A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem

G.J.O. Jameson ${ }^{1 *}$ ©

"Correspondence:
g.jameson@lancaster.ac.uk
${ }^{1}$ Department of Mathematics and Statistics, Lancaster University, Lancaster, UK

Abstract

Let $H_{n}=\sum_{r=1}^{n} 1 / r$ and $H_{n}(x)=\sum_{r=1}^{n} 1 /(r+x)$. Let $\psi(x)$ denote the digamma function. It is shown that $H_{n}(x)+\psi(x+1)$ is approximated by $\frac{1}{2} \log f(n+x)$, where $f(x)=x^{2}+x+\frac{1}{3}$, with error term of order $(n+x)^{-5}$. The cases $x=0$ and $n=0$ equate to estimates for $H_{n}-\gamma$ and $\psi(x+1)$ itself. The result is applied to determine exact bounds for a remainder term occurring in the Dirichlet divisor problem.

MSC: Primary 26D15; 33B15; secondary 11N37
Keywords: Harmonic sum; Euler's constant; Digamma function; Divisor problem

1 Introduction and summary of results

Write H_{n} for the harmonic sum $\sum_{r=1}^{n} \frac{1}{r}$. The following well-known estimation can be established by an Euler-Maclaurin summation, or by the logarithmic and binomial series:

$$
\begin{equation*}
H_{n}-\gamma=\log n+\frac{1}{2 n}-\frac{1}{12 n^{2}}+r_{n}, \tag{1}
\end{equation*}
$$

where γ is Euler's constant and

$$
0<r_{n} \leq \frac{1}{120 n^{4}}
$$

Since $\log \left(n+\frac{1}{2}\right)=\log n+\frac{1}{2 n}+O\left(\frac{1}{n^{2}}\right)$, it is a natural idea to absorb the term $\frac{1}{2 n}$ into the logarithmic term and compare $H_{n}-\gamma$ directly with $\log \left(n+\frac{1}{2}\right)$. This was done by De Temple [6]: he showed that

$$
\begin{equation*}
H_{n}-\gamma=\log \left(n+\frac{1}{2}\right)+\frac{1}{24\left(n+\frac{1}{2}\right)^{2}}-r_{n} \tag{2}
\end{equation*}
$$

where

$$
\frac{7}{960(n+1)^{4}} \leq r_{n} \leq \frac{7}{960 n^{4}} .
$$

(We will repeatedly re-use the notation r_{n} for the remainder term in estimations like this, with a new meaning each time.)

Negoi [9] demonstrated that the n^{-2} term can be absorbed into the log term by considering $\log h(n)$, where $h(n)=n+\frac{1}{2}+\frac{1}{24 n}$. His result is

$$
\begin{equation*}
H_{n}-\gamma=\log h(n)-r_{n}, \tag{3}
\end{equation*}
$$

where $\frac{1}{48}(n+1)^{-3} \leq r_{n} \leq \frac{1}{48} n^{-3}$. Numerous more recent articles have developed this process further. For example, Chen and Mortici [3] show that

$$
\begin{equation*}
H_{n}-\gamma=\log \left(n+\frac{1}{2}+\frac{1}{24 n}-\frac{1}{48 n^{2}}+\frac{23}{5760 n^{3}}\right)+O\left(n^{-5}\right) \tag{4}
\end{equation*}
$$

Further variations and extensions are given, for example, in [7] and [4], and in other references listed in these papers. One natural extension is the replacement of $H_{n}-\gamma$ by $\psi(x+1)$, where $\psi(x)$ is the digamma function $\Gamma^{\prime}(x) / \Gamma(x)$, since $H_{n}-\gamma=\psi(n+1)$.
A slightly different approach, which has proved quite effective, is to compare $H_{n}-\gamma$ or $\psi(x+1)$ with expressions of the form $\frac{1}{2} \log f(n)$. Using no more than the elementary inequalities $H_{n}-\gamma \leq \log n+\frac{1}{2 n}$ and $e^{x} \leq 1+x+x^{2}$, it is easily shown that $H_{n}-\gamma \leq \frac{1}{2} \log \left(n^{2}+\right.$ $n+1$). With $h(n)$ as in (3), we have $h(n)^{2}=n^{2}+n+\frac{1}{3}+O\left(\frac{1}{n}\right)$, suggesting that the right comparison is with $f(n)=n^{2}+n+\frac{1}{3}$. Indeed, with $f(n)$ defined in this way, Batir [2] and Lu [5] have shown, by different methods, that

$$
\begin{equation*}
H_{n}-\gamma=\frac{1}{2} \log f(n)-r_{n} \tag{5}
\end{equation*}
$$

where $r_{n} \sim 1 /\left(180 n^{4}\right)$. Lu obtained (5) as one case of a rather complicated analysis extending to further terms and parameters.

Our objective here is to refine and extend (5) by considering the sum

$$
\begin{equation*}
H_{n}(x)=\sum_{r=1}^{n} \frac{1}{r+x}, \tag{6}
\end{equation*}
$$

To identify the limit of $H_{n}(x)-\log n$, recall Euler's limit formula for the Gamma function: this can be written as $\Gamma(x+1)=\lim _{n \rightarrow \infty} G_{n}(x+1)$, where

$$
G_{n}(x+1)=\frac{n^{x}(n+1)!}{(x+1) \ldots(x+n)},
$$

from which it follows that $\lim _{n \rightarrow \infty}\left[H_{n}(x)-\log n\right]=-\psi(x+1)$. (No further facts about $\psi(x)$ are needed for our purposes.) We compare the difference $H_{n}(x)+\psi(x+1)$ with $\frac{1}{2} \log f(n+$ x). The case $x=0$ reproduces (5), while the case $n=0$ (with $H_{0}(x)=0$) gives a similar estimate for $\psi(x+1)$. Unlike [2] and [5], we give explicit upper and lower bounds for the error term, which we will require in the subsequent application. The exact statement is as follows.

Theorem 1 Let $n \geq 1$ and $x>-1$, or $n=0$ and $x>0$, and let $H_{n}(x)$ be defined by (6). Let $f(x)=x^{2}+x+\frac{1}{3}$. Then

$$
\begin{equation*}
H_{n}(x)+\psi(x+1)=\frac{1}{2} \log f(n+x)-r(n, x) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{180(n+x+1)^{4}} \leq r(n, x) \leq \frac{1}{180(n+x)^{4}} \tag{8}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
H_{n}-\gamma=\frac{1}{2} \log f(n)-r_{n} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{180(n+1)^{4}} \leq r_{n} \leq \frac{1}{180 n^{4}} \tag{10}
\end{equation*}
$$

Also, for $x>0$,

$$
\begin{equation*}
\psi(x+1)=\frac{1}{2} \log f(x)-r(x) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{180(x+1)^{4}} \leq r(x) \leq \frac{1}{180 x^{4}} \tag{12}
\end{equation*}
$$

Our proof, given in Sect. 2, is a development of De Temple's original method.
Note that the difference between the upper and lower bounds in (10) is less than $1 / 45 n^{5}$. Of course, (9) is actually a special case of (11).

The case $x=-\frac{1}{2}$ in (7) leads to the following estimation of sums of odd reciprocals (which could not be derived from (9)). The proof is very short, so we include it here.

Corollary 1 Let $U_{n}=\sum_{r=1}^{n} \frac{1}{2 r-1}$. Then

$$
U_{n}-\frac{1}{2} \gamma-\log 2=\frac{1}{4} \log \left(n^{2}+\frac{1}{12}\right)-r_{n}
$$

where

$$
\frac{1}{360\left(n+\frac{1}{2}\right)^{4}} \leq r_{n} \leq \frac{1}{360\left(n-\frac{1}{2}\right)^{4}}
$$

Proof Note that $2 U_{n}=H_{n}\left(-\frac{1}{2}\right)$. Also, $2 U_{n}=2 H_{2 n}-H_{n}$, from which it follows easily that $-\psi\left(\frac{1}{2}\right)=\lim _{n \rightarrow \infty}\left[2 U_{n}-\log n\right]=\gamma+2 \log 2$. Finally, $f\left(n-\frac{1}{2}\right)=n^{2}+\frac{1}{12}$.

Theorem 1 has a rather surprising application to an expression that arises in the Dirichlet divisor problem. Denote the divisor function by $\tau(n)$ and its summation function $\sum_{n \leq x} \tau(n)$ by $T(x)$. Write

$$
F(x)=x \log x+(2 \gamma-1) x
$$

and

$$
T(x)=F(x)+\Delta(x)
$$

The most basic form of Dirichlet's theorem (e.g. [1, p. 59]) states that $\Delta(x)=O\left(x^{1 / 2}\right)$. The problem of determining the true order of magnitude of $\Delta(x)$ is the "Dirichlet divisor problem". Denote by θ_{0} the infimum of numbers θ such that $\Delta(x)=O\left(x^{\theta}\right)$. It was already shown by Voronoi in 1903 that $\theta_{0} \leq \frac{1}{3}$ (e.g. see [10, Sect. 1.6.4]). The estimate has been gradually reduced in a long series of studies: the current best value [8] is $\theta_{0} \leq \frac{131}{416}$.

Write $[x]$ for the integer part of x and let

$$
B(x)=x-[x]-\frac{1}{2},
$$

the 1-periodic extension of the function $x-\frac{1}{2}$ on $[0,1)$. Further, let

$$
S(x)=2 \sum_{j \leq x^{1 / 2}} B\left(\frac{x}{j}\right) .
$$

Note that $|B(x)| \leq \frac{1}{2}$, and hence $|S(x)| \leq\left[x^{1 / 2}\right]$, for all $x>0$. A key, if small, step in the proof of Voronoi's theorem and later refinements is the statement

$$
\begin{equation*}
\Delta(x)=-S(x)+q(x), \tag{13}
\end{equation*}
$$

where $q(x)$ is bounded. A version of the usual proof can be found in [10, Sect. 1.6.4]; if scrutinised carefully, it gives the bound 3 for $|q(x)|$. This is quite good enough for the purpose of proving Voronoi's theorem: the serious work is the estimation of $S(x)$ by exponential sums. However, it is still of some interest to determine the true bounds for $q(x)$, along with some other facts about its nature. We will see that $q(x)$ is continuous at integers, and that (9), together with (1), is exactly what is needed to establish:

Theorem 2 With $q(x)$ defined as above, we have, for all $x \geq 1$,

$$
\begin{equation*}
-\frac{1}{6}<q(x)<\frac{1}{3} . \tag{14}
\end{equation*}
$$

Both bounds are optimal.

2 The proof of Theorem 1

The key step is the following lemma.
Lemma $1 \operatorname{Let} f(x)=x^{2}+x+\frac{1}{3}$. Then, for all $x \geq 1$,

$$
\begin{equation*}
\log f(x)-\log f(x-1)=\frac{2}{x}-\delta(x) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{2}{45 x^{5}}<\delta(x)<\frac{2}{45\left(x-\frac{1}{2}\right)^{5}} . \tag{16}
\end{equation*}
$$

Proof We start with $f(x)=x^{2}+x+c$ and allow the choice of c to emerge from the reasoning. Let $\delta(x)$ be defined by (15). Now $f(x) / f(x-1) \rightarrow 1$, and hence $\delta(x) \rightarrow 0$, as $x \rightarrow \infty$. So
$\delta(x)=-\int_{x}^{\infty} \delta^{\prime}(t) d t$ for all $x>0$. Now

$$
\begin{aligned}
-\delta^{\prime}(t) & =\frac{2 t+1}{f(t)}-\frac{2 t-1}{f(t-1)}+\frac{2}{t^{2}} \\
& =\frac{G(t)}{t^{2} f(t) f(t-1)}
\end{aligned}
$$

where

$$
\begin{aligned}
G(t) & =t^{2}(2 t+1)\left(t^{2}-t+c\right)-t^{2}(2 t-1)\left(t^{2}+t+c\right)+2\left(t^{2}+t+c\right)\left(t^{2}-t+c\right) \\
& =-t^{2}\left(2 t^{2}-2 c\right)+2\left[t^{4}+(2 c-1) t^{2}+c^{2}\right] \\
& =2(3 c-1) t^{2}+2 c^{2}
\end{aligned}
$$

To eliminate the t^{2} term, we now choose $c=\frac{1}{3}$, so that $G(t)=\frac{2}{9}$ and

$$
-\delta^{\prime}(t)=\frac{2}{9 t^{2} f(t) f(t-1)}
$$

Now $f(t) f(t-1)=t^{4}-\frac{1}{3} t^{2}+\frac{1}{9}<t^{4}$ for $t \geq 1$, so

$$
\delta(x)>\int_{x}^{\infty} \frac{2}{9 t^{6}} d t=\frac{2}{45 x^{5}}
$$

for $x \geq 1$. On the other hand, $f(t)>f(t-1)>\left(t-\frac{1}{2}\right)^{2}$, hence

$$
\delta(x)<\int_{x}^{\infty} \frac{2}{9\left(t-\frac{1}{2}\right)^{6}} d t=\frac{2}{45\left(x-\frac{1}{2}\right)^{5}}
$$

Proof of Theorem 1 Apply the identity (15) to $r+x$ for $1 \leq r \leq n$ and add: we find

$$
\log f(n+x)-\log f(x)=2 H_{n}(x)-\sum_{r=1}^{n} \delta(r+x)
$$

equivalently

$$
\begin{equation*}
2 H_{n}(x)-\log f(n+x)=-\log f(x)+\sum_{r=1}^{n} \delta(r+x) \tag{17}
\end{equation*}
$$

Now $f(n+x) / n^{2} \rightarrow 1$, so $\log f(n+x)-2 \log n \rightarrow 0$, as $n \rightarrow \infty$. Taking the limit in (17), we see that

$$
\begin{equation*}
-2 \psi(x+1)=-\log f(x)+\sum_{r=1}^{\infty} \delta(r+x) \tag{18}
\end{equation*}
$$

Now taking the difference, we have

$$
2 H_{n}(x)-\log f(n+x)+2 \psi(x+1)=-2 r(n, x)
$$

where

$$
2 r(n, x)=\sum_{r=n+1}^{\infty} \delta(r+x)
$$

The condition $x>-1$ ensures that the inequality (16) applies to $\delta(r+x)$ for $r \geq 2$. By integral estimation, we now have, for $n \geq 1$,

$$
r(n, x) \geq \sum_{r=n+1}^{\infty} \frac{1}{45(r+x)^{5}}>\int_{n+1}^{\infty} \frac{1}{45(t+x)^{5}} d t=\frac{1}{180(n+x+1)^{4}}
$$

At the same time,

$$
r(n, x) \leq \sum_{r=n+1}^{\infty} \frac{1}{45\left(r-\frac{1}{2}+x\right)^{5}}
$$

The function $1 /(t+x)^{5}$ is convex, and convex functions $h(t)$ satisfy $h\left(y-\frac{1}{2}\right) \leq \int_{y-1}^{y} h(t) d t$, hence

$$
r(n, x) \leq \int_{n}^{\infty} \frac{1}{45(t+x)^{5}} d t=\frac{1}{180(n+x)^{4}}
$$

For $x>0$, the case $n=0$ follows similarly from (18) (note that (16) now applies also to $\delta(1+x))$.

Note 1 The upper bounds for $\delta(x)$ in Lemma 1 and $r(n, x)$ in Theorem 1 can be slightly improved. One can verify that $t^{2} f(t) f(t-1) \geq\left(t-\frac{1}{12}\right)^{6}$ where we previously used $\left(t-\frac{1}{2}\right)^{6}$. This leads to $\delta(x)<2 /\left[45\left(x-\frac{1}{12}\right)^{5}\right]$ and $r(n, x) \leq 1 /\left[180\left(n+x+\frac{5}{12}\right)^{4}\right]$.

Note 2 In principle, one could derive Stirling-type approximations to $\log \Gamma(x)$ and $\Gamma(x)$ from (11), but only in terms of the rather unpleasant antiderivative of $\log f(x)$.

3 The remainder in the divisor problem

We return to the divisor problem. The starting point is Dirichlet's hyperbola identity [1, p. 59]:

$$
\begin{equation*}
T(x)=2 \sum_{j \leq x^{1 / 2}}\left[\frac{x}{j}\right]-\left[x^{1 / 2}\right]^{2} . \tag{19}
\end{equation*}
$$

With our previous notation, note that

$$
T(x)+S(x)=F(x)+q(x) .
$$

Write $I_{n}=\left[n^{2},(n+1)^{2}\right]$.

Lemma 2 For $x \in I_{n}$,

$$
\begin{equation*}
q(x)=x H_{n}-F(x)-n(n+1) . \tag{20}
\end{equation*}
$$

The function $q(x)$ is continuous for all $x \geq 1$, and concave on each interval I_{n}.

Proof We work with $T(x)+S(x)$. For $n^{2} \leq x<(n+1)^{2}$, we have by (19)

$$
\begin{aligned}
T(x) & =2 \sum_{j=1}^{n}\left(\frac{x}{j}-B\left(\frac{x}{j}\right)-\frac{1}{2}\right)-n^{2} \\
& =2 x H_{n}-S(x)-n-n^{2},
\end{aligned}
$$

which equates to (20). We check that this remains valid at $x=(n+1)^{2}$. By what we have just shown, with n replaced by $n+1$,

$$
\begin{aligned}
T\left[(n+1)^{2}\right]+S\left[(n+1)^{2}\right] & =2 H_{n+1}(n+1)^{2}-(n+1)(n+2) \\
& =2 H_{n}(n+1)^{2}+2(n+1)-(n+1)(n+2) \\
& =2 H_{n}(n+1)^{2}-n(n+1),
\end{aligned}
$$

agreeing with (20). Hence $F(x)+q(x)$, and consequently $q(x)$ itself, is continuous for all $x \geq 1$. Also, $q^{\prime}(x)=2 H_{n}-F^{\prime}(x)=2 H_{n}-\log x-2 \gamma$, which is decreasing, so $q(x)$ is concave on I_{n}.

So in fact $F(x)+q(x)$ is linear on I_{n}. For example,

$$
F(x)+q(x)= \begin{cases}2 x-2 & \text { for } 1 \leq x \leq 4 \\ 3 x-6 & \text { for } 4 \leq x \leq 9\end{cases}
$$

The reason for continuity of $T(x)+S(x)$ is easily seen directly. At non-square integers k, $T(x)$ increases by $\tau(k)$. Meanwhile, for each divisor j of k with $j<k^{1 / 2},[x / j]$ increases by 1 , so $B(x / j)$ decreases by 1 . There are $\frac{1}{2} \tau(k)$ such divisors j, so $S(x)$ decreases by $\tau(k)$. At square integers $k=n^{2}$, the new term $2 B(k / n)=-1$ enters the sum, so again the decrease in $S(x)$ is $\tau(k)$.
To determine the lower bound of $q(x)$, we consider $q\left(n^{2}\right)$ and apply (1).

Lemma 3 We have $q(x)>-\frac{1}{6}$ for all $x \geq 1$. Further, $q\left(n^{2}\right) \leq-\frac{1}{6}+\frac{1}{60 n^{2}}$, so $\inf _{x \geq 1} q(x)=-\frac{1}{6}$.

Proof By (20) and (1) (with r_{n} as in (1)),

$$
\begin{aligned}
q\left(n^{2}\right) & =2 n^{2} H_{n}-2 n^{2} \log n-(2 \gamma-1) n^{2}-n-n^{2} \\
& =2 n^{2}\left(H_{n}-\log n-\gamma\right)-n \\
& =2 n^{2}\left(\frac{1}{2 n}-\frac{1}{12 n^{2}}+r_{n}\right)-n \\
& =-\frac{1}{6}+2 n^{2} r_{n} .
\end{aligned}
$$

So

$$
-\frac{1}{6}<q\left(n^{2}\right) \leq-\frac{1}{6}+\frac{1}{60 n^{2}} .
$$

This applies also at $(n+1)^{2}$. Since $q(x)$ is concave on I_{n}, it follows that $q(x)>-\frac{1}{6}$ throughout this interval.

Finally, we apply (9) and (10) to identify the upper bound.

Proof of the upper bound in Theorem 2 Let x_{n} be the point where $q(x)$ attains its maximum in I_{n}. Since $q^{\prime}(x)=2 H_{n}-\log x-2 \gamma$, we have $\log x_{n}=2 H_{n}-2 \gamma$, hence the maximum value is

$$
\begin{align*}
q\left(x_{n}\right) & =2 H_{n} x_{n}-F\left(x_{n}\right)-n(n+1) \\
& =\left(\log x_{n}+2 \gamma\right) x_{n}-F\left(x_{n}\right)-n(n+1) \\
& =x_{n}-n(n+1) . \tag{21}
\end{align*}
$$

By (9) and (10) (using only $r_{n}>0$), we have $\log x_{n}<\log f(n)$, so $x_{n}<f(n)=n(n+1)+\frac{1}{3}$, hence $q\left(x_{n}\right)<\frac{1}{3}$.
We show that, conversely,

$$
q\left(x_{n}\right)>\frac{1}{3}-\frac{1}{45 n^{2}}
$$

for $n \geq 2$, so that $\sup _{x \geq 1} q(x)=\frac{1}{3}$. By (21), this is equivalent to $x_{n}>f(n)-\frac{1}{45 n^{2}}$. By (10),

$$
\log x_{n}=2 H_{n}-2 \gamma \geq \log f(n)-\frac{1}{90 n^{4}} .
$$

Now using the inequality $e^{-x} \geq 1-x$, together with $f(n) \leq 2 n^{2}$, we have

$$
x_{n} \geq f(n) e^{-1 / 90 n^{4}} \geq f(n)\left(1-\frac{1}{90 n^{4}}\right) \geq f(n)-\frac{1}{45 n^{2}} .
$$

Acknowledgements

Not applicable.

Funding

No funding received.

Availability of data and materials

Not applicable

Competing interests

The author declares that he has no competing interests.

Author's contributions

The author read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 11 March 2019 Accepted: 17 May 2019 Published online: 27 May 2019

References

1. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, Berlin (1976)
2. Batir, N.: Sharp bounds for the psi function and harmonic numbers. Math. Inequal. Appl. 14, 917-925 (2011)
3. Chen, C., Mortici, C.: New sequence converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 64 391-398 (2012)
4. Dawei, L.: Some new convergent sequences and inequalities of Euler's constant. J. Math. Anal. Appl. 419, 541-552 (2014)
5. Dawei, L.: Some quicker classes of sequences convergent to Euler's constant. Appl. Math. Comput. 232, 172-177 (2014)
6. De Temple, D.W.: A quicker convergence to Euler's constant. Am. Math. Mon. 100, 468-470 (1993)
7. Elezovic, N.: Estimations of psi function and harmonic numbers. Appl. Math. Comput. 258, 192-205 (2015)
8. Huxley, M.N.: Exponential sums and lattice points III. Proc. Lond. Math. Soc. (3) 87, 591-609 (2003)
9. Negoi, T.: A faster convergence to Euler's constant. Math. Gaz. 83, 487-489 (1999)
10. Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory. Cambridge Univ. Press, Cambridge (1995)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

