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Abstract
Let γ be a closed strictly convex curve in the Euclidean planeR2 with length L and
enclosing an area A, and Ã1 denote the oriented area of the domain enclosed by the
locus of curvature centers of γ . Pan and Xu conjectured that there exists a best
constant C such that

L2 – 4πA ≤ C|Ã1|,

with equality if and only if γ is a circle. In this paper, we give an affirmative answer to
this question. Moreover, instead of working with the domain enclosed by the locus of
curvature centers we consider the domain enclosed by the locus of width centers of
γ , and we obtain some new reverse isoperimetric inequalities.
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1 Introductions and main results
The notion of curvature is one of the central concepts of differential geometry; it also
plays a key role in physics. The magnitude of a force required to move an object at con-
stant speed along a curved path is, according to Newton’s laws, a constant multiple of the
curvature of the trajectory. The motion of a body in a gravitational field is determined, ac-
cording to Einstein, by the curvature of space-time. All sorts of shapes, from soap bubbles
to red blood cells, seem to be determined by various curvatures.

A geometric inequality describes the relation among the invariants of geometric object
in space. The isoperimetric inequality is one of the most ancient and beautiful geometric
inequality. It states: For a closed curve γ in the Euclidean plane R

2, its length L and area
A enclosed by γ satisfies

L2 – 4πA ≥ 0, (1.1)

where equality holds if and only if γ is a circle. It follows that the circle is the only curve of
constant length L enclosing a maximum area. One can find more stronger isoperimetric
inequalities in [1–15].
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There are many well-known inequalities or equalities about curvature, such as the Ros
theorem, the Fenchel theorem, and the Willmore theorem. There are also many interesting
results involving integrals of curvature for a plane curve, one can refer to [16–19].

In [18], Pan and Zhang established a reverse isoperimetric inequality for the plane curves
under some assumptions on curvature. If γ is a closed strictly convex curve in the Eu-
clidean plane R

2 with length L and enclosing an area A, then

L2 – 4πA ≤ 4π |Ã1|, (1.2)

where Ã1 denotes the oriented area of the domain enclosed by the locus of curvature cen-
ters of γ , and the equality holds if and only if γ is a circle.

In [20], Pan and Xu posed the following question: Does there exist a best constant C
such that

L2 – 4πA ≤ C|Ã1|,

with equality if and only if γ is a circle?
In this paper, we give a new method to prove the reverse isoperimetric inequality (1.2).

Meanwhile, we give an affirmative answer to Pan and Xu’s question.

Theorem 1 Let γ be a C2 closed and strictly convex curve with length L in the Euclidean
plane R2. Let A and Ã1 denote the area of the domain enclosed by γ and the oriented area
of the domain enclosed by the locus of curvature centers of γ , respectively. Then, for any
ε > 0,

L2 – 4πA ≤ (1 + ε)π |Ã1|,

where equality holds if and only if γ is a circle.

Let D be a domain bounded by γ , and the width w(θ ) of D in direction u(θ ) = (cos θ , sin θ )
is defined to be the distance between two tangents to γ be perpendicular to u(θ ). It is
clearly that

w(θ ) = p(θ ) + p(θ + π ). (1.3)

If the point has a distance of w(θ )/2 from γ along the unit inward normal vector, we call
it as the width center of γ . Let ζ denote the locus of width centers of γ , then ζ (θ ) can be
given by

ζ (θ ) = γ (θ ) +
w(θ )

2
N(θ ), (1.4)

where N(θ ) = (– cos θ , – sin θ ) is the unit inward normal vector along γ .
In Sect. 4, we research the domain enclosed by the locus of width centers instead of the

domain enclosed by the locus of curvature centers of closed strictly convex curve γ , and
establish the following reverse isoperimetric inequality.
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Theorem 2 Let γ be a C2 closed and strictly convex curve with length L in the Euclidean
plane R2. Let A denote the area of the domain enclosed by γ . Then, for any ε > 0,

L2 – 4πA ≤ 3 + ε

2
π

(|Ã1| – |Ã2|
)
.

The equality holds if and only if γ is a circle. Here Ã1 denotes the oriented area of the
domain enclosed by the locus of curvature centers of γ and Ã2 denotes the oriented area of
the domain enclosed by ζ .

2 Preliminaries
In this section, we recall some facts about Minkowski’s support function and Fourier se-
ries. Without loss of generality, suppose γ is a smooth regular positively oriented and
closed strictly convex curve in the Euclidean plane. Take a point O inside γ as the origin
of our frame. Let p be the oriented perpendicular distance from O to the tangent line at
a point on γ , and θ the oriented angle from the positive x1-axis to this perpendicular ray.
Clearly, p is a single-valued periodic function of θ with period 2π and γ can be parame-
terized in terms of θ and p(θ ) as follows:

γ (θ ) =
(
x1(θ ), x2(θ )

)
=

(
p(θ ) cos θ – p′(θ ) sin θ , p(θ ) sin θ + p′(θ ) cos θ

)
. (2.1)

The couple (θ , p(θ )) is usually called the polar tangential coordinate on γ , and p(θ ) is
the support function of γ .

Then the curvature κ of γ can be calculated,

κ(θ ) =
dθ

ds
=

1
p(θ ) + p′′(θ )

> 0.

The radius of the curvature ρ of γ is given by

ρ(θ ) =
ds
dθ

= p(θ ) + p′′(θ ).

Since the support function of a given convex curve γ is always continuous, bounded and
2π-periodic, it has the following Fourier series:

p(θ ) =
1
2

a0 +
∞∑

n=1

(an cos nθ + bn sin nθ ), (2.2)

where

a0 =
1
π

∫ 2π

0
p(θ ) dθ ,

an =
1
π

∫ 2π

0
p(θ ) cos nθ dθ ,

bn =
1
π

∫ 2π

0
p(θ ) sin nθ dθ ,

for n ≥ 1.
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Then we have

p′(θ ) =
∞∑

n=1

(–nan sin nθ + nbn cos nθ ), (2.3)

p′′(θ ) =
∞∑

n=1

[
–n2(an cos nθ + bn sin nθ )

]
. (2.4)

Let L be the length of γ , and A be the area of the domain enclosed by γ , then

L =
∫

γ

ds =
∫ 2π

0

(
p(θ ) + p′′(θ )

)
dθ =

∫ 2π

0
p(θ ) dθ , (2.5)

A =
1
2

∫

γ

p(θ ) ds =
1
2

∫ 2π

0

(
p2(θ ) – p′2(θ )

)
dθ , (2.6)

∫

γ

1
κ

ds =
∫ 2π

0
ρ2 dθ =

∫ 2π

0

(
p(θ ) + p′′(θ )

)2 dθ . (2.7)

By (2.2), (2.3), (2.4) and the Parseval equality, the above inequalities (2.5), (2.6), (2.7) can
be, respectively, rewritten as

L = πa0, (2.8)

A =
1
4
πa2

0 +
1
2
π

∞∑

n=1

(
1 – n2)(a2

n + b2
n
)
, (2.9)

∫

γ

1
κ

ds =
1
2
πa2

0 + π

∞∑

n=1

(
1 – n2)2(a2

n + b2
n
)
. (2.10)

3 Formulas of curvature
In this section, we will give a new proof for the inequalities about curvature which obtained
in [19] and [18]. Meanwhile, we obtain some new reverse isoperimetric inequalities for
convex plane curves.

Lemma 1 ([19]) Let γ be a C2 closed and strictly convex curve in the Euclidean plane R2

with the length L and enclosing a domain D of area A. Let κ be the curvature of γ , then

L2

2π
≤

∫

γ

1
κ

ds,

where equality holds if and only if γ is a circle.

Proof By (2.8) and (2.10) we can easily get

L2 = π2a2
0

≤ 2π

(
1
2
πa2

0 + π

∞∑

n=1

(
1 – n2)2(a2

n + b2
n
)
)

= 2π

∫

γ

1
κ

ds,
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where equality holds if and only if an = bn = 0 for n > 1, from (2.2), this shows p(θ ) =
a0/2 + a1 cos θ + b1 sin θ , which together with (2.1) implies that γ is a circle with center
(a1, b1) and radius of a0/2. �

Lemma 2 ([19]) Let γ be a C2 closed and strictly convex curve in the Euclidean plane R2

enclosing a domain D of area A. Let κ be the curvature of γ , then

2A ≤
∫

γ

1
κ

ds,

where equality holds if and only if γ is a circle.

Proof By (2.10) and (2.9) we have

∫

γ

1
κ

ds =
1
2
πa2

0 + π

∞∑

n=1

(
1 – n2)2(a2

n + b2
n
)

=
1
2
πa2

0 + π

∞∑

n=1

(
1 – n2)(a2

n + b2
n
)

+ π

∞∑

n=1

n2(n2 – 1
)(

a2
n + b2

n
)

≥ 1
2
πa2

0 + π

∞∑

n=1

(
1 – n2)(a2

n + b2
n
)

= 2A,

where equality holds if and only if an = bn = 0 for n > 1. By the same argument as in the
proof of Lemma 1, we conclude that γ is a circle. �

In [18], Pan and Zhang investigated the properties of the locus of curvature centers of
a closed strictly convex plane curve γ which is given by (2.1). Let β denote the locus of
curvature centers of γ . Then β(θ ) = (x̄1(θ ), x̄2(θ )) can be given by

β(θ ) = γ (θ ) + ρ(θ )N(θ )

=
(
–p′(θ ) sin θ – p′′(θ ) cos θ , p′(θ ) cos θ – p′′(θ ) sin θ

)
, (3.1)

where N(θ ) = (– cos θ , – sin θ ) is the unit inward normal vector along γ .
We calculate the oriented area, denoted by Ã1, of β by Green’s formula. From (3.1), we

get

x̄1 dx̄2 – x̄2 dx̄1 = p′(θ )
(
p′(θ ) + p′′′(θ )

)
dθ ,

and thus Ã1 is given by

Ã1 =
1
2

∫

γ

x̄1 dx̄2 – x̄2 dx̄1

=
1
2

∫ 2π

0
p′(θ )

(
p′(θ ) + p′′′(θ )

)
dθ

=
1
2

∫ 2π

0

(
p′2(θ ) – p′′2(θ )

)
dθ .
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By (2.3), (2.4) and the Parseval equality, we have

Ã1 =
1
2
π

∞∑

n=1

n2(1 – n2)(a2
n + b2

n
) ≤ 0, (3.2)

where equality holds if and only if an = bn = 0 for n > 1, namely γ is a circle.
Via (2.9), (3.2) and (2.10) we have

2
(
A + |Ã1|

)
=

1
2
πa2

0 + π

∞∑

n=1

(
n2 – 1

)2(a2
n + b2

n
)

=
∫

γ

1
κ

ds. (3.3)

Then we can prove the following inequalities.

Lemma 3 Let γ be a C2 closed and strictly convex curve in the Euclidean plane R
2 with

the length L and enclosing a domain D of area A. Let κ be the curvature of γ , then

L2 – 4πA ≤ 2π

(∫

γ

1
κ

ds –
L2

2π

)
, (3.4)

L2 – 4πA ≤ 2π

(∫

γ

1
κ

ds – 2A
)

, (3.5)

each equality holds if and only if γ is a circle.

Proof Via (2.8), (2.9) and (2.10), we have

2π

∫

γ

1
κ

ds – L2 = 2π2
∞∑

n=1

(
1 – n2)2(a2

n + b2
n
)

≥ 2π2
∞∑

n=1

(
n2 – 1

)(
a2

n + b2
n
)

= L2 – 4πA.

Hence, we get (3.4), and equality holds if and only if an = bn = 0 for n > 1, namely γ is a cir-
cle. (3.5) is an immediate consequence according to (3.4) and the isoperimetric inequality
(1.1). �

The inequality (3.4) is new. Substituting (3.3) into (3.5), we obtain the following reverse
isoperimetric inequality as shown in [18].

Corollary 1 ([18]) Let γ be a C2 closed and strictly convex curve with length L in the
Euclidean plane, κ be the curvature of γ , A the area enclosed by γ and Ã1 the oriented
area enclosed by β . Then

L2 – 4πA ≤ 4π |Ã1|,

where equality holds if and only if γ is a circle.



Zhang Journal of Inequalities and Applications        (2019) 2019:163 Page 7 of 12

By (3.3) and (3.4), it immediately yields the following.

Corollary 2 Let γ be a C2 closed and strictly convex curve with length L in the Euclidean
plane, κ be the curvature of γ , A the area enclosed by γ and Ã1 the oriented area enclosed
by β . Then

L2 – 4πA ≤ 2π |Ã1|,

where equality holds if and only if γ is a circle.

We are now in the position to prove Theorem 1.

Proof of Theorem 1 Because of ε > 0, so n2(1 + ε)/4 > 1 for n ≥ 2. Together with this fact
and (2.8), (2.9) and (3.2), we have

L2 – 4πA = 2π2
∞∑

n=1

(
n2 – 1

)(
a2

n + b2
n
)

≤ 2π2
∞∑

n=1

1 + ε

4
n2(n2 – 1

)(
a2

n + b2
n
)

=
1 + ε

2
π2

∞∑

n=1

n2(n2 – 1
)(

a2
n + b2

n
)

= (1 + ε)π |Ã1|,

equality holds if and only if an = bn = 0 for n > 1, namely γ is a circle. �

Remark 1 The proof of Theorem 1 shows that the coefficient (1 + ε)π of |Ã1| is the best
constant for the equality condition. In fact: suppose there exists a constant λ < (1 + ε)π ,
such that

L2 – 4πA ≤ λ|Ã1|,

with the equality holds if and only if γ is a circle. Since ε is arbitrary, λ ≤ π . If λ = π , the
equality holds in Theorem 1 if and only if an = bn = 0 for n > 2. That means there exists a
γ that is not circle when the equality holds.

4 Stronger reverse isoperimetric inequality
From the definition of the width (1.3), (1.4) and (2.1), ζ (θ ) = (x̃1(θ ), x̃2(θ )) can be given by

⎧
⎨

⎩
x̃1(θ ) = p(θ )–p(θ+π )

2 cos θ – p′(θ ) sin θ ,

x̃2(θ ) = p(θ )–p(θ+π )
2 sin θ + p′(θ ) cos θ .

(4.1)

Lemma 4 Let γ be a C2 closed and strictly convex curve in the Euclidean plane, D be a
domain bounded by γ , w be the width function of D, A be the area enclosed by γ and Ã2 be
the oriented area enclosed by ζ . Then Ã2 > 0, Ã2 = 0 or Ã2 < 0.
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Proof Using Green’s formula and (4.1), we have

x̃1 dx̃2 – x̃2 dx̃1

=
1
2

(
p(θ )p′′(θ ) + p′2(θ ) + p′(θ )p′(θ + π ) – p′′(θ )p(θ + π )

+
1
2
(
p(θ ) – p(θ + π )

)2
)

dθ ,

and thus Ã2 is given by

Ã2 =
1
2

∫

γ

x̃1 dx̃2 – x̃2 dx̃1

=
1
4

∫ 2π

0

[
p(θ )p′′(θ ) + p′2(θ ) + p′(θ )p′(θ + π )

– p′′(θ )p(θ + π ) +
1
2

(p(θ ) – p(θ + π )
]2

dθ

=
1
4

∫ 2π

0

(
2p′(θ )p′(θ + π ) +

1
2
[
p(θ ) – p(θ + π )

]2
)

dθ .

By (2.2) we get

p(θ + π ) =
1
2

a0 +
∞∑

n=1

(–1)n(an cos nθ + bn sin nθ ), (4.2)

p′(θ + π ) =
∞∑

n=1

(–1)n(–nan sin nθ + nbn cos nθ ). (4.3)

Via the Parseval equality, we have

Ã2 =
π

2

∞∑

n=1

(–1)nn2(a2
n + b2

n
)

+
π

8

∞∑

n=1

(
1 – (–1)n)2(a2

n + b2
n
)

=
π

2

∞∑

k=1

(
(2k)2(a2

2k + b2
2k

)
+

[
1 – (2k – 1)2](a2

2k–1 + b2
2k–1

))

= B1 + B2, (4.4)

where

B1 =
π

2

∞∑

k=1

(2k)2(a2
2k + b2

2k
) ≥ 0, (4.5)

B2 =
π

2

∞∑

k=1

(
1 – (2k – 1)2)(a2

2k–1 + b2
2k–1

) ≤ 0. (4.6)

(I) If a0 = 20, a2 = b2 = 1 and an = bn = 0 (n ≥ 1 and n �= 2). Then p(θ ) = 10+cos 2θ +sin 2θ

is Minkowski’s support function of a convex domain D, since p(θ ) + p′′(θ ) = 10 – 3(cos 2θ +
sin 2θ ) > 0. From (4.4), Ã2 = 2π > 0.
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(II) If a0 = 40, a2 =
√

2, a3 = 1, an = 0 (n ≥ 1 and n �= 2, 3) and bn = 0 (n ≥ 1). Then
p(θ ) = 20 +

√
2 cos 2θ + cos 3θ is Minkowski’s support function of a convex domain D,

since p(θ ) + p′′(θ ) = 20 – 3
√

2 cos 2θ – 8 cos 3θ > 0. From (4.4), Ã2 = 0.
(III) If a0 = 20, a3 = 1, an = 0 (n ≥ 1 and n �= 3) and bn = 0 (n ≥ 1). Then p(θ ) = 10 + cos 3θ

is Minkowski’s support function of a convex domain D, since p(θ ) + p′′(θ ) = 10 – 8 cos 3θ >
0. From (4.4), Ã2 = –4π < 0. �

Next, we consider two special cases of γ and get the following lemma.

Lemma 5 Let γ be a C2 closed and strictly convex curve in the Euclidean plane, D be a
domain bounded by γ , w be the width function of D, A be the area enclosed by γ and Ã2 be
the oriented area enclosed by ζ .

(i) If D is symmetrical about the origin, then Ã2 ≥ 0 and equality can occur if and only if
D is a disc.

(ii) If D has constant width, then Ã2 ≤ 0 and equality can occur if and only if D is a disc.

Proof (i) If D is symmetrical about the origin, i.e., p(θ ) = p(θ + π ). By (2.2) and (4.2) we
have a2k–1 = b2k–1 = 0, for k ≥ 1, from (4.4), this yields Ã2 = B1 ≥ 0, the equality holds if
and only if D is a disc.

(ii) When D is a convex domain with constant width, ω(θ ) = p(θ ) + p(π + θ ) = constant,
so that ω′(θ ) = p′(θ ) + p′(π + θ ) = 0. By (2.3) and (4.3), we have

0 = ω′(θ ) = p′(θ ) + p′(π + θ )

=
∞∑

n=1

(
1 + (–1)n)(–nan sin nθ + nbn cos nθ )

=
∞∑

k=1

2(–2ka2k sin 2kθ + 2kb2k cos 2kθ ).

We can easily get a2k = b2k = 0, for k ≥ 1.
From (4.4), (4.5) and (4.6), we have

Ã2 = B2 ≤ 0,

where equality holds if and only if a2k–1 = b2k–1 = 0 for k ≥ 2, namely D is a disc. �

It is obvious that the sign of Ã2 is more complex than Ã1, so we consider the absolute
value of Ã2 throughout this paper, and obtain a reverse isoperimetric inequality (Theo-
rem 2).

Proof of Theorem 2 (I) If Ã2 ≥ 0. Let f1(x) = x2(x2–2)
x2–1 , x ≥ 2, then f ′

1(x) = x3(3x2–4)+4x
(x2–1)2 > 0 for

x ≥ 2, which yields f1(x) to be a monotonically increasing function. So for any real ε > 0,
(2k)2[(2k)2 – 2] > 8

3+ε
[(2k)2 – 1] for k ≥ 1, and [(2k – 1)2 + 1] ≥ 10 > 8

3+ε
for k > 1.
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By (3.2), (4.4), (2.8) and (2.9), we have

4π
(|Ã1| – |Ã2|

)
= 2π2

∞∑

n=1

n2(n2 – 1
)(

a2
n + b2

n
)

– 2π2
∞∑

k=1

(2k)2(a2
2k + b2

2k
)

+ 2π2
∞∑

k=1

[
(2k – 1)2 – 1

](
a2

2k–1 + b2
2k–1

)

= 2π2
∞∑

k=1

(2k)2[(2k)2 – 2
](

a2
2k + b2

2k
)

+ 2π2
∞∑

k=1

[
(2k – 1)2 + 1

][
(2k – 1)2 – 1

](
a2

2k–1 + b2
2k–1

)

≥ 2π2
∞∑

n=1

8
3 + ε

(
n2 – 1

)(
a2

n + b2
n
)

=
8

3 + ε

(
L2 – 4πA

)
,

where equality holds if and only if an = bn = 0 for n > 1, namely γ is a circle.
(II) If Ã2 < 0. Let f2(x) = x4

x2–1 , x ≥ 2, then f ′
2(x) = 2x3(x2–2)

(x2–1)2 > 0 for x ≥ 2, which yields f2(x)
to be a monotonically increasing function. So for any real ε > 0, (2k)4 > 16

3+ε
[(2k)2 – 1] >

8
3+ε

[(2k)2 – 1] for k ≥ 1, and (2k – 1)2 – 1 ≥ 8 > 8
3+ε

for k > 1.
By (3.2), (4.4), (2.8) and (2.9) we have

4π
(|Ã1| – |Ã2|

)
= 2π2

∞∑

n=1

n2(n2 – 1
)(

a2
n + b2

n
)

+ 2π2
∞∑

k=1

(2k)2(a2
2k + b2

2k
)

+ 2π2
∞∑

k=1

[
1 – (2k – 1)2](a2

2k–1 + b2
2k–1

)

= 2π2
∞∑

k=1

(2k)4(a2
2k + b2

2k
)

+ 2π2
∞∑

k=1

[
(2k – 1)2 – 1

][
(2k – 1)2 – 1

](
a2

2k–1 + b2
2k–1

)

≥ 2π2
∞∑

n=1

8
3 + ε

(
n2 – 1

)(
a2

n + b2
n
)

=
8

3 + ε

(
L2 – 4πA

)
,

where equality holds if and only if an = bn = 0 for n > 1, namely γ is a circle.
Therefore we obtain Theorem 2 and complete the proof. �

Letting ε = 5 in Theorem 2, we get a stronger lower bound of the integral of radius of
curvature by using Ã2.

Theorem 3 Let γ be a C2 closed and strictly convex curve with length L in the Euclidean
plane, κ be the curvature of γ , w be the width function of D, A be the area enclosed by γ
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and Ã2 be the oriented area enclosed by ζ . Then

L2

2π
+ 2|Ã2| ≤

∫

γ

1
κ

ds,

where equality holds if and only if γ is a circle.

Proof Let ε = 5 in Theorem 2, by (3.3), we have

L2 + 4π |Ã2| ≤ 4π
(|Ã1| + A

)
= 2π

∫

γ

1
κ

ds,

i.e.,

L2

2π
+ 2|Ã2| ≤

∫

γ

1
κ

ds,

where equality holds if and only if γ is a circle. �

Via the isoperimetric inequality (1.1) and Theorem 3 we can easily get the following
inequality.

Corollary 3 Let γ be a C2 closed and strictly convex curve in the Euclidean plane, w be
the width function of D, A be the area enclosed by γ and Ã2 be the oriented area enclosed
by ζ . Then

2
(
A + |Ã2|

) ≤
∫

γ

1
κ

ds,

where equality holds if and only if γ is a circle.

By the isoperimetric inequality (1.1) and (3.3) we get an upper bound for the integral of
radius of curvature.

Corollary 4 Let γ be a C2 closed and strictly convex curve in the Euclidean plane, κ be
the curvature of γ , A be the area enclosed by γ and Ã1 be the oriented area enclosed by β .
Then

∫

γ

1
κ

ds ≤ L2

2π
+ 2|Ã1|.

where equality holds if and only if γ is a circle.
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