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Abstract
Let Hn =

∑n
r=1 1/r and Hn(x) =

∑n
r=1 1/(r + x). Let ψ (x) denote the digamma function. It

is shown that Hn(x) +ψ (x + 1) is approximated by 1
2 log f (n+ x), where f (x) = x2 + x + 1

3 ,
with error term of order (n + x)–5. The cases x = 0 and n = 0 equate to estimates for
Hn – γ and ψ (x + 1) itself. The result is applied to determine exact bounds for a
remainder term occurring in the Dirichlet divisor problem.

MSC: Primary 26D15; 33B15; secondary 11N37

Keywords: Harmonic sum; Euler’s constant; Digamma function; Divisor problem

1 Introduction and summary of results
Write Hn for the harmonic sum

∑n
r=1

1
r . The following well-known estimation can be es-

tablished by an Euler–Maclaurin summation, or by the logarithmic and binomial series:

Hn – γ = log n +
1

2n
–

1
12n2 + rn, (1)

where γ is Euler’s constant and

0 < rn ≤ 1
120n4 .

Since log(n + 1
2 ) = log n + 1

2n + O( 1
n2 ), it is a natural idea to absorb the term 1

2n into the
logarithmic term and compare Hn –γ directly with log(n+ 1

2 ). This was done by De Temple
[6]: he showed that

Hn – γ = log

(

n +
1
2

)

+
1

24(n + 1
2 )2

– rn, (2)

where

7
960(n + 1)4 ≤ rn ≤ 7

960n4 .

(We will repeatedly re-use the notation rn for the remainder term in estimations like this,
with a new meaning each time.)
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Negoi [9] demonstrated that the n–2 term can be absorbed into the log term by consid-
ering log h(n), where h(n) = n + 1

2 + 1
24n . His result is

Hn – γ = log h(n) – rn, (3)

where 1
48 (n + 1)–3 ≤ rn ≤ 1

48 n–3. Numerous more recent articles have developed this pro-
cess further. For example, Chen and Mortici [3] show that

Hn – γ = log

(

n +
1
2

+
1

24n
–

1
48n2 +

23
5760n3

)

+ O
(
n–5). (4)

Further variations and extensions are given, for example, in [7] and [4], and in other refer-
ences listed in these papers. One natural extension is the replacement of Hn –γ by ψ(x+1),
where ψ(x) is the digamma function Γ ′(x)/Γ (x), since Hn – γ = ψ(n + 1).

A slightly different approach, which has proved quite effective, is to compare Hn – γ

or ψ(x + 1) with expressions of the form 1
2 log f (n). Using no more than the elementary

inequalities Hn –γ ≤ log n+ 1
2n and ex ≤ 1+x+x2, it is easily shown that Hn –γ ≤ 1

2 log(n2 +
n + 1). With h(n) as in (3), we have h(n)2 = n2 + n + 1

3 + O( 1
n ), suggesting that the right

comparison is with f (n) = n2 + n + 1
3 . Indeed, with f (n) defined in this way, Batir [2] and

Lu [5] have shown, by different methods, that

Hn – γ =
1
2

log f (n) – rn, (5)

where rn ∼ 1/(180n4). Lu obtained (5) as one case of a rather complicated analysis extend-
ing to further terms and parameters.

Our objective here is to refine and extend (5) by considering the sum

Hn(x) =
n∑

r=1

1
r + x

, (6)

To identify the limit of Hn(x) – log n, recall Euler’s limit formula for the Gamma function:
this can be written as Γ (x + 1) = limn→∞ Gn(x + 1), where

Gn(x + 1) =
nx(n + 1)!

(x + 1) . . . (x + n)
,

from which it follows that limn→∞[Hn(x) – log n] = –ψ(x + 1). (No further facts about ψ(x)
are needed for our purposes.) We compare the difference Hn(x) + ψ(x + 1) with 1

2 log f (n +
x). The case x = 0 reproduces (5), while the case n = 0 (with H0(x) = 0) gives a similar
estimate for ψ(x + 1). Unlike [2] and [5], we give explicit upper and lower bounds for the
error term, which we will require in the subsequent application. The exact statement is as
follows.

Theorem 1 Let n ≥ 1 and x > –1, or n = 0 and x > 0, and let Hn(x) be defined by (6). Let
f (x) = x2 + x + 1

3 . Then

Hn(x) + ψ(x + 1) =
1
2

log f (n + x) – r(n, x), (7)
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where

1
180(n + x + 1)4 ≤ r(n, x) ≤ 1

180(n + x)4 . (8)

In particular,

Hn – γ =
1
2

log f (n) – rn, (9)

where

1
180(n + 1)4 ≤ rn ≤ 1

180n4 . (10)

Also, for x > 0,

ψ(x + 1) =
1
2

log f (x) – r(x), (11)

where

1
180(x + 1)4 ≤ r(x) ≤ 1

180x4 . (12)

Our proof, given in Sect. 2, is a development of De Temple’s original method.
Note that the difference between the upper and lower bounds in (10) is less than 1/45n5.

Of course, (9) is actually a special case of (11).
The case x = – 1

2 in (7) leads to the following estimation of sums of odd reciprocals (which
could not be derived from (9)). The proof is very short, so we include it here.

Corollary 1 Let Un =
∑n

r=1
1

2r–1 . Then

Un –
1
2
γ – log 2 =

1
4

log

(

n2 +
1

12

)

– rn,

where

1
360(n + 1

2 )4
≤ rn ≤ 1

360(n – 1
2 )4

.

Proof Note that 2Un = Hn(– 1
2 ). Also, 2Un = 2H2n – Hn, from which it follows easily that

–ψ( 1
2 ) = limn→∞[2Un – log n] = γ + 2 log 2. Finally, f (n – 1

2 ) = n2 + 1
12 . �

Theorem 1 has a rather surprising application to an expression that arises in the Dirich-
let divisor problem. Denote the divisor function by τ (n) and its summation function
∑

n≤x τ (n) by T(x). Write

F(x) = x log x + (2γ – 1)x

and

T(x) = F(x) + �(x).
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The most basic form of Dirichlet’s theorem (e.g. [1, p. 59]) states that �(x) = O(x1/2). The
problem of determining the true order of magnitude of �(x) is the “Dirichlet divisor prob-
lem”. Denote by θ0 the infimum of numbers θ such that �(x) = O(xθ ). It was already shown
by Voronoi in 1903 that θ0 ≤ 1

3 (e.g. see [10, Sect. 1.6.4]). The estimate has been gradually
reduced in a long series of studies: the current best value [8] is θ0 ≤ 131

416 .
Write [x] for the integer part of x and let

B(x) = x – [x] –
1
2

,

the 1-periodic extension of the function x – 1
2 on [0, 1). Further, let

S(x) = 2
∑

j≤x1/2

B
(

x
j

)

.

Note that |B(x)| ≤ 1
2 , and hence |S(x)| ≤ [x1/2], for all x > 0. A key, if small, step in the proof

of Voronoi’s theorem and later refinements is the statement

�(x) = –S(x) + q(x), (13)

where q(x) is bounded. A version of the usual proof can be found in [10, Sect. 1.6.4]; if scru-
tinised carefully, it gives the bound 3 for |q(x)|. This is quite good enough for the purpose
of proving Voronoi’s theorem: the serious work is the estimation of S(x) by exponential
sums. However, it is still of some interest to determine the true bounds for q(x), along
with some other facts about its nature. We will see that q(x) is continuous at integers, and
that (9), together with (1), is exactly what is needed to establish:

Theorem 2 With q(x) defined as above, we have, for all x ≥ 1,

–
1
6

< q(x) <
1
3

. (14)

Both bounds are optimal.

2 The proof of Theorem 1
The key step is the following lemma.

Lemma 1 Let f (x) = x2 + x + 1
3 . Then, for all x ≥ 1,

log f (x) – log f (x – 1) =
2
x

– δ(x), (15)

where

2
45x5 < δ(x) <

2
45(x – 1

2 )5
. (16)

Proof We start with f (x) = x2 +x+c and allow the choice of c to emerge from the reasoning.
Let δ(x) be defined by (15). Now f (x)/f (x – 1) → 1, and hence δ(x) → 0, as x → ∞. So
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δ(x) = –
∫ ∞

x δ′(t) dt for all x > 0. Now

–δ′(t) =
2t + 1
f (t)

–
2t – 1

f (t – 1)
+

2
t2

=
G(t)

t2f (t)f (t – 1)
,

where

G(t) = t2(2t + 1)
(
t2 – t + c

)
– t2(2t – 1)

(
t2 + t + c

)
+ 2

(
t2 + t + c

)(
t2 – t + c

)

= –t2(2t2 – 2c
)

+ 2
[
t4 + (2c – 1)t2 + c2]

= 2(3c – 1)t2 + 2c2.

To eliminate the t2 term, we now choose c = 1
3 , so that G(t) = 2

9 and

–δ′(t) =
2

9t2f (t)f (t – 1)
.

Now f (t)f (t – 1) = t4 – 1
3 t2 + 1

9 < t4 for t ≥ 1, so

δ(x) >
∫ ∞

x

2
9t6 dt =

2
45x5

for x ≥ 1. On the other hand, f (t) > f (t – 1) > (t – 1
2 )2, hence

δ(x) <
∫ ∞

x

2
9(t – 1

2 )6
dt =

2
45(x – 1

2 )5
. �

Proof of Theorem 1 Apply the identity (15) to r + x for 1 ≤ r ≤ n and add: we find

log f (n + x) – log f (x) = 2Hn(x) –
n∑

r=1

δ(r + x),

equivalently

2Hn(x) – log f (n + x) = – log f (x) +
n∑

r=1

δ(r + x). (17)

Now f (n + x)/n2 → 1, so log f (n + x) – 2 log n → 0, as n → ∞. Taking the limit in (17), we
see that

–2ψ(x + 1) = – log f (x) +
∞∑

r=1

δ(r + x). (18)

Now taking the difference, we have

2Hn(x) – log f (n + x) + 2ψ(x + 1) = –2r(n, x),
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where

2r(n, x) =
∞∑

r=n+1

δ(r + x).

The condition x > –1 ensures that the inequality (16) applies to δ(r +x) for r ≥ 2. By integral
estimation, we now have, for n ≥ 1,

r(n, x) ≥
∞∑

r=n+1

1
45(r + x)5 >

∫ ∞

n+1

1
45(t + x)5 dt =

1
180(n + x + 1)4 .

At the same time,

r(n, x) ≤
∞∑

r=n+1

1
45(r – 1

2 + x)5
.

The function 1/(t + x)5 is convex, and convex functions h(t) satisfy h(y – 1
2 ) ≤ ∫ y

y–1 h(t) dt,
hence

r(n, x) ≤
∫ ∞

n

1
45(t + x)5 dt =

1
180(n + x)4 .

For x > 0, the case n = 0 follows similarly from (18) (note that (16) now applies also to
δ(1 + x)). �

Note 1 The upper bounds for δ(x) in Lemma 1 and r(n, x) in Theorem 1 can be slightly
improved. One can verify that t2f (t)f (t – 1) ≥ (t – 1

12 )6 where we previously used (t – 1
2 )6.

This leads to δ(x) < 2/[45(x – 1
12 )5] and r(n, x) ≤ 1/[180(n + x + 5

12 )4].

Note 2 In principle, one could derive Stirling-type approximations to logΓ (x) and Γ (x)
from (11), but only in terms of the rather unpleasant antiderivative of log f (x).

3 The remainder in the divisor problem
We return to the divisor problem. The starting point is Dirichlet’s hyperbola identity [1,
p. 59]:

T(x) = 2
∑

j≤x1/2

[
x
j

]

–
[
x1/2]2. (19)

With our previous notation, note that

T(x) + S(x) = F(x) + q(x).

Write In = [n2, (n + 1)2].

Lemma 2 For x ∈ In,

q(x) = xHn – F(x) – n(n + 1). (20)

The function q(x) is continuous for all x ≥ 1, and concave on each interval In.
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Proof We work with T(x) + S(x). For n2 ≤ x < (n + 1)2, we have by (19)

T(x) = 2
n∑

j=1

(
x
j

– B
(

x
j

)

–
1
2

)

– n2

= 2xHn – S(x) – n – n2,

which equates to (20). We check that this remains valid at x = (n + 1)2. By what we have
just shown, with n replaced by n + 1,

T
[
(n + 1)2] + S

[
(n + 1)2] = 2Hn+1(n + 1)2 – (n + 1)(n + 2)

= 2Hn(n + 1)2 + 2(n + 1) – (n + 1)(n + 2)

= 2Hn(n + 1)2 – n(n + 1),

agreeing with (20). Hence F(x) + q(x), and consequently q(x) itself, is continuous for all
x ≥ 1. Also, q′(x) = 2Hn – F ′(x) = 2Hn – log x – 2γ , which is decreasing, so q(x) is concave
on In. �

So in fact F(x) + q(x) is linear on In. For example,

F(x) + q(x) =

⎧
⎨

⎩

2x – 2 for 1 ≤ x ≤ 4,

3x – 6 for 4 ≤ x ≤ 9.

The reason for continuity of T(x) + S(x) is easily seen directly. At non-square integers k,
T(x) increases by τ (k). Meanwhile, for each divisor j of k with j < k1/2, [x/j] increases by
1, so B(x/j) decreases by 1. There are 1

2τ (k) such divisors j, so S(x) decreases by τ (k). At
square integers k = n2, the new term 2B(k/n) = –1 enters the sum, so again the decrease
in S(x) is τ (k).

To determine the lower bound of q(x), we consider q(n2) and apply (1).

Lemma 3 We have q(x) > – 1
6 for all x ≥ 1. Further, q(n2) ≤ – 1

6 + 1
60n2 , so infx≥1 q(x) = – 1

6 .

Proof By (20) and (1) (with rn as in (1)),

q
(
n2) = 2n2Hn – 2n2 log n – (2γ – 1)n2 – n – n2

= 2n2(Hn – log n – γ ) – n

= 2n2
(

1
2n

–
1

12n2 + rn

)

– n

= –
1
6

+ 2n2rn.

So

–
1
6

< q
(
n2) ≤ –

1
6

+
1

60n2 .
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This applies also at (n+1)2. Since q(x) is concave on In, it follows that q(x) > – 1
6 throughout

this interval. �

Finally, we apply (9) and (10) to identify the upper bound.

Proof of the upper bound in Theorem 2 Let xn be the point where q(x) attains its maximum
in In. Since q′(x) = 2Hn – log x – 2γ , we have log xn = 2Hn – 2γ , hence the maximum value
is

q(xn) = 2Hnxn – F(xn) – n(n + 1)

= (log xn + 2γ )xn – F(xn) – n(n + 1)

= xn – n(n + 1). (21)

By (9) and (10) (using only rn > 0), we have log xn < log f (n), so xn < f (n) = n(n + 1) + 1
3 ,

hence q(xn) < 1
3 .

We show that, conversely,

q(xn) >
1
3

–
1

45n2

for n ≥ 2, so that supx≥1 q(x) = 1
3 . By (21), this is equivalent to xn > f (n) – 1

45n2 . By (10),

log xn = 2Hn – 2γ ≥ log f (n) –
1

90n4 .

Now using the inequality e–x ≥ 1 – x, together with f (n) ≤ 2n2, we have

xn ≥ f (n)e–1/90n4 ≥ f (n)
(

1 –
1

90n4

)

≥ f (n) –
1

45n2 . �
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