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Abstract
In this paper, a method to approximate curves by polynomials of degree nine is
presented. The resulting approximation has order eighteen. The method is applied to
approximate a circular arc, and the error function is studied and characterized, and its
extrema and zeros are derived.
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1 Introduction
Approximation methods for planar curves that sufficiently improve the standard approxi-
mation rates via Taylor’s method are stated in [10, 11]. The methods are based on the fact
that the parametrization of a curve is not unique and can be suitably modified to improve
the approximation order.

Given a planar curve

C : t →
(

f (t)
g(t)

)
, t ∈ � (1)

that is regular and smooth. In many applications, it is essential to approximate the curve
C by a polynomial curve of the form

P : t →
(

Xm(t)
Ym(t)

)
, t ∈ �, (2)

where Xm(t) and Ym(t) are polynomials of degree m. The classical methods of approxima-
tion assure that the polynomial curve P approximates the curve C with order m + 1. It is
shown [10] that an improvement over the standard order m + 1 is possible by creating new
parameters depending on data of the curve. Without loss of generalization, it is assumed
that (f (0), g(0)) = (0, 0), (f ′(0), g ′(0)) = (1, 0). In this case, for small t, the curve C can be
parametrized in the form

C : t →
(

Xm(t)
φ(Xm(t))

)
(3)
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for a suitable φ(Xm(t)). The polynomial curve P approximates the curve C with the order
α iff

φ
(
Xm(t)

)
– Ym(t) = O

(
tα

)
. (4)

The Hermite type conditions become

dj

dtj

{
φ
(
Xm(t)

)
– Ym(t)

}∣∣∣∣
t=0

= 0, j = 0, 1, . . . ,α1 – 1,

dj

dtj

{
φ
(
Xm(t)

)
– Ym(t)

}∣∣∣∣
t=1

= 0, j = 0, 1, . . . ,α2 – 1, (5)

Xm(0) = 0, Xm(1) = 1, α1 + α2 = α.

Setting X ′
m(0) = 1, then the problem is characterized by the 2m free parameters. The

number of equations is compared with the number of parameters to get the order of ap-
proximation of 2m; this is justified in [10]. This is the Hermite-type interpolation to rep-
resent a curve. In this paper, the issue is to find the polynomial of best uniform approxi-
mation. The classical case of approximating using a polynomial of degree m that has best
uniform approximation was studied by Chebyshev and Borel [9]. They showed that such
a polynomial exists and is unique, and its error equioscillates m + 2 times; but so far there
has been no method to find the approximating polynomial. The polynomial of best ap-
proximation of degree nine is found in this paper; it has nineteen equioscillations rather
than eleven equioscillations theoretically guaranteed by the theorems of Chebyshev and
Borel but cannot be found. The cases of n = 2, 3, 4 are considered in [12–14]; i.e., the nonic
piecewise approximation for planar curves α1 = α2 = 9 is studied. The approximation or-
der is raised to eighteen rather than ten.

In this paper, a curve that is most frequently used in applications, the circle, is consid-
ered. The polynomial of degree nine of best approximation that equioscillates 19 times
rather than 11 times is found. This is a substantial improvement over the order of approx-
imation.

Parametric forms of curves and surfaces are computer-oriented representations that
can be easily used for graphing and computations. We treat the circular arc c : t �→
(cos(t), sin(t)), –θ ≤ t ≤ θ , see Fig. 1, to be approximated by a polynomial curve with su-
perior uniform approximation. To come to this consequence, the geometric symmetries
of the circle are used to fairly choose the Bézier points in order to symbolize the nonic
Bézier curve that has the highest approximation order of 18 and has “the best” features.

The circle c is approximated in this paper using a nonic parametrically defined polyno-
mial curve p : t �→ (x(t), y(t)), 0 ≤ t ≤ 1, where x(t), y(t) are polynomials of degree nine that
approximate c with “minimum” error. Many researchers have tackled this issue using dif-
ferent degrees, norms, and methods, see [1–4, 6, 8, 13]. The results of our method in this
paper are optimal and cannot be improved because the error function is the Chebyshev
polynomial of first kind of degree eighteen.

The error between p and c is measured by the Euclidean error function

E(t) :=
√

x2(t) + y2(t) – 1. (6)
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Figure 1 A circular arc

It is replaced by the following alternative error function:

e(t) := x2(t) + y2(t) – 1. (7)

Since e(t) = 0 is the implicit equation of the unit circle; this implies that the e(t) error
function is a suitable measure to test if x(t) and y(t) satisfy this equation and to measure
the error. Both error functions share the same roots and critical points, see Propositions I
and II.

The issue considered in this paper is to locate a polynomial curve p : t �→ (x(t), y(t)),
0 ≤ t ≤ 1, where x(t), y(t) are of degree nine, that approximates c under the requirements
of the best uniform approximation of the form:

1. p minimizes maxt∈[0,1] |e(t)|,
2. e(t) equioscillates 19 times over [0, 1] rather than 11 times [9],
3. p(t) approximates c(t) with order 18 rather than 10.
These conditions are used to locate the Bézier points and to get the values of the param-

eters that are utilized to satisfy the geometric conditions of the circular arc [5, 7]. Since the
uniform error (for e(t)) equals 2–17 [9], so we allow the angle θ to be as large as possible
in order to approximate the largest circular arc with this specified error. Thereafter, this
angle θ has to be scaled by a factor that is also combined with a reduction in the uniform
error; this is a proposal for further future investigation.

The Bézier form is used to write the curve p(t). The Bézier curve p(t) of degree nine is
given by

p(t) =
9∑

i=0

piB9
i (t) =:

(
x(t)
y(t)

)
, 0 ≤ t ≤ 1. (8)

The points p0, p1, p2, p3, p4, p5, p6, p7, p8, and p9 are called the Bézier points, and the
nonic polynomials B9

0(t) = (1 – t)9, B9
1(t) = 9t(1 – t)8, B9

2(t) = 36t2(1 – t)76, B9
3(t) = 84t3(1 –

t)6, B9
4(t) = 126t4(1 – t)5, B9

5(t) = 126t5(1 – t)4, B9
6(t) = 84t6(1 – t)3, B9

7(t) = 36t7(1 – t)2,
B9

8(t) = 9t8(1– t), and B9
9(t) = t9 are the Bernstein polynomials. Our purpose is to represent
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the curve using nonic polynomials under the condition that the error has order eighteen.
Consequently, it is not substantial for the errors to take place at the endpoints or elsewhere.

Our approach considers lessening the wrongdoing over all of the segment [0, 1]. To ex-
plore the Bézier form approximation of a circular arc, a careful selection of locations of
the Bézier points should be done. These locations are substantial to earn the convenient
curve that redeems the approximation conditions. Based on the symmetry property of
the circle, the right choice for the beginning control point p0 should obey the following
form: p0 = (α0 cos(θ ),β0 sin(θ )), where values of α0 and β0 could but should not be the
same. Similarly, for symmetry reasoning, the valid option for the end control point p9 is
p9 = (α0 cos(θ ), –β0 sin(θ )). Set p1 = (a1, b1), then the point p8 has to be selected to satisfy
the form p8 = (a1, –b1). Set the point p2 = (a2, b2), then the point p7 has to be selected to
satisfy the form p7 = (a2, –b2). Set the point p3 = (a3, b3), then the point p6 for symmetry
purposes has to be selected to satisfy the form p6 = (a3, –b3). Set the point p4 of the form
p4 = (a4, b4), then the point p5 for symmetry purposes has to be selected to satisfy the
form p5 = (a4, –b4). Using the substitutions a0 = α0 cos(θ ), b0 = β0 sin(θ ), then the conve-
nient choices for the Bézier points have to be, see Fig. 2:

p0 =

(
a0

b0

)
, p1 =

(
a1

b1

)
, p2 =

(
a2

b2

)
, p3 =

(
a3

b3

)
,

p4 =

(
a4

b4

)
, p5 =

(
a4

–b4

)
, p6 =

(
a3

–b3

)
,

p7 =

(
a2

–b2

)
, p8 =

(
a1

–b1

)
, p9 =

(
a0

–b0

)
.

(9)

It will be apparent that there are more than one solution; the consonant solution of best
approximation begins in the second quadrant and ends in the fourth quadrant counter
clockwise. Therefore, in order to have the Bézier curve p begin in the second quadrant,
go counter clockwise through fourth, third, first, second, and end in the fourth quadrant
as the circular arc c, the following stipulations should be satisfied:

a0, a1, a2, b1, b2, b3 < 0, a3, a4, b0, b4 > 0. (10)

Figure 2 The half of the solution for 0 ≤ t ≤ 1
2
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Employ the Bézier points in (4) in the Bézier curve p(t) in (3) to obtain, for all t ∈ [0, 1],

p(t) =

(
a0(B9

0(t) + B9
9(t)) + a1(B9

1(t) + B9
8(t)) + a2(B9

2(t) + B9
7(t)) + a3(B9

3(t) + B9
6(t)) + a4(B9

4(t) + B9
5(t))

b0(B9
0(t) – B9

9(t)) + b1(B9
1(t) – B9

8(t)) + b2(B9
2(t) – B9

7(t)) + b3(B9
3(t) – B9

6(t)) + b4(B9
4(t) – B9

5(t))

)
.

(11)

The Bézier curve is settled by the ten parameters a0, a1, a2, a3, a4, b0, b1, b2, b3, b4 which
are hired to get the best uniform approximation. We want to impose the conditions on the
polynomial curve p; the polynomials x(t) and y(t) are substituted into e(t). This leads to a
polynomial of degree eighteen that is solved using a computer algebra system. The results
are stated in the next section.

2 Results
In this section, the main results are stated. The values of a0, a1, a2, a3, a4, b0, b1, b2,
b3, b4 that satisfy the conditions of the approximation problem are specified numerically,
rounded fittingly, in the following theorem.

Theorem 1 The Bézier curve (8) together with the Bézier points in (9) and the values of the
parameters a0, a1, a2, a3, a4, b0, b1, b2, b3, b4 given by

a0 = –0.5828949409686828, a1 = –1.8244399212283737,

a2 = –0.9872644054741855, a3 = 2.8637303470555153,

a4 = 0.53960354850848, b0 = 0.8125522242832429,

b1 = –0.07842428718981986, b2 = –2.702352393721596,

b3 = –1.6331336305047865, b4 = 1.7030404000205088

achieves the following conditions: p minimizes the uniform norm of the error function
maxt∈[0,1] |e(t)|, has eighteenth order of approximation, and the error function e(t) equioscil-
lates 19 times in [0, 1]. The error functions fulfill, for all t ∈ [0, 1]:

–
1

217 ≤ e(t) ≤ 1
217 , –

1
217(2 – ε)

≤ E(t) ≤ 1
217(2 + ε)

,

where ε = max
0≤t≤1

∣∣E(t)
∣∣ ≈ 2–18. (12)

The most important characteristics of the error functions are the roots and the extrema.
These properties characterize the approximating nonic Bézier curve. The first characteris-
tic concerns the roots of the error functions e(t) and E(t) that are specified in the following
proposition.

Proposition I The roots of the error functions e(t) and E(t) are:

t1 =
1
2

(
1 + cos

(
π

36

))
= 0.998097, t2 =

1
2

(
1 + cos

(
3π

36

))
= 0.982963,

t3 =
1
2

(
1 + cos

(
5π

36

))
= 0.953154, t4 =

1
2

(
1 + cos

(
7π

36

))
= 0.909576,
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t5 =
1
2

(
1 + cos

(
9π

36

))
= 0.853553, t6 =

1
2

(
1 + sin

(
7π

36

))
= 0.786788,

t7 =
1
2

(
1 + sin

(
5π

36

))
= 0.711309, t8 =

1
2

(
1 + sin

(
3π

36

))
= 0.62941,

t9 =
1
2

(
1 + sin

(
π

36

))
= 0.543578, t10 =

1
2

(
1 – sin

(
π

36

))
= 0.456422,

t11 =
1
2

(
1 – sin

(
3π

36

))
= 0.37059, t12 =

1
2

(
1 – sin

(
5π

36

))
= 0.288691,

t13 =
1
2

(
1 – sin

(
7π

36

))
= 0.213212, t14 =

1
2

(
1 – cos

(
9π

36

))
= 0.146447,

t15 =
1
2

(
1 – cos

(
7π

36

))
= 0.090424, t16 =

1
2

(
1 – cos

(
5π

36

))
= 0.0468461,

t17 =
1
2

(
1 – cos

(
3π

36

))
= 0.0170371, t18 =

1
2

(
1 – cos

(
π

36

))
= 0.00190265.

They also satisfy

ti + tj = 1 for i + j = 19.

The approximating nonic Bézier curve p in Theorem 1 and the circular arc c intersect
at the points p(ti) = c(ti), i = 1, 2, . . . , 18.

Regarding the extreme values, we have the following proposition.

Proposition II The extreme values of e(t) and E(t) occur at the parameters:

t̃0 = 1, t̃1 =
1
2

(
1 + cos

(
π

18

))
= 0.992404, t̃2 =

1
2

(
1 + cos

(
π

9

))
= 0.969846,

t̃3 =
1
2

(
1 + cos

(
π

6

))
= 0.933013, t̃4 =

1
2

(
1 + cos

(
2π

9

))
= 0.883022,

t̃5 =
1
2

(
1 + cos

(
5π

18

))
= 0.821394, t̃6 =

1
2

(
1 + cos

(
π

3

))
= 0.75,

t̃7 =
1
2

(
1 + cos

(
7π

18

))
= 0.67101, t̃8 =

1
2

(
1 + cos

(
4π

9

))
= 0.586824,

t̃9 =
1
2

(
1 + cos

(
π

2

))
= 0.5, t̃10 =

1
2

(
1 – cos

(
2π

9

))
= 0.413176,

t̃11 =
1
2

(
1 – cos

(
7π

18

))
= 0.32899, t̃12 =

1
2

(
1 – cos

(
π

3

))
= 0.25,

t̃13 =
1
2

(
1 – cos

(
5π

18

))
= 0.178606, t̃14 =

1
2

(
1 – cos

(
2π

9

))
= 0.116978,

t̃15 =
1
2

(
1 – cos

(
π

6

))
= 0.0669873, t̃16 =

1
2

(
1 – cos

(
π

9

))
= 0.0301537,

t̃17 =
1
2

(
1 – cos

(
π

18

))
= 0.00759612, t̃18 = 0.
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These parameters satisfy the equality

t̃i + t̃j = 1 for i + j = 18.

The exact values of the extrema are given in the following proposition.

Proposition III The values of the error functions e(t) and E(t) at t̃i’s are specified by:

e(t̃2i) =
1

131,072
, i = 0, . . . , 9, e(t̃2i+1) =

–1
131,072

, i = 0, . . . , 8,

E(t̃2i) =
1

262,144
, i = 0, . . . , 9, E(t̃2i+1) =

–1
262,144

, i = 0, . . . , 8.

Therefore,

–1
131,072

≤ e(t) ≤ 1
131,072

,
–1

262,144
≤ E(t) ≤ 1

262,144
, t ∈ [0, 1].

Proposition IV The errors of approximating the circular arc using the nonic Bézier curve
in Theorem 1 at any t ∈ [0, 1] are given by

e(t) =
1

131,072
–

81t
16,384

+
8721t2

16,384
–

2907t3

128
+

13,0815t4

256
–

223,839t5

32
+

2,028,117t6

32

– 401,166t7 +
3,677,355t8

2
– 6,249,100t9 + 15,984,540t10 – 31,000,320t11

+ 45,601,920t12 – 50,512,896t13 + 41,425,920t14 – 24,379,392t15

+ 9,732,096t16 – 2,359,296t17 + 262,144t18, ∀t ∈ [0, 1].

3 Discussion
In this section, the proofs of Theorem 1 and Propositions I, II, III, and IV besides other
demonstrations are given.

Proof of Theorem 1 We begin by considering the polynomials x(t) and y(t) in Eq. (11)
and substituting them into the error function e(t) in (7). Disposition of the phrase and
performing several simplifications give an equation that is simplified to a polynomial of
degree eighteen.

The approximation conditions are satisfied if the error function is equalized with the
polynomial of least deviation among all monic polynomials of degree eighteen. So, the
last equation which exemplifies the error function has to be equalized with the Chebyshev
polynomial of first kind of degree eighteen, T̃18(2t – 1)/131,072. We know that T̃18(u) =
cos(18 arccos(u)), u ∈ [–1, 1] is the unique monic polynomial of degree eighteen that has
the least deviation from the origin. Comparing the coefficients of equal powers of both
sides and using the utilities of the computer algebra system in Mathematica, the solution
that fulfills the conditions in (10) is established. Unfortunately, the solution is a collection
of lengthy fractions and radicals, which makes it impractical to write down the values of
the parameters in this paper, so we write them in decimal forms as in the theorem. This
shows that p fulfills the conditions of the approximation problem. The proof of the error
formula for E(t) is clear from the relation to e(t). This completes the proof of Theorem 1.�
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Figure 3 Circular arc and its nonic Bézier curve in
Theorem 1

Figure 4 Euclidean Error of the nonic Bézier curve
in Theorem 1

The circular arc and the approximating Bézier curve are plotted in Fig. 2 for t ∈ [0, 1
2 ].

The circular arc and its nonic Bézier curve are plotted in Fig. 3. The resulting error be-
tween the curve and the approximation is not identified by the human eye which is clear
from the figure of the corresponding error plotted in Fig. 4.

The resulting Bézier curve reveals a brilliant positioning of the Bézier points to embrace
about 5/4 of the whole circle whilst possessing the Chebyshev error. We could not foresee
a nonic polynomial to approximate more than 5/4 of full circle further accurately than this
approximation.

Proof of Proposition I Immediate substitution of the values of ti in e(t) gives e(ti) = 0, i =
1, 2, . . . , 18. Since e(t) is a polynomial of degree 18 and has 18 roots, therefore, these ones
are all the roots. The error function E(t) has the same roots as e(t) because E(t) = 0 iff√

x2(t) + y2(t) = 1 iff x2(t) + y2(t) = 1 iff e(t) = 0. �

The approximating nonic Bézier curve p in Theorem 1 and the circular arc c intersect
at the points p(ti) = c(ti), i = 1, 2, . . . , 18.

Proof of Proposition II The derivative of e(t) is a polynomial of degree 17. Substituting the
17 parameters t̃1, . . . , t̃17 into the derivative gives e′(t̃i) = 0, ∀i = 1, . . . , 17. The polynomial
e′(t) has degree 17; consequently, these are all internal critical points. Inspecting the end
points adds t̃0 = 1, t̃18 = 0 to the critical points. For all t ∈ [0, 1], we have 1 – 1

131,072 ≤
x2(t)+y2(t) ≤ 1+ 1

131,072 , thence
√

x2(t) + y2(t) 
= 0, ∀t ∈ [0, 1]. Differentiate E(t) and counter
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equate to 0 to acquire e′(t)√
x2(t)+y2(t)

= 0 iff e′(t) = 0. Therefore, e(t) and E(t) reach the extrema

at the same values. This finishes the proof of the proposition. �

The disagreement in the values of E(t̃i) for odd and even values of i occurs because e(t)
equioscillates between ± 1

8192 and 1
217(2–ε) ≤ E(t) ≤ 1

217(2+ε) , where ε = max0≤t≤1 |E(t)|.

Proof of Proposition III The values of the error functions e(t) and E(t) at the parameters
t̃i are specified by:

e(t̃2i) =
1

131072
, i = 0, . . . , 9, e(t̃2i+1) =

–1
131072

, i = 0, . . . , 8.

E(t̃2i) =
1

262144
, i = 0, . . . , 9, E(t̃2i+1) =

–1
262144

, i = 0, . . . , 8.

Therefore,

–1
131072

≤ e(t) ≤ 1
131072

,
–1

262144
≤ E(t) ≤ 1

262144
, t ∈ [0, 1].

Substituting the parameters in the error functions confer to the parities. The specifics of
the proof of the proposition are left to the reader. �

Proof of Proposition IV This is a forthright conclusion of Theorem 1. The specifics of the
proof of the proposition are left to the reader. �

Employ the relation between E(t) and e(t) to obtain:

E(t) ∼= 1
262,144

–
81t

32,768
+

8721t2

32,768
–

2907t3

256
+

130,815t4

512
–

223,839t5

64
+

2,028,117t6

64

– 200,583t7 +
3,677,355t8

4
– 3,124,550t9 + 7,992,270t10 – 15,500,160t11

+ 22,800,960t12 – 25,256,448t13 + 20,712,960t14 – 12,189,696t15

+ 4,866,048t16 – 1,179,648t17 + 131,072t18, ∀t ∈ [0, 1].

4 Conclusion
The polynomial of best uniform approximation of degree nine is given for a circular arc
that approximates with order eighteen rather than ten. The error function equioscillates
19 times rather than 11 times that are guaranteed by the theorems of Chebyshev and Borel
without a method to find it. The error function is studied and characterized, and its ex-
trema and zeros are derived.
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