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1 Introduction

The theory of differential equations of fractional order, involving various types of bound-
ary conditions, has been the subject of interest in the pure and applied sciences. In addi-
tion to the classical two-point boundary conditions, much attention is paid to non-local
multipoint and integral boundary conditions. Non-local conditions are used to describe
certain features of physical, chemical, or other processes occurring in the inner positions
of a given region, while integral boundary conditions provide a plausible and practical ap-
proach to modeling blood flow problems. For more information and explanation, see, for
example, [1, 2]. Some recent results on the boundary value problem of fractional order
can be found in the series [3—21] and in the references cited there. Sequential differential
equations with fractional derivatives also received considerable attention, for example, see
[4-9].

The study of coupled systems involving fractional differential equations is also impor-
tant because these systems occur in various problems of applied nature. Coupled systems
of fractional differential equations have also been investigated by many authors. Such sys-
tems appear naturally in many real world situations. Some recent results on the topic can
be found in [7, 17, 22-26].
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We study the following nonlinear sequential fractional differential equation subject to
nonseparated nonlocal integral fractional boundary conditions:

(D* + AD* Nx(t) = fi(t, (1), y(t)), 1<a<2,0<t<T,

(DP + ADPVYy(t) = fo(t,x(2),¥()), 1<B<2,0<t<T,

via(n) + () = [ m@(s)ds,  viy() +pay(T) = [y ha(y(s)) ds,
vx' (1) + pox'(T) = fOTg1 (x(s),) ds, vy () + oy (T) = fngz(y(S)) ds,

(1.1)

where D%, D? denote the Caputo derivative, 0 < < T, A € R,, vy, Vo, i1, 4o € R.

During the last few decades another part of research, which has been considered for frac-
tional differential equations and got much attention from the researchers, is stability anal-
ysis. Numerous forms of stabilities have been studied in literature which are Mittag-Leftler
stability, exponential stability, Lyapunov stability, etc. For historical background of Ulam—
Hyers stability and recent results, we refer to works [27-36]. To the best of our knowledge,
the Ulam—Hyers stability has been very rarely studied for coupled system of fractional dif-
ferential equations. Therefore in this article we investigate existence and Ulam—Hyers sta-
bility to the considered problem. The rest of the paper is organized as follows. In Sect. 2,
we recall some basic concepts of fractional calculus and obtain the integral solution for the
linear variants of the given problems. Section 3 contains the existence results for problem
(1.1) obtained by applying Leray—Schauder’s nonlinear alternative, Banach’s contraction
mapping principle. In Sect. 4, Ulam—Hyers stability for problem (1.1) is studied. Finally,
in Sect. 5, an example is provided to illustrate the theoretical results.

2 Preliminaries

We begin this section with some basic definitions of fractional calculus [2]. Later we prove
an auxiliary lemma, which plays a key role in defining a fixed point problem associated
with the given problem.

Definition 1 The Riemann-Liouville fractional integral of order « > 0 for a function f :
[0, +00) — R is defined as

5 f () = ﬁ /0 (t -5 (s)ds,

provided that the right-hand side of the integral is pointwise defined on (0, +o0) and I is
the gamma function.

Definition 2 The Caputo derivative of order « > 0 for a functionf : [0, +00) — Ris written
as

1 t
D% £) = t— n—a—1 g(n) d :
0= s [ =9 ds
where 7 = [«] + 1, [o] is an integral part of «.
Lemma 1 ([2]) Let « > 0. Then the differential equation D f(t) = 0 has solutions

f(lf) =co+ it + Cztz bt Cn_ltn—l,
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and
I8.D2f(t)=f(t) +co+ et + cot® + -+ cuit", (2.1)
wherec;e Randi=1,2,...,n=[a] + 1.
Let C([0, T];R) denote the Banach space of all continuous functions from [0, 7] to R

equipped with the sup-norm ||x|o = sup{|x(£)| : 0 < ¢ < T}. For computational conve-

nience, in what follows we use the following notations:

1 1
an=vie? s el an=no (=) s (1=,
a9y = —Avoe M — hpuge T, gy = Vo M + poe T,

A= ayay — ana, A #0,
aip ;, anl at
t)=—e"-——-(1-¢ )
00 = (e -2 (1- )
am 1 Ly 22 5y
£)= (22 (1o ety - 2,
o= (2 10-e) -2

Lemma 2 Let p,y1,y, € C([0, T];R). Then the following boundary value problem

(D* + 2D Dz(t) = p(t), 1<a<2,0<t<T,
niz(n) + mz(T) = [ yi(s)ds, (2.2)
122 () + a2 (T) = [ yals) dis,

is equivalent to the fractional integral equation

2(t) = ft(t = )" Evy(=A;t = 5)p(s) ds
0

2 n ’
+3 v /0 (1= I Er gy (A — 5)pls) ds

Jj=1

2 T
+ Z i (£) / (T = 8)*7Erqsj-1(=A; T — 5)p(s) ds
j=1 0
2 T
D0 / vi(s) ds. (2.3)
j=1 0
Proof Applying I*7! to both sides of (2.2) and using (2.1), we get
1D YD + M)z(t) = I p(t),

(D + A)z(t) = co + I L p(2).

Page 3 of 15
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We solve the above linear ordinary differential equation:

1 1 t
Z(t) _ Cle—At +Co— — Co_e—x: +/ e—A(t—s)Ia—lp(S) ds
» % A
1 t
=ceM+ oy (1-e?)+ / (t =) ELo(—=Ast =) p(r) dr. (2.4)
0

It is clear that
t
Z(t) = =hcie ™ + coe M + / (t=1)*2E g 1(=As £ —1)p(r) dr. (2.5)
0
The first boundary condition implies that

v1z(n) + n12(T)

1 n
=vicie ™+ vlcox(l — e"\”) +1; / (=1 ELe (A —1)p(r)dr
0
1 T
e+ e (1= ) e [T =B AT - np()dr
0

T
- f y1(s) ds.
0

It follows that
-y AT 1 Y 1 AT
(vle T+ e )cl + le(l—e 7) +,u1x(1—e ) o
T n
- [ v [ =0 Evu-rin -t dr
0 0
T
- [T B R T =D dr
0

The second boundary condition with (2.5) implies that

vz’ (n) + a2 (T)

n
= vz(—kcle_)"7 + coe_)‘") + 1)2/ (N =1)*2E1g_1(=2n —1)p(r)dr
0
T
+ pa(=rcre™” + coe™T) + o / (T =) 2E g (=2 T = 1)p(r) dr
0
T
= / y2(s) ds.
0
Thus
T n
ey + arco = f y1()ds — vy / (1= 1) Eyal(=him - r)p(r) dr
0 0

T
i / (T = P Eya(—hs T = P)p(r) dr,
0
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T n
ax c + axncy = / ya(8)ds—vy | (n—1r)*2E1a_1(=2sn —r)p(r) dr
0 0

T
iz / (T = P 2Es a1 T = 1)) dir
0

Solving the above system of equations for ¢y and ¢, we get

ai

T n
o= 2 ([ s [ 0= Eipestrin o)

T
- U2 /0 (T —r)*2E1q1(=2 T = 1)p(r) dr)

T n
_%(/0 yl(S)dS—UI/ (1= P Eva(=hsn — r)p(r) dr

0

T
i /0 (T = " By (=33 T = P)p(r) dr>,

a) T K 1
= </ yi(s)ds — vy / (n=r)*"Epe(=X;n—1)p(r)dr
0 0

T
_MI/ (T =r)*"Ero(-1T = 1)p(r) dr>
0
r n
- % (/0 va(s)ds - VZ/(; (n =1 *Era-1(=2n—1)p(r)dr

T
” f (T = )" Erar(=35 T = r)p(r) dr).
0

Inserting ¢ and ¢; in (2.4), we obtain the desired formula (2.3).

Conversely, assume that u satisfies (2.3). By a direct computation, it follows that the

solution given by (2.3) satisfies (2.2).

Lemma 3 Forany g,h € C([0,T];R), y >0, we have

/:(t - s)V_lEl,y (=23t —5) (g(s) - h(s)) ds

Proof Indeed,

/t(t - s)V’lELy (=A;t—35) (g(s) - h(s)) ds
0

00 N ; o
S%F(k—M/; (t—s)k Y 1|g(5)—h(s)|d3

g )\ktkﬂ/ , .
= =t E A ’t — .
_Z I'k+y+1) 1'7’*1(| | )Ilg lloo

3 Main results

By Lemma 2, we introduce a fixed point problem associated with the problem as follows:

(x’y) = (Tl» T2)(x’y) = ‘3(9@}’) : C([O’ T]:R) X C([Or T]’R)

— C([0, T};R) x C([0, T];R),

=< tyEl,y+1(_)\; £) ”g — Nl co-

Page 5 of 15
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where
Ty(69)() = f (= P Evg (st = P (r () 3(1) lr
0

2 0 '
#2000 [ 0= B = 400, 50) dr

j=1

2 T
0] /0 (T = 1) Ey qujor (=25 T = )fy (r,x(r), y(r)) dr
j=1

2 T
+3oilt) / hy(r,x(r), y(r)) dr, (3.1)
=1 0
To(x, p)(t) = /0 (t =P E g(=Ast = ) (r,x(r), y(r)) dr

2 0 '
+ Z V() fo (n =P Ey g1 (=2 = r)fa (r, x(r), y(r)) dr
j=1

2 T
+ Z ;) /o (T - r)ﬂ_jEl,ﬂﬂ_l(—)\; T-1)f (r,x(r),y(r)) dr

j=1

2 T
+3 i) / (%), () d. (32)
=1 0

Evidently, the existence of fixed points of the operator ¥ is equivalent to the existence of
solutions for problem (1.1).

Fory =a, B, let

2
RY = max{ (TVELVA(MB T)+ Z il ||§0j||77y_jE1,y+/-1(|)~|; 77)

j=1

2
+ Y Il TV Ty i (10 T)) (lenll + ||<P2||)T}~

j-1

Here, we prove the existence and uniqueness of solutions for problem (1.1). We apply a

fixed point theorem due to Banach.

Theorem 1 Letf;, h;,g;: [0, T] x R x R — R be continuous functions such that the follow-
ing conditions hold.:
(A1) There exist Ly, Ly, Ly > 0 such that

it 0 91) = filts%2,32)| < Ly (1 = 2] + |y1 = 321),
|hi(t, 20, 1) = hit,%2,92)| < Li(ler — 2] + |y1 = 321),
|lgi(t,x1,01) = gi(t, %2, 2)| < Le(1%1 = %2| + [y1 = 32),
Y(t, %1,91), (£, %2,92) € [0, T] x R x R.
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(Az) 1-2(Ls +Ly)R* >0,1-2(Ls + Ly)RP > 0.
Then problem (1.1) has a unique solution in C([0, T],R) x C([0, T], R).

Proof Consider a ball
B,:={ueC([0,TL,R) x C([0, T],R) : [|ulloc <7}

with radius

mﬁMMa(MﬂWM}

r > max ,
{ 1- 2(Lf +Ly)R*" 1 - 2(Lf + Lg)Rﬁ

where

My := max(|Lf1(t, 0, O)|

\fZ(t’ 0’ 0) ”oo)’
oo’ hZ(t’ 0, 0)“00)’

o [£0.0)].).

o0’

My, = max(||h1(t, 0, 0)|

M, = max(||g1(t, 0, O)|

It is clear that for all x,y € R

[fit,%,9)| < Le(Ixl + y1) + My,
\hi(t%,9)| < Lu(1] + 91) + M,

\gi(t,x,9)| < Le(Ixl + |yl) + M.
Using this inequality and Lemma 3, from (3.1) it follows that

| T (%, 9)(2)|
2

< Eran (M) [fi(520,00) | + D il ® 07 Evajr (1110) [fi(5 (), 50)) |

j=1

2
+ 3 il @O T T Evajaa (10 T) [fi (520, 50) |

Jj=1

2 T
+ Z‘(p,»(t)| / |hi(r,x(r), y(r)) | dr
=1 0

2
< (taE1,a+1(—k;t) + Z 1vil| 01 (0) 0“7 Evasjcr (1A 1)

j-1

2
+ Y 1l @ T*7Evasja (1415 T))
j=1

< (L (lxl + Iy1) + My) + (lrll + N2l T (Lu (1] + 191) + M)

g(uf+uy+A@+MwR“5g. (3.3)
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In the like manner we have

| To(x,9)()] < ((Ls +Ly)r + My + My)RP < g (3.4)
From (3.3) and (3.4) it follows that B, C B,. Next, using condition (A;), we obtain
| T1(x1,31)(8) = Ty (22, 32)(8)| < R* | fi (51,01 ()) =1 (5 22()920)) |
< (Ly + LR || (e1, 1) — (2, 92) || - (3.5)
Similarly,
| Ty(x1,31)(8) = Ta(x2,32)(8)| < RP | fa (o 1(), 31 () = o (5 22() 2 0)) |
< (Ly + LR || (x1,31) = (x2,2) | - (3.6)

It follows from (3.5) and (3.6) that
| T(x1,91) = T(x2,3) | < [(Ly + Li)R* + (Ly + LR || (x1,91) — (x2,30) | .-

By (A;) the operator ¥ is a contraction. Thus by the Banach fixed point theorem, ¥ has a
unique fixed point in C([0, T],R) x C([0, T],R). This completes the proof. O

In the next result, we prove the existence of solutions for problem (1.1) by applying the

Leray—Schauder alternative.

Theorem 2 Let f.[0,T] x R x R — R be a continuous function such that the following
condition holds:
(A3) Thereexist yr, yn, vg € C([0, T1,R.) and a nondecreasing function  : R, — R, such
that

it %) < v @¥r(lxl + 191),  ¥(&x9) €[0,T] xR x R.
|hi(t,%,9)| < vu@vn(lx] + 1y1),

|gi(t: 2, 9)| < ve@ g (Il + Iyl), i=1,2.

(A4) There exists M > 0 such that

M
1.
¥r ooty (M) + 1¥nlloo V(MR + (lyf lloo Vi (M) + 1 ¥g lloo Vg (M))RE g

Then BVP (1.1) has at least one solution.
Proof Step 1: Show that T : C([0, T],R) x C([0, T],R) — C([0, T],R) x C([0, T], R) maps

bounded sets into bounded sets and is continuous.
Let B, be a ball in C([0, T],R) x C([0, T],R). Then

(620, 9®)| <l llvr(), |62, 50)] < vl ),
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and by Lemma 3
| T1(x, )@
2
< Byt (1M [ (52 O) |+ 1l @) |07 Evasjcr (111 1) [ (52, () |
j=1

2
2 1l @O TV Erjor (111 T) (520,90 |

Jj=1

2 T
+ L] [l )| ar

Jj=1
2

< (t“a,m(wt) + Y ille®[n*7Evasia (18m)

j=1

2
+ 3 il || T Eyaaja (1 T))

j=1

X (@O (Ixl + Iy1) + My) + (lorll + loall) T (Li (1] + 191) + M)

< (vl (@) + vl v (| @ ])) R,

Similarly,

T2, ) O] < (Il ([ x)]) + Iyl (| @) RP.

It follows that T(B,) is bounded.
Step 2: Next we show that T maps bounded sets into equicontinuous sets of C([0, T'], R).
Let t1,t; € [0, T] with t; < £, and (x,y) € B,. Then we obtain

| T1(x,9)(t1) — T1(x,p) ()]

=

f (1 = P Evg(hs 11 = 1fs (r (), () dr
0

- /0 2(tz — 1) EL (At - 1)f (r,x(r),y(r)) dr

2

+ Z Wil|ei(t1) = @(e2) |17 Evaajer (12 m) [ (%) 00) |

j=1

2
+ Z i @i(t1) = 9i(82) | T*7 Ex st (111 T) [fi (), v()) || o

j=1

2 T
+ Y loi(tr) - ¢(ta)| /0 |1 (r, (1), (1)) | r. (3.7)

Jj=1
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It is clear that the last three terms approach to zero independently of (x,y) € B, as t; — £,.

Now, we estimate the first term of (3.7):

/ 1 (th =) P EL (Mt —1)fi (r,x(r),y(r)) dr
0

- /0 (b = P Eva=hi ty = P (27, 9()

/(; 1 e M=) ([oz—lfl(.’x(.),y(.)))(s) ds — /(; 2 e~ Mta—s) (Ia‘lﬁ(-,x('),y(')))(s) ds

=

/ e (11 (1), 5(0)) () ds

f

+

/0 1[e_x(tz—s) _ e—A(t1—s)]([a—1ﬁ (,x(),y()))(s) dsl.

Obviously, the right-hand side of the above inequality tends to zero independently of
(%,y) € B, as t; — f,. A similar result is true for T7(x, 7). As ¥ is uniformly bounded and
equicontinuous, therefore it follows by the Arzeld—Ascoli theorem that T : C([0, T'], R) x
C([0, T],R) — C([0, T],R) x C([0, T],R) is completely continuous.

The result will follow from the Leray—Schauder nonlinear alternative once we have
proved the boundedness of the set of all solutions to equations (x,y) = 6% (x,y) for 0 <
0 <1.

Let (x,y) be a solution. Then, using the computations employed in proving that ¥ is

bounded, we have

|G, 9)(@®)| = 0|T(x,9) ()|
< (Il (| |) + lvalvn(] ) ||)) R
+ (el ([ ) + lvelive ([ @)]))RE.

Consequently, we have

[l
1yl ([ L) + Ivlloa (| ) )RS
+ (I lloo¥r (1) o) + Ivelloo Ve (|6 ) | ))R?) < 1.

In view of (A4), there exists M such that ||(x, y)||cc # M. Let us set
U={(xy) eC([0,T),R) x C([0, T}, R) : || (x,5)| , <M }.

Note that the operator T : {{ — C([0, T],R) is continuous and completely continuous.
From the choice of 41, there is no (x,y) € 94l such that (x,y) = 0% (x,y) for some 0 < 6 < 1.
Consequently, by the nonlinear alternative of Leray—Schauder type, we deduce that ¥ has

a fixed point (x,y) € { which is a solution of problem (1.1). This completes the proof. [
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4 Ulam-Hyers stability
In this section, we discuss the Ulam—Hyers stability for problem (1.1) by means of integral
representation of its solution given by

x(t) = Th(x,3)(8), ¥(t) = To(x,9)(2),

where T7 and T are defined by (3.1) and (3.2).
Define the following nonlinear operators Q;,Q; : C([0,T],R) x C([0,T],R) —
C([0, T],R):

Q)0 = (D + 1D )a(0) ~ i (650, 3(0),
Q®,9)(t) = (D + ADP ) y(t) - fo (8 x(2), 5(2)).
For some €1, &, > 0, we consider the following inequality:
Q@] <er Q)] <e (4.1)

Definition 3 The coupled system (1.1) is said to be Ulam—Hyers stable if there exist
V1, V2 > 0 such that, for every solution (x*,y*) € C([0, T],R) x C([0, T'], R) of inequality
(4.1), there exists a unique solution (x, y) € C([0, T],R) x C([0, T], R) of problem (1.1) with

1) = (x%,5%) |, < Vi1 + Vaea (4.2)

Theorem 3 Let the assumptions of Theorem 1 hold. Then problem (1.1) is Ulam—Hyers
stable.

Proof Let (x,y) € C([0, T],R) x C([0, T], R) be the solution of problem (1.1) satisfying (3.1)
and (3.2). Let (x*,5*) be any solution satisfying (4.1):

(D* + AD* )& (2) = £i (8,2 (2), y* () + Qi (x",5") ),
(D + 2D 1)y (8) = fo(t, (1), 7 (0)) + Qa (x",5*) (8).

So

() = To (#,57) () + fo (£ = P Era(=Ait = Qi (&, y") () dr

2 . ‘
+ Z Vj(/’j(t)/(; (n =17 Erasjo1 (A0 = r)Qu(x%,y*) (r) dr
1

2 T
+ Z w;(t) /0 (T = 1)*TEyqsjor (=3 T = 1)Qu (6%, 5*) (r) dr.

j=1

It follows that
| T (%, 5) () — x*(2)|

t 2 n .
< / (=) Eyg (At —r)drer+ Y [vllgl / (1= )" TEyqujoa (1150 = r) dre
0 0

j=1
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2 T
Dl [ =0 By (5T =) drey
0

j=1

2
< (T“a,w(w )+ Y illglin T Evasja (121:m)
j=1

2
+ Z [ 5 ”wj”Ta_jEl,on—l(p‘-h T)>81

j=1
=: L[“sl.

Similarly,

| T2 (%, 5*) (1) — y*(2)|

2
< (TﬂELﬂH(w T) + > WilllgilnTEr i (121 m)
j=1
2
+ Y il TP 7By poja (12 T)>82
j=1
=: Uﬁé‘l.

Therefore, we deduce by the fixed point property of the operator ¥, given by (3.1) and

(3.2), that

|x(t) —x*(t)| = |x(t) -T (x*,y*)(t) + T (x*,y*)(t) —x*(t)|

< | T p)@) - To (2, y*) (0] + | T2 (5%, ) (&) - x*(2)|

< (Lp + LU || (e y) = (2597 || + U,
and similarly

|y(t) —J’*(t)| = |)’(t) = To(x",y") (@) + To(x",5") (2) —y*(t)|
< (L + LYUP || (x,9) = (x*,5%) | + U &2

From (4.3) and (4.4) it follows that

) = (59%) | o, < (@p + LU + Ly + LYUP) || (,9) — (x%,0%) |, + U%er + Ul e,

and
) - (3°) |, < e e
P oo = T2y + Lyt + Ly + L) UP)
= V181 + V282,
with
Ua
Vi

T 1= ((Ly + LU + (Ly + L) UP)’

Page 12 of 15
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Up
V= .
2T Ly + LU + (Ly + L UP)
Thus, problem (1.1) is Ulam—Hyers stable. (

5 Application

We consider the following fractional order coupled system:

(D¥ + 2D Vx(t) = L1200 1<ca<2,0<t<T,

L+ly(0)l’
(DF + 2DP1)y(0) = Ly(sina(t) + (cos Da(t)), 1<p=<2,0<t=T,
vix(n) + p1x(T) = Ly oT ulf\(?(lt)\ ds,

viy(n) + wn(T) = Ly, [} (siny(t) + cos y(£)) ds,

T
sz/(n) + /’sz/(T) = Lg fo 21|f‘(i>(|t)‘ dS,

12y () + 112y (T) = Lg [} (siny(t) + cos y(£)) ds.

Here
) =L fn) = L(sinx + (cos ), hx) = Ly—2—,
1+ 1y 11 + |x|
. || .
hy(y) = Ly(siny + cos y), gi1(w) = Lgm: &(y) = Lg(siny + cosy).

m(trxlﬁyl) _ﬁ(t;xZ;y2)| =< Lflyl _y2|r Vﬁ(t,xl1yl) _ﬁ(terry2)| < Lf|xl _x2|r
|h1(t,x1) - h1(t,x2)| < Lplx1 —x2], |h2(t,y1) - hz(t,y2)| < Lply1 - yal,

g1 (t,x1) — g1(t, %) | < Lglxr — %2, l&2(t.1) = &2(6,2)| < Lglyr - yal,

therefore (A1) is satisfied. It is obvious that Ly, Ly, L, > 0 can be chosen so that condition
(Ay) is satisfied. Therefore, coupled system (1.1) has a unique solution and is Ulam—Hyers
stable.

6 Conclusion

Here we have studied the existence and uniqueness of the solutions as well as the Ulam—
Hyers stability for a coupled sequential fractional system with integral boundary condi-
tions. As a future work, one can generalize different concepts of stability and existence
results to an impulsive fractional system, a neutral time-delay system/inclusion, and a
time-delay system/inclusion with finite delay.
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