qk,m and β ∈ Qr,n, we denote by A[α,β] the k × r matrix whose (i, j)th
entry is aαi ,βj . If α is equal to β , then we simplify the notation to A[α].

Definition 2.1 ([13, p. 502]) Let A ∈Cn×n and 1 ≤ r ≤ n. The rth compound matrix Cr(A)
of A is the matrix with the (jα , jβ )th entry det A[α,β], where α ∈ Qr,m and β ∈ Qr,n are
ordered lexicographically; Cr(A) is a Cr

nth matrix (Cr
n = n!

r!(n–r)! ).

Definition 2.2 ([13, p. 10]) Let x, y be two real n-element arrays. If they satisfy

k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, 2, . . . , n,

then we say that x is weakly majorized by y and denote this by x ≺w y.

Definition 2.3 ([13, p. 10]) If they satisfy

k∑

i=1

x[n–i+1] ≥
k∑

i=1

y[n–i+1], k = 1, 2, . . . , n,

then we say that x is weakly submajorized by y and denote this by x ≺w y.

Definition 2.4 ([13, p. 11]) If x ≺w y and

n∑

i=1

x[i] =
n∑

i=1

y[i],

then we say that x is majorized by y and denote this by x ≺ y.

Lemma 2.1 ([14, p. 69]) If X = XH ∈ C
n×n, then there exists a unitary matrix U ∈ C

n×n

such that

X = UH diag
[
λ1(X), . . . ,λn(X)

]
U .

Lemma 2.2 ([15, p. 490]) If X(t), Y (t) ∈C
n×n, then

d[X(t)Y (t)]
dt

=
d[X(t)]

dt
Y (t) +

d[Y (t)]
dt

X(t).
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Lemma 2.3 ([16]) If (x1, x2, . . . , xk) > 0, (y1, y2, . . . , yk) > 0, then for any k = 1, . . . , n,

[ k∏

j=1

(xj + yj)

] 1
k

≥
( k∏

j=1

xj

) 1
k

+

( k∏

j=1

yj

) 1
k

.

Lemma 2.4 ([17]) If f1, f2, . . . , fn are real positive continuous functions on [a, b] and
r1, r2, . . . , rn are real positive numbers with

∑n
i=1

1
ri

= 1, then we get the following Hölder
integral inequality:

∫ b

a

n∏

i=1

fi(x) dx ≤
n∏

i=1

(∫ b

a
f ri
i (x) dx

) 1
ri

,

where the equality holds if and only if f r1
1 , f r2

2 , . . . , f rn
n are effectively proportional.

Lemma 2.5 ([13, p. 300, B.1]) Let X = XH ∈C
n×n. Then

d(X) ≺ λ(X),

that is,

d(X) ≺w λ(X), and d(X) ≺w λ(X).

Lemma 2.6 ([13, p. 92, C.1]) If x ≺ y, then

(
ex1 , ex2 , . . . , exn

) ≺ (
ey1 , ey2 , . . . , eyn

)
.

Lemma 2.7 ([13, p. 166, A.1.d]) If x[1] ≥ x[2] ≥ · · · ≥ x[n] > 0, y[1] ≥ y[2] ≥ · · · ≥ y[n] > 0, and
x ≺ y, then

k∏

i=1

x[i] ≥
k∏

i=1

y[i], k = 1, 2, . . . , n.

Lemma 2.8 ([13, p. 208, A.4]) If x[1] ≥ x[2] ≥ · · · ≥ x[n] > 0 and y[1] ≥ y[2] ≥ · · · ≥ y[n] > 0,
then for any k = 1, . . . , n,

k∏

i=1

(x[i] + y[i]) ≤
k∏

i=1

(xi + yi) ≤
k∏

i=1

(x[i] + y[n–i+1]).

Lemma 2.9 ([13, p. 655]) If ai > 0 (i = 1, . . . , n), then for k = 1, . . . , n,

k∏

i=1

ai ≤
(

1
k

k∑

i=1

ai

)k

.

Lemma 2.10 ([13, p. 136, H.3.b]) If x[1] ≥ · · · ≥ x[n], y[1] ≥ · · · ≥ y[n], and x ≺w y, then for
any real array u[1] ≥ · · · ≥ u[n] ≥ 0,

n∑

i=1

x[i]u[i] ≤
n∑

i=1

y[i]u[i].
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Lemma 2.11 ([13, p. 503, F.2.c]) If X ∈C
n×n with eigenvalues λ1, . . . ,λn, then the eigenval-

ues of Cr(X) are λi1 · · ·λir , 1 ≤ i1 < · · · < ir ≤ n.

3 Lower bounds on eigenvalue product
In this section, we offer some new lower bounds on the eigenvalue product of the solution
of the Lyapunov matrix differential equation (1).

Theorem 3.1 Let P(t) be a Hermitian positive semidefinite solution of (1), then for any
k = 1, . . . , n and t ≥ t0,

k∏

i=1

λ[n–i+1]
[
P(t)

] ≥
[(

e
∫ t

t0
∑k

i=1 λ[n–i+1][A(ξ )+AH (ξ )] dξ
k∏

i=1

λ[n–i+1]
[
P(t0)

]
) 1

k

+
∫ t

t0

(

e
∫ t
τ

∑k
i=1 λ[n–i+1][A(ξ )+AH (ξ )] dξ

k∏

i=1

λ[n–i+1]
[
Q(τ )

]
) 1

k

dτ

]k

. (7)

Proof By Lemma 2.1 there exists a unitary matrix U(t) ∈C
n×n such that

P(t) = UH (t) diag
(
λ[1]

[
P(t)

]
, . . . ,λ[n]

[
P(t)

])
U(t)

def.= UH (t)DP(t)U(t). (8)

Using Lemma 2.2 and substituting (8) into (1) yield

U̇H (t)DP(t)U(t) + UH (t)ḊP(t)U(t) + UH (t)DP(t)U̇(t)

= AH (t)UH(t)DP(t)U(t) + UH (t)DP(t)U(t)A(t) + Q(t). (9)

Multiplying U(t) and UH(t) on the left and right of (9), respectively, we have

U(t)U̇H(t)DP(t) + ḊP(t) + DP(t)U̇(t)UH (t)

= U(t)AH (t)UH(t)DP(t) + DP(t)U(t)A(t)UH(t) + U(t)Q(t)UH(t)

= ÃH (t)DP(t) + DP(t)Ã(t) + Q̃(t), (10)

where

Ã(t) = U(t)A(t)UH(t), Q̃(t) = U(t)Q(t)UH(t). (11)

Since U(t)UH(t) = I , from (10) it it easy to see that

U̇(t)UH(t)DP(t) + U(t)U̇H(t)DP(t) + U(t)UH(t)ḊP(t) + DP(t)U̇(t)UH(t) – U̇(t)UH(t)DP(t)

= ÃH (t)DP(t) + DP(t)Ã(t) + Q̃(t). (12)

Since DP(t) = U(t)UH(t)DP(t), we have

ḊP(t) = U̇(t)UH (t)DP(t) + U(t)U̇H(t)DP(t) + U(t)UH(t)ḊP(t). (13)
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Substituting (13) into (12) implies

ḊP(t) + DP(t)U̇(t)UH (t) – U̇(t)UH(t)DP(t) = ÃH (t)DP(t) + DP(t)Ã(t) + Q̃(t). (14)

Obviously,

[
ÃH (t)DP(t) + DP(t)Ã(t) + Q̃(t)

]H = ÃH (t)DP(t) + DP(t)Ã(t) + Q̃(t), [ḊP(t)]H = ḊP(t),

and thus by (14) we obtain

[
DP(t)U̇(t)UH(t) – U̇(t)UH(t)DP(t)

]H = DP(t)U̇(t)UH (t) – U̇(t)UH(t)DP(t).

By computation we easily see that the diagonal elements of DP(t)U̇(t)UH(t) – U̇(t)UH(t) ×
DP(t) are all 0. Thus, by (14),

d{λ[i][P(t)]}
dt

= 2 Re
[
ãii(t)

]
λ[i]

[
P(t)

]
+ q̃ii(t), (15)

where ãii(t), q̃ii(t) (i = 1, 2, . . . , n) are the diagonal elements of Ã(t) and Q̃(t), respectively.
According to (15), for all t ≥ t0, it is evident that

e–2
∫ t

t0
Re[̃aii(ξ )] dξ

(
d(λ[i][P(t)])

dt
– 2 Re

[
ãii(t)

]
λ[i]

[
P(t)

]
)

= e–2
∫ t

t0
Re[̃aii(ξ )] dξ q̃ii(t),

which is equivalent to

d(e–2
∫ t

t0
Re[̃aii(ξ )] dξ

λ[i][P(t)])
dt

= e–2
∫ t

t0
Re[̃aii(ξ )] dξ q̃ii(t).

By solving this differential equation we get

e–2
∫ t

t0
Re[̃aii(ξ )] dξ

λ[i]
[
P(t)

]
= λ[i]

[
P(t0)

]
+

∫ t

t0

e–2
∫ τ

t0
Re[̃aii(ξ )] dξ q̃ii(τ ) dτ .

Hence

λ[i]
[
P(t)

]
= e2

∫ t
t0

Re[̃aii(ξ )] dξ
λ[i]

[
P(t0)

]
+

∫ t

t0

e2
∫ t
τ Re[̃aii(ξ )] dξ q̃ii(τ ) dτ ,

which implies that

k∏

i=1

λ[n–i+1]
[
P(t)

]

=
k∏

i=1

(

e2
∫ t

t0
Re ãn–i+1,n–i+1(ξ ) dξ

λ[n–i+1]
[
P(t0)

]

+
∫ t

t0

e2
∫ t
τ Re ãn–i+1,n–i+1(ξ ) dξ q̃n–i+1,n–i+1(τ ) dτ

)
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=

[ k∏

i=1

(

e2
∫ t

t0
Re ãn–i+1,n–i+1(ξ ) dξ

λ[n–i+1]
[
P(t0)

]

+
∫ t

t0

e2
∫ t
τ Re ãn–i+1,n–i+1(ξ ) dξ q̃n–i+1,n–i+1(τ ) dτ

) 1
k
]k

. (16)

Applying Lemma 2.3 to (16) yields

k∏

i=1

λ[n–i+1]
[
P(t)

] ≥
[ k∏

i=1

(
e2

∫ t
t0

Re ãn–i+1,n–i+1(ξ ) dξ
λ[n–i+1]

[
P(t0)

]) 1
k

+
k∏

i=1

(∫ t

t0

e2
∫ t
τ Re ãn–i+1,n–i+1(ξ ) dξ q̃n–i+1,n–i+1(τ ) dτ

) 1
k
]k

. (17)

By Lemma 2.4 (let ri = k) and (17) we have

k∏

i=1

λ[n–i+1]
[
P(t)

]

≥
[ k∏

i=1

(
e2

∫ t
t0

Re ãn–i+1,n–i+1(ξ ) dξ
λ[n–i+1]

[
P(t0)

]) 1
k

+
∫ t

t0

k∏

i=1

e
2
k

∫ t
τ Re ãn–i+1,n–i+1(ξ ) dξ

(
q̃n–i+1,n–i+1(τ )

) 1
k dτ

]k

=

[(

e2
∫ t

t0
∑k

i=1 Re ãn–i+1,n–i+1(ξ ) dξ
k∏

i=1

λ[n–i+1]
[
P(t0)

]
) 1

k

+
∫ t

t0

e
2
k

∫ t
τ

∑k
i=1 Re ãn–i+1,n–i+1(ξ ) dξ

( k∏

i=1

q̃n–i+1,n–i+1(τ )

) 1
k

dτ

]k

≥
[(

e2
∫ t

t0
∑k

i=1 Re ã[n–i+1,n–i+1](ξ ) dξ
k∏

i=1

λ[n–i+1]
[
P(t0)

]
) 1

k

+
∫ t

t0

e
2
k

∫ t
τ

∑k
i=1 Re ã[n–i+1,n–i+1](ξ ) dξ

( k∏

i=1

q̃[n–i+1,n–i+1](τ )

) 1
k

dτ

]k

. (18)

From Lemma 2.5 we have

(
2 Re ã[nn](ξ ), . . . , 2 Re ã[n–k+1,n–k+1](ξ )

)

≺w (
λ[n]

[
Ã(ξ ) + ÃH (ξ )

]
, . . . ,λ[n–k+1]

[
Ã(ξ ) + ÃH (ξ )

])
.

Then by Lemma 2.6

(
e2

∫ t
t0

Re ã[nn](ξ ) dξ , . . . , e2
∫ t

t0
Re ã[n–k+1,n–k+1](ξ ) dξ )

≺w (
e
∫ t

t0
λ[n][Ã(ξ )+ÃH (ξ )] dξ , . . . , e

∫ t
t0

λ[n–k+1][Ã(ξ )+ÃH (ξ )] dξ ),
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that is,

e2
∫ t

t0
∑k

i=1 Re ã[n–i+1,n–i+1](ξ ) dξ ≥ e
∫ t

t0
∑k

i=1 λ[n–i+1][Ã(ξ )+ÃH (ξ )] dξ . (19)

By Lemma 2.5 we have

(
q̃[nn](τ ), . . . , q̃[n–k+1,n–k+1](τ )

) ≺w (
λ[n]

[
Q̃(τ )

]
, . . . ,λ[n–k+1]

[
Q̃(τ )

])
.

Using Lemma 2.7, we obtain

k∏

i=1

q̃[n–i+1,n–i+1](τ ) ≥
k∏

i=1

λ[n–i+1]
[
Q̃(τ )

]
. (20)

By (11), substituting (19) and (20) into (18), we have

k∏

i=1

λ[n–i+1]
[
P(t)

]

≥
[(

e
∫ t

t0
∑k

i=1 λ[n–i+1][Ã(ξ )+ÃH (ξ )] dξ
k∏

i=1

λ[n–i+1]
[
P(t0)

]
) 1

k

+
∫ t

t0

e
1
k

∫ t
τ

∑k
i=1 λ[n–i+1][Ã(ξ )+ÃH (ξ )] dξ

( k∏

i=1

λ[n–i+1]
[
Q̃(τ )

]
) 1

k

dτ

]k

=

[(

e
∫ t

t0
∑k

i=1 λ[n–i+1][A(ξ )+AH (ξ )] dξ
k∏

i=1

λ[n–i+1]
[
P(t0)

]
) 1

k

+
∫ t

t0

(

e
∫ t
τ

∑k
i=1 λ[n–i+1][A(ξ )+AH (ξ )] dξ

k∏

i=1

λ[n–i+1]
[
Q(τ )

]
) 1

k

dτ

]k

,

which completes the proof. �

By Theorem 3.1 we easily get the following result.

Theorem 3.2 Let P(t) be a Hermitian positive semidefinite solution of (1). Then for any
k = 1, . . . , n and t ≥ t0,

k∏

i=1

λ[n–i+1]
[
P(t)

] ≥ e
∫ t

t0
∑k

i=1 λ[n–i+1][A(ξ )+AH (ξ )] dξ
k∏

i=1

λ[n–i+1]
[
P(t0)

]

+

[∫ t

t0

(

e
∫ t
τ

∑k
i=1 λ[n–i+1][A(ξ )+AH (ξ )] dξ

k∏

i=1

λ[n–i+1]
[
Q(τ )

]
) 1

k

dτ

]k

. (21)

By Theorems 3.1 and 3.2 we immediately get the following corollaries.
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Corollary 3.1 Let P(t) be a Hermitian positive semidefinite solution of (1). Then for any
k = 1, . . . , n and t ≥ t0,

det
[
P(t)

] ≥
[
(
e
∫ t

t0
tr[A(ξ )+AH (ξ )] dξ det

[
P(t0)

]) 1
n

+
∫ t

t0

(
e
∫ t
τ tr[A(ξ )+AH (ξ )] dξ det

[
Q(τ )

]) 1
n dτ

]n

. (22)

Corollary 3.2 Let P(t) be a Hermitian positive semidefinite solution of (1). Then for any
k = 1, . . . , n and t ≥ t0,

det
[
P(t)

] ≥ e
∫ t

t0
tr[A(ξ )+AH (ξ )] dξ det

[
P(t0)

]

+
(∫ t

t0

e
1
n

∫ t
τ tr[A(ξ )+AH (ξ )] dξ

(
det

[
Q(τ )

]) 1
n dτ

)n

. (23)

4 Upper bounds on eigenvalue product
In this section, we offer some new upper bounds on the eigenvalue product of the solution
for the Lyapunov matrix differential equation (1).

Theorem 4.1 Let P(t) be a Hermitian positive definite solution of (1). Then for any k =
1, . . . , n and t ≥ t0,

k∏

i=1

λ[i]
[
P(t)

] ≤ e
∫ t

t0
∑k

i=1 λ[i][A(ξ )+AH (ξ )] dξ
k∏

i=1

λ[i]
[
P(t0)

]

·
(

1 +
∑k

i=1 λ–1
[k–i+1][P(t0)]

∫ t
t0

e–
∫ τ

t0
λ[n][A(ξ )+AH (ξ )] dξ

λ[i][Q(τ )] dτ

k

)k

= lk(t). (24)

Proof By (16) we get

k∏

i=1

λ[i]
[
P(t)

]

=
k∏

i=1

[

e2
∫ t

t0
Re[̃aii(ξ )] dξ

λ[i]
[
P(t0)

]
+

∫ t

t0

e2
∫ t
τ Re[̃aii(ξ )] dξ q̃ii(τ ) dτ

]

=
k∏

i=1

(
e2

∫ t
t0

Re[̃aii(ξ )] dξ
λ[i]

[
P(t0)

])

·
k∏

i=1

(

1 + λ–1
[i]

[
P(t0)

]
∫ t

t0

e–2
∫ τ

t0
Re[̃aii(ξ )] dξ q̃ii(τ ) dτ

)

= e2
∫ t

t0
∑k

i=1 Re[̃aii(ξ )] dξ
k∏

i=1

λ[i]
[
P(t0)

]

·
k∏

i=1

(

1 + λ–1
[i]

[
P(t0)

]
∫ t

t0

e–2
∫ τ

t0
Re[̃aii(ξ )] dξ q̃ii(τ ) dτ

)

. (25)
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By Lemma 2.5 we get

λ[n]
[
Ã(ξ ) + ÃH (ξ )

] ≤ 2 Re
(
ã[nn](ξ )

) ≤ 2 Re
[
ãii(ξ )

]
.

Then

e–
∫ τ

t0
λ[n][Ã(ξ )+ÃH (ξ )] dξ ≥ e–

∫ τ
t0

2 Re(̃a[nn](ξ )) dξ ≥ e–
∫ τ

t0
2 Re[̃aii(ξ )] dξ . (26)

Substituting (26) into (25) gives

k∏

i=1

λ[i]
[
P(t)

]

≤ e2
∫ t

t0
∑k

i=1 Re[̃aii(ξ )] dξ
k∏

i=1

λ[i]
[
P(t0)

]

·
k∏

i=1

(

1 + λ–1
[i]

[
P(t0)

]
∫ t

t0

e–
∫ τ

t0
λ[n][Ã(ξ )+ÃH (ξ )] dξ q̃ii(τ ) dτ

)

≤ e2
∫ t

t0
∑k

i=1 Re[̃a[ii](ξ )] dξ
k∏

i=1

λ[i]
[
P(t0)

]

·
k∏

i=1

(

1 + λ–1
[i]

[
P(t0)

]
∫ t

t0

e–
∫ τ

t0
λ[n][Ã(ξ )+ÃH (ξ )] dξ q̃[ii](τ ) dτ

)

. (27)

From Lemma 2.5 we have

(
2 Re ã[11](ξ ), . . . , 2 Re ã[kk](ξ )

)

≺w
(
λ[1]

[
Ã(ξ ) + ÃH (ξ )

]
, . . . ,λ[k]

[
Ã(ξ ) + ÃH (ξ )

])
.

Then by Lemma 2.6 we have

(
e2

∫ t
t0

Re ã[11](ξ ) dξ , . . . , e2
∫ t

t0
Re ã[kk](ξ ) dξ )

≺w
(
e
∫ t

t0
λ[1][Ã(ξ )+ÃH (ξ )] dξ , . . . , e

∫ t
t0

λ[k][Ã(ξ )+ÃH (ξ )] dξ ),

that is,

e2
∫ t

t0
∑k

i=1 Re ã[ii](ξ ) dξ ≤ e
∫ t

t0
∑k

i=1 λ[i][Ã(ξ )+ÃH (ξ )] dξ . (28)

By Lemma 2.5 we have

(
q̃[11](τ ), . . . , q̃[kk](τ )

) ≺w
(
λ[1]

[
Q̃(τ )

]
, . . . ,λ[k]

[
Q̃(τ )

])
.

Using Lemma 2.7, we obtain

k∏

i=1

q̃[ii](τ ) ≤
k∏

i=1

λ[i]
[
Q̃(τ )

]
. (29)
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Substituting (28) and (29) into (27), by Lemma 2.8 we get

k∏

i=1

λ[i]
[
P(t)

] ≤ e
∫ t

t0
∑k

i=1 λ[i][Ã(ξ )+ÃH (ξ )] dξ
k∏

i=1

λ[i]
[
P(t0)

]

·
k∏

i=1

(

1 + λ–1
[k–i+1]

[
P(t0)

]
∫ t

t0

e–
∫ τ

t0
λ[n][Ã(ξ )+ÃH (ξ )] dξ q̃[ii](τ ) dτ

)

. (30)

Applying Lemma 2.9 to (30), we get

k∏

i=1

λ[i]
[
P(t)

] ≤ e
∫ t

t0
∑k

i=1 λ[i][Ã(ξ )+ÃH (ξ )] dξ
k∏

i=1

λ[i]
[
P(t0)

]

·
(

1 +
∑k

i=1 λ–1
[k–i+1][P(t0)]

∫ t
t0

e–
∫ τ

t0
λ[n][Ã(ξ )+ÃH (ξ )] dξ q̃[ii](τ ) dτ

k

)k

. (31)

By (31) let

u[i] = λ–1
[k–i+1]

[
P(t0)

] · e–
∫ τ

t0
λ[n][Ã(ξ )+ÃH (ξ )] dξ , x[i] = q̃[ii](τ ), y[i] = λ[i]

[
Q̃(τ )

]

in Lemma 2.10. Then

k∏

i=1

λ[i]
[
P(t)

] ≤ e
∫ t

t0
∑k

i=1 λ[i][Ã(ξ )+ÃH (ξ )] dξ
k∏

i=1

λ[i]
[
P(t0)

]

·
(

1 +
∑k

i=1 λ–1
[k–i+1][P(t0)]

∫ t
t0

e–
∫ τ

t0
λ[n][Ã(ξ )+ÃH (ξ )] dξ

λ[i][Q̃(τ )] dτ

k

)k

. (32)

In terms of (11) and (32), we get

k∏

i=1

λ[i]
[
P(t)

] ≤ e
∫ t

t0
∑k

i=1 λ[i][A(ξ )+AH (ξ )] dξ
k∏

i=1

λ[i]
[
P(t0)

]

·
(

1 +
∑k

i=1 λ–1
[k–i+1][P(t0)]

∫ t
t0

e–
∫ τ

t0
λ[n][A(ξ )+AH (ξ )] dξ

λ[i][Q(τ )] dτ

k

)k

,

which completes the proof. �

By Theorem 4.1 we immediately have the following corollary.

Corollary 4.1 Let P(t) be a Hermitian positive definite solution of (1). Then for any k =
1, . . . , n and t ≥ t0,

det
[
P(t)

] ≤ e
∫ t

t0
tr[A(ξ )+AH (ξ )] dξ · det

[
P(t0)

]

·
(

1 +
∑n

i=1 λ–1
[n–i+1][P(t0)]

∫ t
t0

e–
∫ τ

t0
λ[n](A(ξ )+AH (ξ )) dξ

λ[i][Q(τ )] dτ

n

)n

. (33)
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5 The stability analysis of a class of time-varying nonlinear systems
In this section, we give an application of our eigenvalue bounds in a class of time-varying
nonlinear systems. The time-varying nonlinear systems have wide applications in control
and optimization, such as quantum mechanics, solid mechanics, parameter identification,
electrical systems, and automatic control systems and can be used to discuss the stability
of the time-varying nonlinear system (2). Next, we show that our eigenvalue bounds can
be used to discuss the stability of a class of time-varying nonlinear systems.

For system (2), take

�f
(
x(t),Φ(t)

)
=

∥
∥x(t)

∥
∥2P(t)ECk

(
P(t)

)
ET x(t) + B(t)Φ(t)r(t),

where Ck(P(t)) denotes the kth compound matrix of P(t), P(t) is the positive definite so-
lution of the Lyapunov matrix differential equation (1)

Ṗ(t) = AH (t)P(t) + P(t)A(t) + Q(t),

and E = (In 0) is an n×Ck
nth matrix. For E, we have the following three special conditions:

(i) When k = 1, C1(P(t)) = P(t), and E is the identity matrix.
(ii) When k = n – 1, E is the identity matrix.

(iii) When k = n, Cn(P(t)) = det(P(t)), and E = 1.
In the following theorem, we give a condition under which the time-varying nonlinear

system (2) is uniformly asymptotic stable.

Theorem 5.1 For the time-varying nonlinear system (2), if

–1
l2
1(t)

+ 2
∥
∥x(t)

∥
∥2lk(t) < 0, (34)

then the large range for system (2) is uniformly asymptotically stable, where lk(t) (k =
1, . . . , n) are defined by Theorem 4.1.

Proof Choose the Lyapunov function

V
[
x(t), t

]
= xT (t)P–1(t)x(t) + tr

(
ΦT (t)R–1Φ(t)

)
.

Then

V̇
[
x(t), t

]
= ẋT (t)P–1(t)x(t) + xT (t)Ṗ–1(t)x(t) + xT (t)P–1(t)ẋ(t)

+ tr
(
Φ̇T (t)R–1Φ(t)

)
+ tr

(
ΦT (t)R–1Φ̇(t)

)
. (35)

As P(t) is positive definite, we have P(t)P–1(t) = I . Hence

Ṗ(t)P–1(t) + P(t)Ṗ–1(t) = 0,

which means that

Ṗ–1(t) = –P–1(t)Ṗ(t)P–1(t). (36)
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Substituting (1), (2), and (36) into (35) yields

V̇
[
x(t), t

]
= ẋT (t)P–1(t)x(t) + xT (t)Ṗ–1(t)x(t) + xT (t)P–1(t)ẋ(t)

+ tr
(
Φ̇T (t)R–1Φ(t)

)
+ tr

(
ΦT (t)R–1Φ̇(t)

)

=
[
A(t)x(t) + �f

(
x(t),Φ(t)

)]T P–1(t)x(t) – xT (t)
[
P–1(t)Ṗ(t)P–1(t)

]
x(t)

+ xT (t)P–1(t)
[
A(t)x(t) + �f

(
x(t),Φ(t)

)]

– tr
{[

RBT (t)P(t)x(t)r(t)T]T R–1Φ(t)
}

– tr
{
ΦT (t)R–1[RBT (t)P(t)x(t)r(t)T]}

=
[
A(t)x(t) +

∥
∥x(t)

∥
∥2P(t)ECk

(
P(t)

)
ET x(t) + B(t)Φ(t)r(t)

]T P–1(t)x(t)

– xT (t)
[
P–1(t)

[
AH (t)P(t) + P(t)A(t) + Q(t)

]
P–1(t)

]
x(t)

+ xT (t)P–1(t)
[
A(t)x(t) +

∥
∥x(t)

∥
∥2P(t)ECk

(
P(t)

)
ET x(t) + B(t)Φ(t)r(t)

]

– tr
{[

RBT (t)P(t)x(t)r(t)T]T R–1Φ(t)
}

– tr
{
ΦT (t)R–1[RBT (t)P(t)x(t)r(t)T]}

= –xT (t)P–1(t)Q(t)P–1(t)x(t) + 2xT (t)ECk
(
P(t)

)
ET x(t) · ∥∥x(t)

∥
∥2. (37)

Applying Lyapunov stability theory, a sufficient condition of uniform asymptotic stability
in large range for system (2) is that, for any x(t) �= 0,

V̇
[
x(t), t

]
< 0.

Using Theorem 4.1, we get

λ[1]
[
P(t)

] ≤ l1(t) (38)

and

k∏

i=1

λ[i]
[
P(t)

] ≤ lk(t). (39)

In terms of (37), (38), and (39), since Q(t) = I , using Lemma 2.11, we obtain

V̇
[
x(t), t

]
= –xT (t)P–1(t)QP–1(t)x(t) + 2xT (t)ECk

(
P(t)

)
ET x(t) · ∥∥x(t)

∥
∥2

≤ –λn
[(

P(t)
)–1I

(
P(t)

)–1] · ∥∥x(t)
∥
∥2 + 2λ1

[
Ck

(
P(t)

)] · ∥∥x(t)
∥
∥4

≤ –1
λ2

1(P(t))
+ 2

∥
∥x(t)

∥
∥2

k∏

i=1

λi
(
P(t)

)

≤ –1
l2
1(t)

+ 2
∥
∥x(t)

∥
∥2lk(t). (40)

If condition (34) is satisfied, then substitution of (34) into (40) yields

V̇
[
x(t), t

]
< 0.
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Hence, using Lyapunov stability theory, the large range for system (2) is uniformly asymp-
totically stable. �

Remark 5.1 For Theorem 5.1, we have the following three special conditions:
(i) When k = 1, C1(P(t)) = P(t), and E is the identity matrix. For system (2), take

�f
(
x(t),Φ(t)

)
=

∥
∥x(t)

∥
∥2P2(t)x(t) + B(t)Φ(t)r(t).

If

–1
l2
1(t)

+ 2
∥
∥x(t)

∥
∥2l1(t) < 0, (41)

then system (2) is uniformly asymptotically stable, where l1(t) is defined in
Theorem 4.1.

(ii) When k = n – 1, E is the identity matrix. For system (2), take

�f
(
x(t),Φ(t)

)
=

∥
∥x(t)

∥
∥2P(t)Cn–1

(
P(t)

)
x(t) + B(t)Φ(t)r(t).

If

–1
l2
1(t)

+ 2
∥
∥x(t)

∥
∥2ln–1(t) < 0, (42)

then system (2) is uniformly asymptotically stable, where l1(t) and ln–1(t) are
defined in Theorem 4.1.

(iii) When k = n, Cn(P(t)) = det(P(t)) and E = 1. For system (2), take

�f
(
x(t),Φ(t)

)
=

∥
∥x(t)

∥
∥2

det
(
P(t)

)
P(t)x(t) + B(t)Φ(t)r(t).

If

–1
l2
1(t)

+ 2
∥
∥x(t)

∥
∥2ln(t) < 0, (43)

then system (2) is uniformly asymptotically stable, where l1(t) and ln(t) are defined
in Theorem 4.1.

6 A numerical example
In this section, we demonstrate the effectiveness of our results and compare our eigenvalue
bounds with those of the previous results by a real application example.

Example 6.1 Consider the time-varying nonlinear system (2) with

A(t) =

⎛

⎜
⎝

0 2
3t 0

– 1
3t

1
4t 0

0 0 3
8t

⎞

⎟
⎠ , R =

⎛

⎜
⎝

1 0 0
0 1 0
0 0 1

⎞

⎟
⎠ , B(t) =

⎛

⎜
⎝

1 0 0
0 1 0
0 0 1

⎞

⎟
⎠ ,
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where x(t), r(t) ∈C
3 and

Q(t) =

⎛

⎜
⎝

1 0 0
0 1 0
0 0 1

⎞

⎟
⎠ .

Choosing t0 = 1
16 , we have

P(t0) =

⎛

⎜
⎝

1
16 0 0
0 1

8 0
0 0 1

4

⎞

⎟
⎠ .

The solution of (1) can be expressed as

P(t) = eAT (t–t0)P(t0)eA(t–t0) +
∫ t

t0

eAT (t–τ )Q(τ )eA(t–τ ) dτ . (44)

Using Mathematical tool and (44), we get that

P(t) =

⎛

⎜
⎝

P11 0 0
0 P22 0
0 0 P33

⎞

⎟
⎠ ,

where

P11 =
–4879 + 4096e t2

4 + 64e t2
4 t + e t2

4 (783 + 55t) Cos(
√

119t2

12 ) – 3
√

119e t2
4 (–23 + t) Sin(

√
119t2

12 )
1904t

,

P22 =
16(–119 + 4e t2

4 (32 + t)) + e t2
4 (–144 + 55t) Cos(

√
119t2

12 ) + 3
√

119e t2
4 (16 + t) Sin(

√
119t2

12 )
952t

,

P33 =
–16 + e 3t2

4 (16 + 3t)
12t

.

Obviously, when t > 0, P(t) is positive definite.
(i) First, we show that the eigenvalue bounds for P(t) have wide applications in the time-

varying nonlinear systems. Using Theorem 4.1, we get

λ[1]
[
P(t)

] ≤ 1 + 4t
4

t
3
4 = l1(t),

2∏

i=1

λ[i]
[
P(t)

] ≤ 2
2
3 t

17
12 ·

(
9
7

· 2– 8
3 t

7
6 +

19
28

)2

= l2(t),

3∏

i=1

λ[i]
[
P(t)

] ≤ 1
16

t
5
4

(

2
11
3 t

7
6 +

1
2

)3

= l3(t).

(1) When k = 1, take

�f
(
x(t),Φ(t)

)
=

∥
∥x(t)

∥
∥2P2(t)x(t) + B(t)Φ(t)r(t).
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If

–1
l2
1(t)

+ 2
∥
∥x(t)

∥
∥2l1(t) = –

16
(1 + 4t)2t 3

2
+

∥
∥x(t)

∥
∥2 1 + 4t

2
t

3
4 < 0,

then using Theorem 5.1, we get that system (2) is uniformly asymptotically stable.
(2) When k = 2, take

�f
(
x(t),Φ(t)

)
=

∥
∥x(t)

∥
∥2P(t)C2

(
P(t)

)
x(t) + B(t)Φ(t)r(t).

If

–1
l2
1(t)

+ 2
∥
∥x(t)

∥
∥2l2(t) = –

16
(1 + 4t)2t 3

2
+ 2

∥
∥x(t)

∥
∥22

2
3 t

17
12 ·

(
9
7

· 2– 8
3 t

7
6 +

19
28

)2

< 0,

then using Theorem 5.1, we get that system (2) is uniformly asymptotically stable.
(3) When k = 3, take

�f
(
x(t),Φ(t)

)
=

∥
∥x(t)

∥
∥2

det
(
P(t)

)
P(t)x(t) + B(t)Φ(t)r(t).

If

–1
l2
1(t)

+ 2
∥
∥x(t)

∥
∥2l3(t) = –

16
(1 + 4t)2t 3

2
+

∥
∥x(t)

∥
∥2 1

8
t

5
4

(

2
11
3 t

7
6 +

1
2

)3

< 0,

then using Theorem 5.1, we get that system (2) is uniformly asymptotically stable.
(ii) Next, we give our upper and lower eigenvalue bounds.
If k = 2, then by Theorems 3.2 and 4.1 we obtain

2∏

i=1

λ[n–i+1]
[
P(t)

] ≥ 1
32

t
1
2 +

(
4
3

t –
1
6

t
1
4

)2

,

2∏

i=1

λ[i]
[
P(t)

] ≤ 2
2
3 t

17
12 ·

(
9
7

· 2– 8
3 t

7
6 +

19
28

)2

.

If k = 3, then by Theorems 3.2 and 4.1 we have

det
[
P(t)

] ≥ 32t
5
4 +

(
12
7

t –
3
7

· 2– 1
3 t

5
12

)3

(45)

and

det
[
P(t)

] ≤ 1
16

t
5
4

(

2
11
3 t

7
6 +

1
2

)3

. (46)

In addition, by solving equation (1) we obtain

det
[
P(t)

]
= 8t3. (47)
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Figure 1 Eigenvalue bounds in Example 6.1

We depict the plot (see Fig. 1) based on all these results. In the plot, the dashed line
presents the result of (45). The dot line denotes the result of (46). The real line shows the
result of (47). From the plot we can get the bounds of the solution of (1).
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