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1 Introduction

The theory of differential equations of fractional order, involving various types of bound-
ary conditions, has been the subject of interest in the pure and applied sciences. In addi-
tion to the classical two-point boundary conditions, much attention is paid to non-local
multipoint and integral boundary conditions. Non-local conditions are used to describe
certain features of physical, chemical, or other processes occurring in the inner positions
of a given region, while integral boundary conditions provide a plausible and practical ap-
proach to modeling blood flow problems. For more information and explanation, see, for
example, [1, 2]. Some recent results on the boundary value problem of fractional order
can be found in the series [3–21] and in the references cited there. Sequential differential
equations with fractional derivatives also received considerable attention, for example, see
[4–9].

The study of coupled systems involving fractional differential equations is also impor-
tant because these systems occur in various problems of applied nature. Coupled systems
of fractional differential equations have also been investigated by many authors. Such sys-
tems appear naturally in many real world situations. Some recent results on the topic can
be found in [7, 17, 22–26].
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We study the following nonlinear sequential fractional differential equation subject to
nonseparated nonlocal integral fractional boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(Dα + λDα–1)x(t) = f1(t, x(t), y(t)), 1 < α ≤ 2, 0 ≤ t ≤ T ,

(Dβ + λDβ–1)y(t) = f2(t, x(t), y(t)), 1 < β ≤ 2, 0 ≤ t ≤ T ,

ν1x(η) + μ1x(T) =
∫ T

0 h1(x(s)) ds, ν1y(η) + μ1y(T) =
∫ T

0 h2(y(s)) ds,

ν2x′(η) + μ2x′(T) =
∫ T

0 g1(x(s), ) ds, ν2y′(η) + μ2y′(T) =
∫ T

0 g2(y(s)) ds,

(1.1)

where Dα , Dβ denote the Caputo derivative, 0 < η < T , λ ∈R+, ν1,ν2,μ1,μ2 ∈R.
During the last few decades another part of research, which has been considered for frac-

tional differential equations and got much attention from the researchers, is stability anal-
ysis. Numerous forms of stabilities have been studied in literature which are Mittag-Leffler
stability, exponential stability, Lyapunov stability, etc. For historical background of Ulam–
Hyers stability and recent results, we refer to works [27–36]. To the best of our knowledge,
the Ulam–Hyers stability has been very rarely studied for coupled system of fractional dif-
ferential equations. Therefore in this article we investigate existence and Ulam–Hyers sta-
bility to the considered problem. The rest of the paper is organized as follows. In Sect. 2,
we recall some basic concepts of fractional calculus and obtain the integral solution for the
linear variants of the given problems. Section 3 contains the existence results for problem
(1.1) obtained by applying Leray–Schauder’s nonlinear alternative, Banach’s contraction
mapping principle. In Sect. 4, Ulam–Hyers stability for problem (1.1) is studied. Finally,
in Sect. 5, an example is provided to illustrate the theoretical results.

2 Preliminaries
We begin this section with some basic definitions of fractional calculus [2]. Later we prove
an auxiliary lemma, which plays a key role in defining a fixed point problem associated
with the given problem.

Definition 1 The Riemann–Liouville fractional integral of order α > 0 for a function f :
[0, +∞) → R is defined as

Iα
0+f (t) =

1
Γ (α)

∫ t

0
(t – s)α–1f (s) ds,

provided that the right-hand side of the integral is pointwise defined on (0, +∞) and Γ is
the gamma function.

Definition 2 The Caputo derivative of order α > 0 for a function f : [0, +∞) → R is written
as

Dα
0+f (t) =

1
Γ (n – α)

∫ t

0
(t – s)n–α–1f (n)(s) ds,

where n = [α] + 1, [α] is an integral part of α.

Lemma 1 ([2]) Let α > 0. Then the differential equation Dα
0+f (t) = 0 has solutions

f (t) = c0 + c1t + c2t2 + · · · + cn–1tn–1,
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and

Iα
0+Dα

0+f (t) = f (t) + c0 + c1t + c2t2 + · · · + cn–1tn–1, (2.1)

where ci ∈R and i = 1, 2, . . . , n = [α] + 1.

Let C([0, T];R) denote the Banach space of all continuous functions from [0, T] to R

equipped with the sup-norm ‖x‖∞ = sup{|x(t)| : 0 ≤ t ≤ T}. For computational conve-
nience, in what follows we use the following notations:

a11 := ν1e–λη + μ1e–λT , a12 := ν1
1
λ

(
1 – e–λη

)
+ μ1

1
λ

(
1 – e–λT)

,

a21 := –λν2e–λη – λμ2e–λT , a22 := ν2e–λη + μ2e–λT ,

� := a11a22 – a12a21, � �= 0,

ϕ1(t) =
(

a12

�
e–λt –

a11

�

1
λ

(
1 – e–λt)

)

,

ϕ2(t) =
(

a21

�

1
λ

(
1 – e–λt) –

a22

�
e–λt

)

.

Lemma 2 Let ρ,γ1,γ2 ∈ C([0, T];R). Then the following boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

(Dα + λDα–1)z(t) = ρ(t), 1 < α ≤ 2, 0 ≤ t ≤ T ,

ν1z(η) + μ1z(T) =
∫ T

0 γ1(s) ds,

ν2z′(η) + μ2z′(T) =
∫ T

0 γ2(s) ds,

(2.2)

is equivalent to the fractional integral equation

z(t) =
∫ t

0
(t – s)α–1E1,α(–λ; t – s)ρ(s) ds

+
2∑

j=1

νjϕj(t)
∫ η

0
(η – s)α–jE1,α+j–1(–λ;η – s)ρ(s) ds

+
2∑

j=1

μjϕj(t)
∫ T

0
(T – s)α–jE1,α+j–1(–λ; T – s)ρ(s) ds

–
2∑

j=1

ϕi(t)
∫ T

0
γi(s) ds. (2.3)

Proof Applying Iα–1 to both sides of (2.2) and using (2.1), we get

Iα–1Dα–1(D + λ)z(t) = Iα–1ρ(t),

(D + λ)z(t) = c0 + Iα–1ρ(t).
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We solve the above linear ordinary differential equation:

z(t) = c1e–λt + c0
1
λ

– c0
1
λ

e–λt +
∫ t

0
e–λ(t–s)Iα–1ρ(s) ds

= c1e–λt + c0
1
λ

(
1 – e–λt) +

∫ t

0
(t – r)α–1E1,α(–λ; t – r)ρ(r) dr. (2.4)

It is clear that

z′(t) = –λc1e–λt + c0e–λt +
∫ t

0
(t – r)α–2E1,α–1(–λ; t – r)ρ(r) dr. (2.5)

The first boundary condition implies that

ν1z(η) + μ1z(T)

= ν1c1e–λη + ν1c0
1
λ

(
1 – e–λη

)
+ ν1

∫ η

0
(η – r)α–1E1,α(–λ;η – r)ρ(r) dr

+ μ1c1e–λT + μ1c0
1
λ

(
1 – e–λT)

+ μ1

∫ T

0
(T – r)α–1E1,α(–λ; T – r)ρ(r) dr

=
∫ T

0
γ1(s) ds.

It follows that

(
ν1e–λη + μ1e–λT)

c1 +
(

ν1
1
λ

(
1 – e–λη

)
+ μ1

1
λ

(
1 – e–λT)

)

c0

=
∫ T

0
γ1(s) ds – ν1

∫ η

0
(η – r)α–1E1,α(–λ;η – r)ρ(r) dr

– μ1

∫ T

0
(T – r)α–1E1,α(–λ; T – r)ρ(r) dr.

The second boundary condition with (2.5) implies that

ν2z′(η) + μ2z′(T)

= ν2
(
–λc1e–λη + c0e–λη

)
+ ν2

∫ η

0
(η – r)α–2E1,α–1(–λ;η – r)ρ(r) dr

+ μ2
(
–λc1e–λT + c0e–λT)

+ μ2

∫ T

0
(T – r)α–2E1,α–1(–λ; T – r)ρ(r) dr

=
∫ T

0
γ2(s) ds.

Thus

a11c1 + a12c0 =
∫ T

0
γ1(s) ds – ν1

∫ η

0
(η – r)α–1E1,α(–λ;η – r)ρ(r) dr

– μ1

∫ T

0
(T – r)α–1E1,α(–λ; T – r)ρ(r) dr,
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a21c1 + a22c0 =
∫ T

0
γ2(s) ds – ν2

∫ η

0
(η – r)α–2E1,α–1(–λ;η – r)ρ(r) dr

– μ2

∫ T

0
(T – r)α–2E1,α–1(–λ; T – r)ρ(r) dr.

Solving the above system of equations for c0 and c1, we get

c0 =
a11

�

(∫ T

0
γ2(s) ds – ν2

∫ η

0
(η – r)α–2E1,α–1(–λ;η – r)ρ(r) dr

– μ2

∫ T

0
(T – r)α–2E1,α–1(–λ; T – r)ρ(r) dr

)

–
a21

�

(∫ T

0
γ1(s) ds – ν1

∫ η

0
(η – r)α–1E1,α(–λ;η – r)ρ(r) dr

– μ1

∫ T

0
(T – r)α–1E1,α(–λ; T – r)ρ(r) dr

)

,

c1 =
a22

�

(∫ T

0
γ1(s) ds – ν1

∫ η

0
(η – r)α–1E1,α(–λ;η – r)ρ(r) dr

– μ1

∫ T

0
(T – r)α–1E1,α(–λ; T – r)ρ(r) dr

)

–
a12

�

(∫ T

0
γ2(s) ds – ν2

∫ η

0
(η – r)α–2E1,α–1(–λ;η – r)ρ(r) dr

– μ2

∫ T

0
(T – r)α–2E1,α–1(–λ; T – r)ρ(r) dr

)

.

Inserting c0 and c1 in (2.4), we obtain the desired formula (2.3).
Conversely, assume that u satisfies (2.3). By a direct computation, it follows that the

solution given by (2.3) satisfies (2.2). �

Lemma 3 For any g, h ∈ C([0, T];R), γ > 0, we have
∣
∣
∣
∣

∫ t

0
(t – s)γ –1E1,γ (–λ; t – s)

(
g(s) – h(s)

)
ds

∣
∣
∣
∣ ≤ tγ E1,γ +1(–λ; t)‖g – h‖∞.

Proof Indeed,
∣
∣
∣
∣

∫ t

0
(t – s)γ –1E1,γ (–λ; t – s)

(
g(s) – h(s)

)
ds

∣
∣
∣
∣

≤
∞∑

k=0

λk

Γ (k + γ )

∫ t

0
(t – s)k+γ –1∣∣g(s) – h(s)

∣
∣ds

≤
∞∑

k=0

λktk+γ

Γ (k + γ + 1)
= tγ E1,γ +1

(|λ|; t
)‖g – h‖∞. �

3 Main results
By Lemma 2, we introduce a fixed point problem associated with the problem as follows:

(x, y) = (T1, T2)(x, y) = T(x, y) : C
(
[0, T];R

) × C
(
[0, T];R

)

→ C
(
[0, T];R

) × C
(
[0, T];R

)
,
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where

T1(x, y)(t) =
∫ t

0
(t – r)α–1E1,α(–λ; t – r)f1

(
r, x(r), y(r)

)
dr

+
2∑

j=1

νjϕj(t)
∫ η

0
(η – r)α–jE1,α+j–1(–λ;η – r)f1

(
r, x(r), y(r)

)
dr

+
2∑

j=1

μjϕj(t)
∫ T

0
(T – r)α–jE1,α+j–1(–λ; T – r)f1

(
r, x(r), y(r)

)
dr

+
2∑

j=1

ϕi(t)
∫ T

0
hi

(
r, x(r), y(r)

)
dr, (3.1)

T2(x, y)(t) =
∫ t

0
(t – r)β–1E1,β (–λ; t – r)f2

(
r, x(r), y(r)

)
dr

+
2∑

j=1

νjϕj(t)
∫ η

0
(η – r)β–jE1,β+j–1(–λ;η – r)f2

(
r, x(r), y(r)

)
dr

+
2∑

j=1

μjϕj(t)
∫ T

0
(T – r)β–jE1,β+j–1(–λ; T – r)f2

(
r, x(r), y(r)

)
dr

+
2∑

j=1

ϕi(t)
∫ T

0
gi

(
r, x(r), y(r)

)
dr. (3.2)

Evidently, the existence of fixed points of the operator T is equivalent to the existence of
solutions for problem (1.1).

For γ = α,β , let

Rγ := max

{(

Tγ E1,γ +1
(|λ|; T

)
+

2∑

j=1

|νj|‖ϕj‖ηγ –jE1,γ +j–1
(|λ|;η)

+
2∑

j=1

|μj|‖ϕj‖Tγ –jE1,γ +j–1
(|λ|; T

)
)

,
(‖ϕ1‖ + ‖ϕ2‖

)
T

}

.

Here, we prove the existence and uniqueness of solutions for problem (1.1). We apply a
fixed point theorem due to Banach.

Theorem 1 Let fi, hi, gi : [0, T] ×R×R →R be continuous functions such that the follow-
ing conditions hold:

(A1) There exist Lf , Lh, Lg > 0 such that

∣
∣fi(t, x1, y1) – fi(t, x2, y2)

∣
∣ ≤ Lf

(|x1 – x2| + |y1 – y2|
)
,

∣
∣hi(t, x1, y1) – hi(t, x2, y2)

∣
∣ ≤ Lh

(|x1 – x2| + |y1 – y2|
)
,

∣
∣gi(t, x1, y1) – gi(t, x2, y2)

∣
∣ ≤ Lg

(|x1 – x2| + |y1 – y2|
)
,

∀(t, x1, y1), (t, x2, y2) ∈ [0, T] ×R×R.
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(A2) 1 – 2(Lf + Lh)Rα > 0, 1 – 2(Lf + Lg)Rβ > 0.
Then problem (1.1) has a unique solution in C([0, T],R) × C([0, T],R).

Proof Consider a ball

Br :=
{

u ∈ C
(
[0, T],R

) × C
(
[0, T],R

)
: ‖u‖∞ ≤ r

}

with radius

r ≥ max

{
(Mf + Mh)Rα

1 – 2(Lf + Lh)Rα
,

(Mf + Mg)Rβ

1 – 2(Lf + Lg)Rβ

}

,

where

Mf := max
(∥
∥f1(t, 0, 0)

∥
∥∞,

∥
∥f2(t, 0, 0)

∥
∥∞

)
,

Mh := max
(∥
∥h1(t, 0, 0)

∥
∥∞,

∥
∥h2(t, 0, 0)

∥
∥∞

)
,

Mg := max
(∥
∥g1(t, 0, 0)

∥
∥∞,

∥
∥g2(t, 0, 0)

∥
∥∞

)
.

It is clear that for all x, y ∈R

∣
∣fi(t, x, y)

∣
∣ ≤ Lf

(|x| + |y|) + Mf ,
∣
∣hi(t, x, y)

∣
∣ ≤ Lh

(|x| + |y|) + Mh,
∣
∣gi(t, x, y)

∣
∣ ≤ Lg

(|x| + |y|) + Mg .

Using this inequality and Lemma 3, from (3.1) it follows that

∣
∣T1(x, y)(t)

∣
∣

≤ tαE1,α+1
(|λ|; t

)∥
∥fi

(·, x(·), y(·))∥∥ +
2∑

j=1

|νj|
∣
∣ϕj(t)

∣
∣ηα–jE1,α+j–1

(|λ|;η)∥
∥fi

(·, x(·), y(·))∥∥

+
2∑

j=1

|μj|
∣
∣ϕj(t)

∣
∣Tα–jE1,α+j–1

(|λ|; T
)∥
∥fi

(·, x(·), y(·))∥∥∞

+
2∑

j=1

∣
∣ϕi(t)

∣
∣
∫ T

0

∣
∣hi

(
r, x(r), y(r)

)∣
∣dr

≤
(

tαE1,α+1(–λ; t) +
2∑

j=1

|νj|
∣
∣ϕj(t)

∣
∣ηα–jE1,α+j–1

(|λ|;η)

+
2∑

j=1

|μj|
∣
∣ϕj(t)

∣
∣Tα–jE1,α+j–1

(|λ|; T
)
)

× (
Lf

(|x| + |y|) + Mf
)

+
(‖ϕ1‖ + ‖ϕ2‖

)
T

(
Lh

(|x| + |y|) + Mh
)

≤ (
(Lf + Lh)r + Mf + Mh

)
Rα ≤ r

2
. (3.3)
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In the like manner we have

∣
∣T2(x, y)(t)

∣
∣ ≤ (

(Lf + Lh)r + Mf + Mh
)
Rβ ≤ r

2
. (3.4)

From (3.3) and (3.4) it follows that TBr ⊂ Br . Next, using condition (A1), we obtain

∣
∣T1(x1, y1)(t) – T1(x2, y2)(t)

∣
∣ ≤ Rα

∥
∥f1

(·, x1(·), y1(·)) – f1
(·, x2(·), y2(·))∥∥∞

≤ (Lf + Lh)Rα
∥
∥(x1, y1) – (x2, y2)

∥
∥∞. (3.5)

Similarly,

∣
∣T2(x1, y1)(t) – T2(x2, y2)(t)

∣
∣ ≤ Rβ

∥
∥f2

(·, x1(·), y1(·)) – f2
(·, x2(·), y2(·))∥∥∞

≤ (Lf + Lg)Rβ
∥
∥(x1, y1) – (x2, y2)

∥
∥∞. (3.6)

It follows from (3.5) and (3.6) that

∥
∥T(x1, y1) – T(x2, y2)

∥
∥ ≤ [

(Lf + Lh)Rα + (Lf + Lg)Rβ
]∥
∥(x1, y1) – (x2, y2)

∥
∥∞.

By (A2) the operator T is a contraction. Thus by the Banach fixed point theorem, T has a
unique fixed point in C([0, T],R) × C([0, T],R). This completes the proof. �

In the next result, we prove the existence of solutions for problem (1.1) by applying the
Leray–Schauder alternative.

Theorem 2 Let f .[0, T] × R × R → R be a continuous function such that the following
condition holds:

(A3) There exist γf ,γh,γg ∈ C([0, T],R+) and a nondecreasing function ψ : R+ →R+ such
that

∣
∣fi(t, x, y)

∣
∣ ≤ γf (t)ψf

(|x| + |y|), ∀(t, x, y) ∈ [0, T] ×R×R.
∣
∣hi(t, x, y)

∣
∣ ≤ γh(t)ψh

(|x| + |y|),
∣
∣gi(t, x, y)

∣
∣ ≤ γg(t)ψg

(|x| + |y|), i = 1, 2.

(A4) There exists M > 0 such that

M
(‖γf ‖∞ψf (M) + ‖γh‖∞ψh(M))Rα + (‖γf ‖∞ψf (M) + ‖γg‖∞ψg(M))Rβ

> 1.

Then BVP (1.1) has at least one solution.

Proof Step 1: Show that T : C([0, T],R) × C([0, T],R) → C([0, T],R) × C([0, T],R) maps
bounded sets into bounded sets and is continuous.

Let Br be a ball in C([0, T],R) × C([0, T],R). Then

∣
∣f1

(
t, x(t), y(t)

)∣
∣ ≤ ‖γf ‖ψf (r),

∣
∣f2

(
t, x(t), y(t)

)∣
∣ ≤ ‖γf ‖ψf (r),



Mahmudov and Al-Khateeb Journal of Inequalities and Applications        (2019) 2019:165 Page 9 of 15

and by Lemma 3

∣
∣T1(x, y)(t)

∣
∣

≤ tαE1,α+1
(|λ|; t

)∥
∥f1

(·, x(·), y(·))∥∥ +
2∑

j=1

|νj|
∣
∣ϕj(t)

∣
∣ηα–jE1,α+j–1

(|λ|;η)∥
∥fi

(·, x(·), y(·))∥∥

+
2∑

j=1

|μj|
∣
∣ϕj(t)

∣
∣Tα–jE1,α+j–1

(|λ|; T
)∥
∥fi

(·, x(·), y(·))∥∥∞

+
2∑

j=1

∣
∣ϕi(t)

∣
∣
∫ T

0

∣
∣hi

(
r, x(r), y(r)

)∣
∣dr

≤
(

tαE1,α+1
(|λ|; t

)
+

2∑

j=1

|νj|
∣
∣ϕj(t)

∣
∣ηα–jE1,α+j–1

(|λ|;η)

+
2∑

j=1

|μj|
∣
∣ϕj(t)

∣
∣Tα–jE1,α+j–1

(|λ|; T
)
)

× (
γf (t)ψf

(|x| + |y|) + Mf
)

+
(‖ϕ1‖ + ‖ϕ2‖

)
T

(
Lh

(|x| + |y|) + Mh
)

≤ (‖γf ‖ψf
(∥
∥(x, y)

∥
∥
)

+ ‖γh‖ψh
(∥
∥(x, y)

∥
∥
))

Rα .

Similarly,

∣
∣T2(x, y)(t)

∣
∣ ≤ (‖γf ‖ψf

(∥
∥(x, y)

∥
∥
)

+ ‖γg‖ψg
(∥
∥(x, y)

∥
∥
))

Rβ .

It follows that T(Br) is bounded.
Step 2: Next we show that T maps bounded sets into equicontinuous sets of C([0, T],R).
Let t1, t2 ∈ [0, T] with t1 < t2 and (x, y) ∈ Br . Then we obtain

∣
∣T1(x, y)(t1) – T1(x, y)(t2)

∣
∣

≤
∣
∣
∣
∣

∫ t1

0
(t1 – r)α–1E1,α(–λ; t1 – r)f1

(
r, x(r), y(r)

)
dr

–
∫ t2

0
(t2 – r)α–1E1,α(–λ; t2 – r)f1

(
r, x(r), y(r)

)
dr

∣
∣
∣
∣

+
2∑

j=1

|νj|
∣
∣ϕj(t1) – ϕj(t2)

∣
∣ηα–jE1,α+j–1

(|λ|;η)∥
∥fi

(·, x(·), y(·))∥∥

+
2∑

j=1

|μj|
∣
∣ϕj(t1) – ϕj(t2)

∣
∣Tα–jE1,α+j–1

(|λ|; T
)∥
∥fi

(·, x(·), y(·))∥∥∞

+
2∑

j=1

∣
∣ϕj(t1) – ϕj(t2)

∣
∣
∫ T

0

∣
∣hi

(
r, x(r), y(r)

)∣
∣dr. (3.7)
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It is clear that the last three terms approach to zero independently of (x, y) ∈ Br as t1 → t2.
Now, we estimate the first term of (3.7):

∣
∣
∣
∣

∫ t1

0
(t1 – r)α–1E1,α(–λ; t1 – r)f1

(
r, x(r), y(r)

)
dr

–
∫ t2

0
(t2 – r)α–1E1,α(–λ; t2 – r)f1

(
r, x(r), y(r)

)
dr

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ t1

0
e–λ(t1–s)(Iα–1f1

(·, x(·), y(·)))(s) ds –
∫ t2

0
e–λ(t2–s)(Iα–1f1

(·, x(·), y(·)))(s) ds
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t2

t1

e–λ(t1–s)(Iα–1f1
(·, x(·), y(·)))(s) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t1

0

[
e–λ(t2–s) – e–λ(t1–s)](Iα–1f1

(·, x(·), y(·)))(s) ds
∣
∣
∣
∣.

Obviously, the right-hand side of the above inequality tends to zero independently of
(x, y) ∈ Br as t1 → t2. A similar result is true for T1(x, y). As T is uniformly bounded and
equicontinuous, therefore it follows by the Arzelá–Ascoli theorem that T : C([0, T],R) ×
C([0, T],R) → C([0, T],R) × C([0, T],R) is completely continuous.

The result will follow from the Leray–Schauder nonlinear alternative once we have
proved the boundedness of the set of all solutions to equations (x, y) = θT(x, y) for 0 ≤
θ ≤ 1.

Let (x, y) be a solution. Then, using the computations employed in proving that T is
bounded, we have

∣
∣(x, y)(t)

∣
∣ = θ

∣
∣T(x, y)(t)

∣
∣

≤ (‖γf ‖ψf
(∥
∥(x, y)

∥
∥
)

+ ‖γh‖ψh
(∥
∥(x, y)

∥
∥
))

Rα

+
(‖γf ‖ψf

(∥
∥(x, y)

∥
∥
)

+ ‖γg‖ψg
(∥
∥(x, y)

∥
∥
))

Rβ .

Consequently, we have

∥
∥(x, y)

∥
∥∞

/
((‖γf ‖∞ψf

(∥
∥(x, y)

∥
∥∞

)
+ ‖γh‖∞ψh

(∥
∥(x, y)

∥
∥∞

))
Rα

+
(‖γf ‖∞ψf

(∥
∥(x, y)

∥
∥∞

)
+ ‖γg‖∞ψg

(∥
∥(x, y)

∥
∥∞

))
Rβ

) ≤ 1.

In view of (A4), there exists M such that ‖(x, y)‖∞ �= M. Let us set

U =
{

(x, y) ∈ C
(
[0, T],R

) × C
(
[0, T],R

)
:
∥
∥(x, y)

∥
∥∞ < M

}
.

Note that the operator T : U → C([0, T],R) is continuous and completely continuous.
From the choice of U, there is no (x, y) ∈ ∂U such that (x, y) = θT(x, y) for some 0 < θ < 1.
Consequently, by the nonlinear alternative of Leray–Schauder type, we deduce that T has
a fixed point (x, y) ∈ U which is a solution of problem (1.1). This completes the proof. �
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4 Ulam–Hyers stability
In this section, we discuss the Ulam–Hyers stability for problem (1.1) by means of integral
representation of its solution given by

x(t) = T1(x, y)(t), y(t) = T2(x, y)(t),

where T1 and T2 are defined by (3.1) and (3.2).
Define the following nonlinear operators Q1, Q2 : C([0, T],R) × C([0, T],R) →

C([0, T],R):

Q1(x, y)(t) :=
(
Dα + λDα–1)x(t) – f1

(
t, x(t), y(t)

)
,

Q2(x, y)(t) :=
(
Dβ + λDβ–1)y(t) – f2

(
t, x(t), y(t)

)
.

For some ε1, ε2 > 0, we consider the following inequality:

∥
∥Q1(x, y)

∥
∥ ≤ ε1,

∥
∥Q2(x, y)

∥
∥ ≤ ε2. (4.1)

Definition 3 The coupled system (1.1) is said to be Ulam–Hyers stable if there exist
V1, V2 > 0 such that, for every solution (x∗, y∗) ∈ C([0, T],R) × C([0, T],R) of inequality
(4.1), there exists a unique solution (x, y) ∈ C([0, T],R)×C([0, T],R) of problem (1.1) with

∥
∥(x, y) –

(
x∗, y∗)∥∥∞ ≤ V1ε1 + V2ε2. (4.2)

Theorem 3 Let the assumptions of Theorem 1 hold. Then problem (1.1) is Ulam–Hyers
stable.

Proof Let (x, y) ∈ C([0, T],R)×C([0, T],R) be the solution of problem (1.1) satisfying (3.1)
and (3.2). Let (x∗, y∗) be any solution satisfying (4.1):

(
Dα + λDα–1)x∗(t) = f1

(
t, x∗(t), y∗(t)

)
+ Q1

(
x∗, y∗)(t),

(
Dβ + λDβ–1)y∗(t) = f2

(
t, x∗(t), y∗(t)

)
+ Q2

(
x∗, y∗)(t).

So

x∗(t) = T1
(
x∗, y∗)(t) +

∫ t

0
(t – r)α–1E1,α(–λ; t – r)Q1

(
x∗, y∗)(r) dr

+
2∑

j=1

νjϕj(t)
∫ η

0
(η – r)α–jE1,α+j–1(–λ;η – r)Q1

(
x∗, y∗)(r) dr

+
2∑

j=1

μjϕj(t)
∫ T

0
(T – r)α–jE1,α+j–1(–λ; T – r)Q1

(
x∗, y∗)(r) dr.

It follows that

∣
∣T1

(
x∗, y∗)(t) – x∗(t)

∣
∣

≤
∫ t

0
(t – r)α–1E1,α

(|λ|; t – r
)

drε1 +
2∑

j=1

|νj|‖ϕj‖
∫ η

0
(η – r)α–jE1,α+j–1

(|λ|;η – r
)

drε1
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+
2∑

j=1

|μj|‖ϕj‖
∫ T

0
(T – r)α–jE1,α+j–1

(|λ|; T – r
)

drε1

≤
(

TαE1,α+1
(|λ|; T

)
+

2∑

j=1

|νj|‖ϕj‖ηα–jE1,α+j–1
(|λ|;η)

+
2∑

j=1

|μj|‖ϕj‖Tα–jE1,α+j–1
(|λ|; T

)
)

ε1

=: Uαε1.

Similarly,

∣
∣T2

(
x∗, y∗)(t) – y∗(t)

∣
∣

≤
(

TβE1,β+1
(|λ|; T

)
+

2∑

j=1

|νj|‖ϕj‖ηβ–jE1,β+j–1
(|λ|;η)

+
2∑

j=1

|μj|‖ϕj‖Tβ–jE1,β+j–1
(|λ|; T

)
)

ε2

=: Uβε1.

Therefore, we deduce by the fixed point property of the operator T, given by (3.1) and
(3.2), that

∣
∣x(t) – x∗(t)

∣
∣ =

∣
∣x(t) – T1

(
x∗, y∗)(t) + T1

(
x∗, y∗)(t) – x∗(t)

∣
∣

≤ ∣
∣T1(x, y)(t) – T1

(
x∗, y∗)(t)

∣
∣ +

∣
∣T1

(
x∗, y∗)(t) – x∗(t)

∣
∣

≤ (Lf + Lh)Uα
∥
∥(x, y) –

(
x∗, y∗)∥∥∞ + Uαε1, (4.3)

and similarly

∣
∣y(t) – y∗(t)

∣
∣ =

∣
∣y(t) – T2

(
x∗, y∗)(t) + T2

(
x∗, y∗)(t) – y∗(t)

∣
∣

≤ (Lf + Lg)Uβ
∥
∥(x, y) –

(
x∗, y∗)∥∥∞ + Uβε2. (4.4)

From (4.3) and (4.4) it follows that

∥
∥(x, y) –

(
x∗, y∗)∥∥∞ ≤ (

(Lf + Lh)Uα + (Lf + Lg)Uβ
)∥
∥(x, y) –

(
x∗, y∗)∥∥∞ + Uαε1 + Uβε2,

and

∥
∥(x, y) –

(
x∗, y∗)∥∥∞ ≤ Uαε1 + Uβε2

1 – ((Lf + Lh)Uα + (Lf + Lg)Uβ )

= V1ε1 + V2ε2,

with

V1 =
Uα

1 – ((Lf + Lh)Uα + (Lf + Lg)Uβ )
,
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V2 =
Uβ

1 – ((Lf + Lh)Uα + (Lf + Lg)Uβ )
.

Thus, problem (1.1) is Ulam–Hyers stable. �

5 Application
We consider the following fractional order coupled system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Dα + λDα–1)x(t) = Lf
|y(t)|

1+|y(t)| , 1 < α ≤ 2, 0 ≤ t ≤ T ,

(Dβ + λDβ–1)y(t) = Lf (sin x(t) + (cos t)x(t)), 1 < β ≤ 2, 0 ≤ t ≤ T ,

ν1x(η) + μ1x(T) = Lh
∫ T

0
|x(t)|

11+|x(t)| ds,

ν1y(η) + μ1y(T) = Lh
∫ T

0 (sin y(t) + cos y(t)) ds,

ν2x′(η) + μ2x′(T) = Lg
∫ T

0
|x(t)|

21+|x(t)| ds,

ν2y′(η) + μ2y′(T) = Lg
∫ T

0 (sin y(t) + cos y(t)) ds.

Here

f1(t, x, y) = Lf
|y|

1 + |y| , f2(t, x, y) = Lf
(
sin x + (cos t)x

)
, h1(x) = Lh

|x|
11 + |x| ,

h2(y) = Lh(sin y + cos y), g1(x) = Lg
|x|

21 + |x| , g2(y) = Lg(sin y + cos y).

As

∣
∣f1(t, x1, y1) – f1(t, x2, y2)

∣
∣ ≤ Lf |y1 – y2|,

∣
∣f2(t, x1, y1) – f2(t, x2, y2)

∣
∣ ≤ Lf |x1 – x2|,

∣
∣h1(t, x1) – h1(t, x2)

∣
∣ ≤ Lh|x1 – x2|,

∣
∣h2(t, y1) – h2(t, y2)

∣
∣ ≤ Lh|y1 – y2|,

∣
∣g1(t, x1) – g1(t, x2)

∣
∣ ≤ Lg |x1 – x2|,

∣
∣g2(t, y1) – g2(t, y2)

∣
∣ ≤ Lg |y1 – y2|,

therefore (A1) is satisfied. It is obvious that Lf , Lh, Lg > 0 can be chosen so that condition
(A2) is satisfied. Therefore, coupled system (1.1) has a unique solution and is Ulam–Hyers
stable.

6 Conclusion
Here we have studied the existence and uniqueness of the solutions as well as the Ulam–
Hyers stability for a coupled sequential fractional system with integral boundary condi-
tions. As a future work, one can generalize different concepts of stability and existence
results to an impulsive fractional system, a neutral time-delay system/inclusion, and a
time-delay system/inclusion with finite delay.
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