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Abstract
In computer networks, the feasibility of data transmission can be measured in terms
of fractional factor model, and specifically the framework of fractional critical deleted
graph can express the setting when certain sites and channels are unavailable at a
special time. We study the relationship between some parameters in graphs and the
existence of fractional (g, f )-factor in various settings here. Our main contributions are
three-fold: first, a connectivity condition for a graph to be fractional (g, f ,n′,m)-critical
deleted is determined; second, the relationship between independence number and
fractional ID-(g, f ,m)-deleted graphs is studied; third, an isolated toughness bound for
fractional (g, f )-factors is given in balanced bipartite graph setting. Furthermore, by
showing counterexamples we explain that bounds for parameters are tight in some
sense, and corresponding conditions in all fractional factor settings are discussed as
well. Finally, two open problems are proposed for future research.
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1 Background and concepts
In the mathematical modeling of computer networks, a common method is to represent
the sites as vertices, and the channels between the sites as edges, so that the whole network
is represented by a corresponding graph (see Trentin and Iorio [30], Nielsen and Pedersen
[21], Bloem-Reddy and Orbanz [2], and Nghe et al. [20]). The direction of an edge is used
to indicate the direction of a transmitted data stream. In this way, if there is a restriction
of data flow from site to site, then the network corresponds to a directed graph. Instead,
if there is no restriction of data flow direction (for any edge e = uv, the data can be trans-
mitted both from u to v and from v to u), then the network corresponds to an undirected
graph. Therefore, when we discuss the data flow problem in the network, it’s converted
into the fractional flow problem in graph theory. The feasibility of data transmission in
the network corresponds to the existence of fractional factors in a specific setting.

In a traditional data transmission network, the data transmission path between the sta-
tions is obtained by finding a path with the smallest weight, and the corresponding strategy
is the shortest path algorithm. The limitation of this transmission approach is that when
the peak period of data transmission comes, some channels can’t bear the massive amount
of transmission at the same time and cause congestion. At this time, other data packets
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can’t be transmitted through the channel where the information is congested because the
transmission path is determined by the shortest path selection strategy. This makes it nec-
essary to wait for a long time for the data to pass through these channels, and eventually
the transmission speed of the entire network is reduced.

In order to overcome this problem, network experts have proposed the concept of soft-
ware defined networking (SDN) in recent years (see Sahoo et al. [26], Ikarashi et al. [15],
Salman et al. [27], Satchou et al. [28] and Kaur et al. [16]). The most attractive feature of
SDN is that it can calculate the data flow in the whole network in real time and select the
path that can reach the destination as soon as possible, and thus avoid the congestion chan-
nels. To make a metaphor, traditional network transmission is similar to a “bus”, with fixed
routes and docked stations; and SDN is a “taxi”, which can make route adjustments accord-
ing to the road conditions at that time, avoiding the congested sections and reaching the
destination the fastest. In the graph theory model, we remove the vertices corresponding
to the blocked sites and the edges corresponding to the blocked channels from the orig-
inal network graph, and search for the corresponding fractional factors in the remaining
graphs. Therefore, the data transfer feasibility problem under the SDN framework can be
converted into related problems of the fractional critical graph and the fractional deleted
graph.

More extensive studies on SDN can be found in Bukhari et al. [4], Maity et al. [19], Sadik
et al. [25], Shah et al. [29], and Vizarreta et al. [31].

Only simple graphs (finite, undirected, and without multi-edge and loop) are consid-
ered in our paper. Assume G is a graph with vertex set V (G) and edge set E(G). Denote
by dG(v) and NG(v) (or simply by d(v) and N(v)) the degree and the neighborhood of
v ∈ V (G), respectively. Set NG[v] = NG(v) ∪ {v}. For S ⊆ V (G), we denote as G[S] the sub-
graph of G induced by S, and set G – S = G[V (G) \ S]. Set eG(S, T) = |{e = uv|u ∈ S, v ∈ T}|
for two vertex-disjoint subsets S, T ⊂ V (G). We denote the minimum degree of G by
δ(G) = minv∈V (G){d(v)}. A subset I ⊆ V (G) is independent if uv /∈ E(G) for any u, v ∈ I . The
independence number of G is denoted as α(G) which is formulated by α(G) = max{|I| :
I is an independent set}. For an incomplete graph, S ⊂ V (G) is a vertex-cut if G – S has
more connected components than G. A vertex-cut with least cardinality is named a min-
imum vertex-cut of G, and its cardinality is the connectivity of G denoted by κ(G). The
terms used without clear definitions in the article can be found in the classic book [3]
written by Bondy and Murty.

Let g and f be nonnegative integer-valued functions defined on the vertex set of G sat-
isfying g(v) ≤ f (v) for any v ∈ V (G). A fractional (g, f )-factor is a function h defined on the
edge set E(G) so h(e) ∈ [0, 1] and g(v) ≤ ∑

e∼v h(e) ≤ f (v), where e ∼ v shows that vertex v
is an endpoint of edge e. A fractional (g, f )-factor is a fractional [a, b]-factor, a fractional
f -factor, and a fractional k-factor if g(v) = a and f (v) = b for all v ∈ V (G), g(v) = f (v) for all
v ∈ V (G), and g(v) = f (v) = k (k ≥ 1) for all v ∈ V (G), respectively.

If for every edge subset H ⊆ E(G) and |H| = m, a fractional (g, f )-factor h exists so that
h(e) = 0 for any e ∈ H , then G becomes a fractional (g, f , m)-deleted graph. Equivalently,
the resulting graph admits a fractional (g, f )-factor after removing any m edges. A graph
G becomes a fractional (g, f , n′)-critical graph if after any n′ vertices are deleted from G,
the resulting graph admits a fractional (g, f )-factor. The concept of fractional (g, f , n′, m)-
critical deleted graph can be regarded as a combination of fractional (g, f , n′)-critical graph
and fractional (g, f , m)-deleted graph, i.e., a graph G is fractional (g, f , n′, m)-critical deleted
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if after n′ vertices are deleted from G, the rest of the graph is a fractional (g, f , m)-deleted
graph. For some recent advances on the existence of a fractional factor in various settings,
we can refer to Gao et al. [7–10, 12], Liu et al. [18], and Zhou et al. [34, 35, 37, 39–43].

In this paper, we mainly study the data transmission feasibility problem in software de-
fined networking from the view point of graph theory. The rest of the article is organized
as follows. First, we introduce our main conclusions and some useful lemmas. Second, the
detailed proofs are presented. Next, we show the sharpness of the given bounds. Then,
the sufficient conditions in the setting of all fractional factor frameworks are discussed.
Finally, several open problems are posed.

2 Main results and useful lemmas
Our first result reveals the relationship between connectivity and fractional (g, f , n′, m)-
critical deleted graphs, which improves the results given in Bian and Zhou [1], and Yuan
and Hao [33].

Theorem 1 Assume G is a graph, and b, a, n′, m, � are nonnegative integers. Let functions
g , f be integer-valued on V (G) satisfying 1 ≤ a ≤ g(x) ≤ f (x)–� ≤ b–� for every x ∈ V (G).
If κ(G) ≥ max{ (b–�+1)2

2 + n′ + 2m
a+�

, (b–�+1)2α(G)+4((a+�)n′+2m)
4(a+�) }, then G is fractional (g, f , n′, m)-

critical deleted.

From Theorem 1, the connectivity condition for a graph to be fractional (g, f , n′)-critical
and fractional (g, f , m)-deleted can be obtained by taking m = 0 and n′ = 0, respectively.
Furthermore, the connectivity condition for fractional (a, b, n′, m)-critical deleted graph,
fractional (f , n′, m)-critical deleted graph, and fractional (k, n′, m)-critical deleted graph
can be determined using Theorem 1 in terms of fixing functions g , f in the special settings.
Here, we do not list the corollaries one by one.

A fractional ID-(g, f , m)-deleted graph is an unusual kind of fractional (g, f , n′, m)-critical
deleted graph when n′ deleted vertices constitute an independent set, i.e., a graph is
named as fractional independent-set-deletable (g, f , m)-deleted graph (shortly, fractional
ID-(g, f , m)-deleted graph) if G – I is fractional (g, f , m)-deleted for arbitrary indepen-
dent set I ⊆ V (G). A fractional ID-(a, b, m)-deleted graph and fractional ID-(k, m)-deleted
graph can be defined in a special setting of functions g and f . If m = 0, a fractional ID-
(g, f , m)-deleted graph is simply a fractional ID-(g, f )-factor-critical graph.

Our second result uncovers the relationship between α(G) and fractional ID-(g, f , m)-
deleted graph, which is stated as follows.

Theorem 2 Assume G is a graph, and b, a, n′, m, � are nonnegative integers. Let functions
g , f be integer-valued defined on V (G) so that 1 ≤ a ≤ g(x) ≤ f (x) – � ≤ b – � for every
vertex x. If

α(G) ≤ 4((a + �)(δ(G) – b + � + 1) – 2m)
(b – � + 1)2 + 4(a + �)

,

then G is fractional ID-(g, f , m)-deleted.

The α(G) condition for a graph to be fractional ID-(g, f )-factor-critical can be yielded
by setting m = 0 in above theorem, and the corresponding condition for fractional ID-
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(a, b, m)-deleted graph can be obtained by setting f (x) = b and g(x) = a for every x ∈ V (G).
The detailed statement of these corollaries are not provided.

Yang et al. [32] introduced isolated toughness with the function to evaluate the vulnera-
bility of the network and denoted it as I(G). For a complete graph G, its isolated toughness
equals to ∞. Otherwise,

I(G) = min

{ |S|
i(G – S)

∣
∣
∣S ⊂ V (G), i(G – S) ≥ 2

}

,

where the number of isolated vertices of G – S is denoted by i(G – S).
There are several articles contributing to the description of the relationship between

the existence of fractional factors and isolated toughness. Li et al. [17] presented the tight
isolated toughness condition for a graph to be fractional k-deleted. Zhou and Pan [38] pro-
posed an isolated toughness condition for a graph to be fractional (a, b, k)-critical. Zhou
et al. [36] put forward an isolated toughness condition for fractional (g, f )-factors. Gao
and Wang [13] looked into the relationship between isolated toughness and a graph to be
fractional (g, f , n)-critical. Very recently, Gao et al. [11] derived an isolated toughness con-
dition for graphs to be fractional (k, m)-deleted graphs, but the sharp isolated toughness
bound for a graph to be fractional (k, m)-deleted is still open.

A graph G is called a bipartite graph if its edge set is expressed as E(G) = {xy|x ∈ X, y ∈
Y }, i.e., its vertex set can be divided into subsets X and Y , and E(G[X]) = E(G[Y ]) = ∅.
When it comes to bipartite setting (as well as directed graph), the condition of factor and
fractional factor can be transformed into the different versions which stated two parts,
respectively (see Folkman and Fulkerson [5], and Ore [22–24] for more details).

In the bipartite graph setting, the isolated toughness can be redefined as

IB(G) = min

{ |S|
i(G – S)

: S ⊆ X or Y , i(G – S) ≥ 2
}

,

where G = (X, Y ; E(G)) is an incomplete bipartite graph. For a complete bipartite graph G,
IB(G) = ∞.

Here, we present a conclusion on the relationship between isolated toughness and the
existence of a fractional (g, f )-factor in a balanced (|X| = |Y |) bipartite graph.

Theorem 3 Assume G = (X, Y ; E(G)) is a bipartite graph. Let b, a, � be three nonnegative
integers with 1 ≤ a ≤ b – �, and functions f , g be integer-valued on V (G) satisfying a ≤
g(x) ≤ f (x) – � ≤ b – � for every x ∈ V (G). Let |X| = |Y | = n > (b+a+2)(b+a–2)

4(a+�) , f (X) = f (Y )
and g(X) = g(Y ). Then G admits a fractional (g, f )-factor if IB(G) > n–1

2
√

(a+�)n+1–b–a .

The proof of our first two results depends on the lemmas below, which manifest the
necessary and sufficient condition for fractional (f , g, n′, m)-critical deleted graphs.

Lemma 1 (Gao [6]) Assume G is a graph, functions g , f are integer-valued on V (G) such
that g(x) ≤ f (x) for every vertex x in G. Set n′, m as nonnegative integers. Then G is frac-
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tional (g, f , n′, m)-critical deleted graph iff

f (S) + dG–S(T) – g(T)

≥ max
U⊆S,H⊆E(G–U),|U|=n′ ,|H|=m

{

f (U) – eH (T , S) +
∑

x∈T

dH (x)
}

for any two disjoint subsets T , S of V (G) with |S| ≥ n′.

Taking n′ = 0, we get the sufficient and necessary condition for fractional (g, f , m)-
deleted graphs from Lemma 1.

Lemma 2 Assume G is a graph, functions g , f are integer-valued on V (G) with g(x) ≤ f (x)
for every vertex x in G. Let m be a nonnegative integer and H a subgraph of G with m edges.
Then G is fractional (g, f , m)-deleted iff

f (S) + dG–S(T) – g(T) ≥
∑

x∈T

dH (x) – eH (T , S) (1)

for all disjoint subsets T , S ⊆ V (G).

Since the necessary and sufficient condition for (g, f )-factors can be used in fractional
(g, f )-factors, in light of Folkman and Fulkerson [5], we get the sufficient and necessary
condition for the existence of fractional (g, f )-factor in the setting of bipartite graph which
plays a crucial role in the proof.

Lemma 3 Assume G = (X, Y , E(G)) is a bipartite graph, functions g and f are positive
integer-valued on V (G) such that g(x) ≤ f (x) for any vertex x in G. Then G has a fractional
(g, f )-factor iff for any T ⊆ Y and S ⊆ X, we have

f (S) + dG–S(T) – g(T) ≥ 0

and

f (T) – g(S) + dG–S(S) ≥ 0.

3 Proof of theorems
This section presents proofs of Theorems 1–3 by constructing counterexamples and de-
ducing contradiction from the necessary and sufficient conditions presented in Lem-
mas 1–3.

3.1 Proof of Theorem 1
In this subsection, we argue by contradiction to prove Theorem 1.

Assume G is a graph meeting the assumption of Theorem 1 without being a fractional
(g, f , n′, m)-critical deleted graph. In light of Lemma 1 and

∑
x∈T dH (x) – eH (T , S) ≤ 2m,

there exist disjoint subsets S and T of V (G) so that

(� + a)
(|S| – n′) + dG–S(T) – (b – �)|T | ≤ f (S – U) + dG–S(T) – g(T) ≤ 2m – 1, (2)
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where U ⊆ S with |S| ≥ |U| = n′; S and T are selected with minimum |T |. Therefore,
for every x ∈ T , we obtain dG–S(x) ≤ g(x) – 1 ≤ b – 1 – �. If some x ∈ T exists to sat-
isfy dG–S(x) ≥ g(x) ≥ b – �, S and T \ {x} also satisfies (2), we get a contradiction to the
choice of T and S.

If |T | = 0, then
∑

x∈T dH (x) – eH (T , S) = 0, and we immediately get a contradiction using
Lemma 1 again. Thus, T 
= ∅.

Set T1 = G[T], which is the subgraph induced by T . Select v1 ∈ T1 satisfying dT1 (v1) =
δ(T1) and set L1 = NT1 [v1]. For i ≥ 2, select vi ∈ Ti = T1 –

⋃
1≤j<i Lj with dTi (vi) = δ(Ti) and

Li = NTi [vi]. Set |Li| = di. Repeat the procedure until Ti = ∅ for some i; assume i = r + 1.
Thus, {v1, v2, . . . , vr} ⊆ V (G) is an independent set. Furthermore, we get r ≥ 1 and T =
∑

1≤i≤r di. Set U = V (G) \ (S ∪ T) and κ(G – S) = t.
Next, we provide some useful claims.

Claim 1 (a+b+1)2–4
4(a+�) ≤ (b–�+1)2

2 .

Proof of Claim 1 It is enough to prove 2(� + a)(b + 1 – �)2 + 4 – (b + a + 1)2 ≥ 0. Let
a + � = x1 ≥ 1 and b – � + 1 = x2 ≥ 2. Then, 2(a + �)(b – � + 1)2 – (a + b + 1)2 + 4 =
2x1x2

2 – (x1 + x2)2 + 4 = 2x1x2
2 – x2

1 – x2
2 – 2x1x2 + 4. Set

Ψ (x2) = 2x1x2
2 – x2

1 – x2
2 – 2x1x2 + 4 = (2x1 – 1)x2

2 – 2x1x2 – x2
1 + 4.

Note that 2x1 – 1 ≥ 1, and so when x2 = x1
2x1–1 , Ψ (x2) reaches the minimum value. Further-

more, Ψ (x2) is monotonically increasing when x2 > x1
2x1–1 . However, x2 ≥ 2 and x1

2x1–1 ≤ 1.
Hence, since x1 ≥ 1, we have

Ψ (x2) ≥ Ψ (2) = –x2
1 + 4x1 > 0.

Thus, the proof of Claim 1 is finished. �

Claim 2 U 
= ∅ or r ≥ 2.

Proof of Claim 2 Suppose that r = 1 and U = ∅. Using (2), we have

(a + �)
(|S| – n′) + d1(d1 – 1) – (b – �)d1

= (a + �)
(|S| – n′) + dG–S(T) – (b – �)|T | ≤ 2m – 1,

which implies

|S| ≤ –d2
1 + d1 + (b – �)d1 + 2m – 1

a + �
+ n′.

By means of Claim 1, we infer

∣
∣V (G)

∣
∣ = |S| + d1 ≤ –d2

1 + d1 + (b – �)d1 + 2m – 1
a + �

+ n′ + d1

=
–d2

1 + d1 + (b – �)d1 + (� + a)d1

� + a
+ n′ +

2m – 1
� + a
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=
–d2

1 + d1(b + a + 1)
� + a

+ n′ +
2m – 1
� + a

≤ (b + a + 1)2

4(� + a)
+ n′ +

2m – 1
� + a

≤ (b + 1 – �)2

2
+ n′ +

2m
� + a

,

which contradicts the fact that |V (G)| > κ ≥ (b+1–�)2

2 + 2m
a+�

+ n′. �

Claim 3
∑

v∈T dG–S(v) ≥ ∑
1≤i≤r(d2

i – di) + rt
2 .

The proof of Claim 3 can be found in the work of Yuan and Hao [33].
In light of Claim 3, (b–�+1)2

4 + d2
i ≥ (b – � + 1)di, and, due to the fact that |T | =

∑
1≤i≤r di,

we deduce

2m – 1 ≥ (|S| – n′)(� + a) + dG–S(T) – (b – �)|T |
≥ (|S| – n′)(� + a) +

∑

1≤i≤r

(
d2

i – di
)

+
rt
2

– (b – �)|T |

= (a + �)
(|S| – n′) +

∑

1≤i≤r

di(di – 1) +
rt
2

– (b – �)
∑

1≤i≤r

di

= (a + �)
(|S| – n′) +

∑

1≤i≤r

(
d2

i – (b – � + 1)di
)

+
rt
2

≥ (a + �)
(|S| – n′) –

(b – � + 1)2r
4

+
rt
2

.

Claim 4 – (b–�+1)2

4 + t
2 < 0.

The proof of Claim 4 can be found in the work of Bian and Zhou [1].
In view of (2), Claims 3–4, α(G) ≥ α(G[T]) ≥ r, and the condition of Theorem 1, we get

2m – 1 ≥ (a + �)
(|S| – n′) –

(b – � + 1)2

4
r +

rt
2

= (a + �)
(|S| – n′) +

(

–
(b + 1 – �)2

4
+

t
2

)

r

≥ (a + �)
(
κ(G) – t – n′) +

(

–
(b + 1 – �)2

4
+

t
2

)

α(G)

≥ (� + a)
(
κ(G) – t – n′) +

(

–
(b + 1 – �)2

4
+

t
2

)

× 4(� + a)κ(G) – 4((� + a)n′ + 2m)
(b – � + 1)2

= (a + �)t
(

2κ(G) – 2n′

(b – � + 1)2 – 1
)

+ 2m –
4mt

(b – � + 1)2

≥ (a + �)t
(2( 2m

a+�
+ n′ + (b+1–�)2

2 ) – 2n′

(b + 1 – �)2 – 1
)

+ 2m –
4mt

(b + 1 – �)2

= 2m,

a contradiction.
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Thus, we complete the proof of Theorem 1.

3.2 Proof of Theorem 2
Assume I ⊂ V (G) is an independent set and G′ = G – I . Clearly, we have δ(G′) ≥ δ(G) – |I|,
and Theorem 2 holds if and only if G′ is fractional (g, f , m)-deleted. To the contrary,
we assume that G′ is not a fractional (g, f , m)-deleted graph. In view of Lemma 2 and
∑

x∈T dH (x) – eH (T , S) ≤ 2m for any subset H with |E(H)| = m, non-disjoint subsets
S, T ⊆ V (G′) exist, satisfying

|S|(� + a) + dG′–S(T) – (b – �)|T | ≤ f (S) – g(T) + dG′–S(T) ≤ 2m – 1. (3)

Choose T and S with minimum |T |, and we have dG′–S(x) ≤ b – 1 – � for each x ∈ T
and |T | 
= 0 (if T = ∅, then

∑
x∈T dH (x) – eH (T , S) = 0, and a contradiction is obtained via

Lemma 2 again).
Assume d1 = min{dG′–S(x) : x ∈ T} and select v1 ∈ T having dG′–S(v1) = d1. We obtain

0 ≤ d1 ≤ b – � – 1. Now, we present a lower bound of |S| with regard to δ(G) and α(G).

Claim 5 |S| ≥ δ(G) – α(G) – d1.

Proof of Claim 5 Obviously,

δ
(
G′) ≤ dG′ (v1) ≤ dG′–S(v1) + |S| = d1 + |S|,

which implies |S| ≥ δ(G′) – d1. Combining this fact with δ(G′) ≥ δ(G) – |I| yields

|S| ≥ δ(G) – |I| – d1. (4)

From (4) and |I| ≤ α(G), we get the desired claim. �

Consider the subgraph T1 = G′[T]. The following procedure is similar to that in Sect. 3.1.
Select v1 ∈ T1 which satisfies dT1 (v1) = δ(T1) and set L1 = NT1 [v1]. For i ≥ 2, select vi ∈
Ti = T1 –

⋃
1≤j<i Lj with dTi = δ(Ti) and Li = NTi [vi]. Set |Li| = di. Repeat the procedure

until Ti = ∅ for some i; assume i = r + 1. Thus, {v1, v2, . . . , vr} ⊆ V (G) is an independent set.
Furthermore, we get r ≥ 1, α(G′[T]) ≥ r and T =

∑
1≤i≤r di.

Due to α(G) ≥ α(G[T]) = α(G′[T]), we derive

α(G) ≥ r. (5)

Inspired by Claim 3 in Sect. 3.1, we prove the claim below.

Claim 6 dG′–S(T) ≥ ∑
1≤i≤r(d2

i – di).

Proof of Claim 6 Since the choice of vi demonstrates that each vertex in Li has degree at
least di – 1 in Ti, we infer

∑

1≤i≤r

(∑

x∈Li

dTi (x)
)

≥
∑

1≤i≤r

(
d2

i – di
)
.
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Thus, we have

dG′–S(T) ≥
∑

1≤i≤r

(
d2

i – di
)

+
∑

1≤i<j≤r

eG′ (Li, Lj) ≥
∑

1≤i≤r

(
d2

i – di
)
,

and so we complete the proof of Claim 6. �

In light of Claims 5–6, the results deduced above, the assumption

α(G) ≤ 4((a + �)(δ(G) – b + � + 1) – 2m)
(b – � + 1)2 + 4(a + �)

,

and the fact that d2
i – (b – � + 1)di ≥ – (b–�+1)2

4 , we obtain

2m – 1 ≥ (a + �)|S| – (b – �)|T | + dG′–S(T)

≥ (a + �)
(
δ(G) – d1 – α(G)

)
– (b – �)

∑

1≤i≤r

di +
∑

1≤i≤r

(
d2

i – di
)

= (a + �)
(
δ(G) – d1 – α(G)

)
+

∑

1≤i≤r

(
d2

i – (b – � + 1)di
)

≥ (a + �)
(
δ(G) – d1 – α(G)

)
–

∑

1≤i≤r

(b – � + 1)2

4

= (a + �)
(
δ(G) – d1 – α(G)

)
– r

(b + 1 – �)2

4

≥ (a + �)
(
δ(G) – d1 – α(G)

)
– α(G)

(b + 1 – �)2

4

= (a + �)
(
δ(G) – d1

)
–

4(a + �) + (b + 1 – �)2

4
α(G)

≥ (a + �)
(
δ(G) – b + 1 + �

)

–
(b + 1 – �)2 + 4(a + �)

4
4((a + �)(δ(G) – b + � + 1) – 2m)

(b – � + 1)2 + 4(a + �)
= 2m,

a contradiction. Thus, the desired conclusion follows.

3.3 Proof of Theorem 3
The main purpose in this section is to prove the result in the bipartite graph setting.

We suppose that a bipartite graph G satisfies the assumption in Theorem 3, without a
fractional (g, f )-factor. By Lemma 3, S ⊆ X and T ⊆ Y exist satisfying

f (S) + dG–S(T) – g(T) < 0 (6)

or

f (T) – g(S) + dG–S(S) < 0. (7)
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Since the status of X and Y in the bipartite graph is symmetrical, we assume (6) holds
(the case when (7) holds can be discussed similarly). We have

dG–S(T) ≤ g(T) – 1 – f (S) ≤ (b – �)|T | – (a + �)|S| – 1. (8)

The discussion below is divided into two parts based on the relationship between |S| + |T |
and n.

Case 1. |S| + |T | ≤ n.
Let y0 ∈ T be the vertex adjacent to the least number (this number is denoted by d) of

vertices in X – S. According to (8), we have d|T | ≤ (b – �)|T | – 1 – |S|(a + �) and then
|S| ≤ (b–�–d)|T |–1

a+�
. Combining with |S| + |T | ≤ n, we get |S| ≤ (b–�–d)n–1

a+b–d . Set T ′ = Y – {y0}.
We obtain |T ′| = n – 1 and i(G – T ′) ≥ n – d – |S| ≥ n – (b–�–d)n–1

a+b–d – d = b + a – d + (a+�)n+1
a+b–d –

b – a ≥ 2
√

(a + �)n + 1 – b – a > 0. Therefore, we infer

IB(G) ≤ |T ′|
i(G – T ′)

≤ n – 1
n – d – |S| ≤ n – 1

2
√

(� + a)n + 1 – b – a
,

a contradiction.
Case 2. |T | + |S| > n.
Set T ′ = Y – T and S′ = X – S. We have |S′| + |T ′| < n. In light of dG–S(T) = dG–T ′ (S′) and

(8), we deduce

dG–T ′
(
S′) ≤ g(T) – 1 – f (S) = g

(
Y – T ′) – 1 – f

(
X – S′)

= g(Y ) + f
(
S′) – f (X) – 1 – g

(
T ′)

≤ f
(
S′) – 1 – g

(
T ′)

≤ (b – �)
∣
∣S′∣∣ – (a + �)

∣
∣T ′∣∣ – 1.

If |T ′| = 0, then dG–T ′ (S′) ≥ b|S′| contradicts the above inequality. Hence, |T ′| ≥ 1. Sim-
ilarly, we have |T ′| ≤ n – 1. Now we exchange |T | and |S| with |S′| and |T ′|, respec-
tively. Using the same arguments as in Case 1 (i.e., when |S| + |T | ≤ n), we can obtain
IB(G) ≤ n–1

2
√

(�+a)n+1–b–a which contradicts the assumption of Theorem 3.

4 Sharpness
In this section, we analyze the sharpness of our results.

4.1 Tightness of κ (G) condition in Theorem 1
First, let’s show that the condition κ(G) ≥ (b–�+1)2

2 + 2m
a+�

+ n′ can’t be replaced by
(b–�+1)2

2 + 2m
a+�

+ n′ – 1. Let b, a, n′, m, � be five integers with 1 ≤ b – � = a, and
G = K (b+1–�)2

2 +n′+ 2m
a+�

–1
∨ ((b+1–�)2–2)b+2+4m

2a K1 where both b((b+1–�)2–2)+2+4m
2a and (b–�+1)2

2 +
2m

a+�
+ n′ – 1 are integers. Set S = V (K (b+1–�)2

2 +n′+ 2m
a+�

–1
) and T = V ( b((b+1–�)2–2)+4m+2

2a K1). Set

f (x) = b = a+� and g(x) = a for all vertices x in G. We have κ(G) = (b–�+1)2

2 +n′ + 2m
a –1 > n′,

|S| = (b–�+1)2

2 + n′ + 2m
a – 1, |T | = b((b–�+1)2–2)+4m+2

2a , and dG–S(T) = 0. Let U ⊂ S, H ⊆
E(G – U) with |U| = n′ and |H| = m. One can check that eH (T , S) =

∑
x∈T dH (x). Therefore,
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we obtain

f (S – U) – g(T) + dG–S(T) –
(∑

x∈T

dH (x) – eH (T , S)
)

=
(|S| – n′)b – a|T | + dG–S(T)

= b
(

(b – � + 1)2

2
+

2m
a + �

– 1
)

– a
b((b – � + 1)2 – 2) + 4m + 2

2a

= –1.

By means of Lemma 1, G is not fractional (g, f , n′, m)-critical deleted.
The condition κ(G) ≥ (b–�+1)2α(G)+4((a+�)n′+2m)

4(a+�) = ( b–�+1
2 )2α(G)+(a+�)n′+2m

a+�
in Theorem 1 is

best possible, since it can’t be replaced by ( b–�+1
2 )2α(G)+(a+�)n′+2m–1

a+�
. Let G =

K ( b–�+1
2 )2r+(a+�)n′+2m–1

a+�

∨ (rK b–�+1
2

), where b, a, n′, m, � are nonnegative integers with

1 ≤ b – � = a, r is a large integer, and both ( b–�+1
2 )2r+(a+�)n′+2m–1

a+�
and b–�+1

2 are integers. It’s

checked that α(G) = r and κ(G) = ( b–�+1
2 )2r+(a+�)n′+2m–1

a+�
. Let f (x) = � + a = b and g(x) = a

for all vertices x in G. Set T = V (rK b–�+1
2

), S = V (K ( b+1–�
2 )2r+(�+a)n′–1+2m

a+�

), and let U ⊂ S and

H ⊆ E(G – U) be such that |U| = n′ and |H| = m. Using
∑

x∈T dH (x) – eH (T , S) ≤ 2m for
any edge set H in G – U , we infer

f (S – U) – g(T) + dG–S(T) –
(∑

x∈T

dH (x) – eH (T , S)
)

≥ (|S| – n′)b – a|T | + dG–S(T) – 2m

=
( b–�+1

2 )2r + 2m – 1
� + a

b +
(b + 1 – �)r

2

(
b + 1 – �

2
– 1

)

– a
(b + 1 – �)r

2
– 2m

= –1.

Then, in view of Lemma 1, we confirm that G is not fractional (g, f , n′, m)-critical deleted.

4.2 Tightness of α(G) condition in Theorem 2
Now, we illustrate the sharpness of Theorem 2. Let G = Kt ∨ (t + 1)Kb+1 where t =
� 4((a+�)(δ(G)–b+�+1)–2m)

(b+1–�)2+4(�+a) � is an integer (since δ(G) = b + t, and we can get the detailed ex-
pression of t according to specific a, b and �, if � is large enough and m is small enough).
We confirm that

4((a + �)(δ(G) – b + 1 + �) – 2m)
(b + 1 – �)2 + 4(� + a)

< α(G) = t + 1

=
⌊

4((� + a)(δ(G) – b + 1 + �) – 2m)
(b + 1 – �)2 + 4(� + a)

⌋

+ 1

≤ 4((� + a)(δ(G) – b + 1 + �) – 2m)
(b + 1 – �)2 + 4(� + a)

+ 1.

We take a vertex vi (1 ≤ i ≤ t + 1) in each Kb+1 and set I = {v1, v2, . . . , vt+1}. Hence, I is an
independent set of G and G′ = G – I = Kt ∨ (t + 1)Kb. Set S = V (Kt), T = V ((t + 1)Kb), f (x) =
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b = g(x) for each x ∈ V (T) and f (x) = a = g(x) if x ∈ V (S). We obtain |S| = t, |T | = (t + 1)b,
and dG′–S(T) = b(t + 1)(b – 1). Consider H ⊆ E(G[T]) with m edges and

∑
x∈T dH (x) –

eH (T , S) = 2m. Thus, we infer

f (S) – g(T) + dG–S(T) –
(∑

x∈T

dH (x) – eH (T , S)
)

= a|S| – b|T | + dG–S(T) – 2m

= at – (t + 1)b2 + b(t + 1)(b – 1) – 2m

= at – bt – b – 2m < 0.

In terms of Lemma 2, G′ is not fractional (g, f , m)-deleted, and thus G is not fractional
ID-(g, f , m)-deleted.

5 Discussions about all fractional factor settings
It’s said that there are all fractional (g, f )-factors in G if G has a fractional p-factor for each
p : V (G) → N with g(v) ≤ p(v) ≤ f (v) for any v ∈ V (G). If g(v) = a, f (v) = b for each vertex
v and G has all fractional (g, f )-factors, then G has all fractional [a, b]-factors. A graph G
is an all fractional (g, f , m)-deleted graph if after any m edges deleted, the resulting graph
has all fractional (g, f )-factors.

A graph G is an all fractional (g, f , n′, m)-critical deleted graph if after any n′ vertices
of G deleted, the remaining graph is an all fractional (g, f , m)-deleted graph. Set g(v) = a,
f (v) = b for each v ∈ V (G), then all fractional (g, f , n′, m)-critical deleted graph becomes
all fractional (a, b, n′, m)-critical deleted graph. Currently, Gao et al. [14] has put forward
the necessary and sufficient condition for a graph to be all fractional (g, f , n′, m)-critical
deleted.

Lemma 4 (Gao et al. [14]) Assume m and n′ are nonnegative integers. Set g, f : V (G) → Z
+

as integer-valued functions with g(x) ≤ f (x) for every vertex x in G, and H as a subgraph of
G having m edges. Then G is all fractional (g, f , n′, m)-critical deleted iff

g(S) +
∑

x∈T

dG–S(x) – f (T) ≥ max
U⊆S,H⊆E(G–U),|U|=n′ ,|H|=m

{

g(U) – eH (S, T) +
∑

x∈T

dH (x)
}

,

for any two non-disjoint subsets T , S ⊆ V (G) with |S| ≥ n′.

By setting n′ = 0 in Lemma 4, the sufficient and necessary condition for a graph to be all
fractional (g, f , m)-deleted can be immediately derived.

Lemma 5 Assume m is a nonnegative integer. Set g, f : V (G) → Z
+ as integer-valued func-

tions having g(x) ≤ f (x) for every x ∈ V (G), and H as a subgraph of G contains m edges.
Then G is all fractional (g, f , m)-deleted iff

g(S) +
∑

x∈T

dG–S(x) – f (T) ≥
∑

x∈T

dH (x) – eH (S, T),

for any non-disjoint subsets T and S of V (G).
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Using the same approach, the concepts of all fractional ID-(g, f , m)-deleted graph (or,
all fractional independent-set-deletable (g, f , m)-deleted graph), all fractional ID-(g, f )-
factor-critical graph can be defined as well. By setting f (x) = b and g(x) = a, these concepts
reduce to all fractional ID-(a, b, m)-deleted graph and all fractional ID-[a, b]-factor-critical
graph, respectively.

It’s easy to see that the necessary and sufficient conditions of the fractional critical
deleted graphs and all fractional critical deleted graphs share a lot of similarities in their
expressions, so it has inspired us to check it the proofs Theorems 1–3 above can also be
adapted to obtain the corresponding result in all fractional setting. In fact, such conclu-
sions can be gained easily.

Theorem 4 Assume G is a graph, and b, a, n′, m are nonnegative integers. Set g , f as
integer-valued functions on V (G) such that 1 ≤ a ≤ g(x) ≤ f (x) ≤ b for every vertex x
in G. Then G is all fractional (g, f , n′, m)-critical deleted if κ(G) ≥ max{ (b+1)2

2 + 2m
a +

n′, (b+1)2α(G)+4(an′+2m)
4a }.

Theorem 5 Assume G is a graph, and b, a, m are nonnegative integers. Set g , f as two
integer-valued functions on V (G) such that 1 ≤ a ≤ g(x) ≤ f (x) ≤ b for every vertex x in G.
Then G is all fractional ID-(g, f , m)-deleted if

α(G) ≤ 4(a(δ(G) + 1 – b) – 2m)
4a + (1 + b)2 .

Theorem 6 Assume G = (X, Y ; E(G)) is a bipartite graph, b, a are two positive integers with
1 ≤ a ≤ b, and functions g , f are integer-valued on V (G) such that a ≤ g(x) ≤ f (x) ≤ b for
each vertex x in G. Let n = |X| = |Y | > (b+a–2)(a+2+b)

4a , f (X) = f (Y ) and g(X) = g(Y ). Then G
admits an all fractional (g, f )-factor if IB(G) > n–1

2
√

an+1–b–a .

We discover that in the proofs of theorems, the first step is achieved in the following
way:

a|S| +
∑

x∈T

dG–S(x) – b|T | – an′ –
(∑

x∈T

dH (x) – eH (S, T)
)

≤ (|S| – n′)a –
(∑

x∈T

dH (x) +
∑

x∈T

(
dG–S(x) – b

)
– eH (S, T)

)

≤ g(S – U) +
∑

x∈T

(
dG–S(x) – f (x)

)
–

(∑

x∈T

dH (x) – eH (S, T)
)

≤ –1. (9)

Therefore, the remaining steps of the proofs are the similar to those in Sect. 2 (set � = 0)
except that bn′ is replaced by an′ for the critical part. This is why the above three theorems
can be obtained directly.

6 Conclusions and future works
In this paper, we emphasized the relationship between graph parameters and the exis-
tence of a fractional (g, f )-factor in different settings. Sufficient conditions were given
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in terms of connectivity, independence number, and isolated toughness. Moreover, the
sharpness of the first two conclusions was illustrated by constructing special graph
classes.

Although there have been several recent advances related to the existence of fractional
factor in various settings of this problem, the study of generalization properties of fac-
tional factors has been largely limited to special settings. The bipartite graph setting of
the fractional factor problem is perhaps the most important one, and, in fact, only one
theoretical result has been derived for it. We believe this subject could be deeply studied
in the future, and the following open problem is raised here.

Problem 1 What is the necessary and sufficient condition for fractional deleted graph and
fractional critical graph in the bipartite graph setting? Can isolated toughness condition in
Theorem 3 extend to a graph to be fractional (g, f , n′)-critical or to be fractional (g, f , m)-
deleted?

Note that the parameter �, to a certain extent, represents the difference between the
two functions g and f . When it comes to the fractional factor applications in computer
networks, � expresses the width of the packet size that the network site can bear. Obvi-
ously, this is a very important parameter which deserves further study. In the fractional
(g, f )-factor setting, we see that in the first step of proofs, we always use the inequality
(a + �)|S| + dG–S(T) – |T |(b – �) ≤ f (S) – g(T) + dG–S(T), and in this way � can be consid-
ered in the final obtained conditions. However, in the all fractional (g, f )-factor setting, in
view of Lemma 4, this inequality becomes a|S| + dG–S(T) – b|T | ≤ f (S) – g(T) + dG–S(T).
It seems that parameter � can’t participate in the derivation process, and this is the rea-
son why in Sect. 4 we need to skip � in the discussion. Intuition tells us that if we use
an appropriate trick, � would participate in the calculation, and this is what we need to
consider in the future.

Problem 2 How to make parameter � work in the all fractional (g, f )-factor setting?
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