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Abstract
In the present article, the following nonlinear problem of new Hadamard fractional
differential equations on an infinite interval

{
HDνx(t) + b(t)f (t, x(t)) + c(t) = 0, 1 < ν < 2, t ∈ (1,∞),

x(1) = 0, HDν–1x(∞) =
∑m

i=1 γi
HIβi x(η),

is studied, where HDν denotes the Hadamard fractional derivative of order ν , HI(·) is the
Hadamard fractional integral, βi ,γi ≥ 0 (i = 1, 2, . . . ,m), η ∈ (1,∞) are constants and

Γ (ν) >
m∑
i=1

γiΓ (ν)
Γ (ν + βi)

(logη)ν+βi–1.

By making use of a fixed point theorem for generalized concave operators, the
existence and uniqueness of positive solutions is established. Moreover, an
application of the established results is also presented via an interesting example.
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1 Introduction
In the present article, the following new form of nonlinear problem for Hadamard frac-
tional differential equations on an infinite interval

⎧⎨
⎩

HDνx(t) + b(t)f (t, x(t)) + c(t) = 0, 1 < ν < 2, t ∈ (1,∞),

x(1) = 0, HDν–1x(∞) =
∑m

i=1 γi
HIβi x(η),

(1.1)

is discussed, here HDν denotes the Hadamard fractional derivative of order ν , HI(·) is the
Hadamard fractional integral, βi,γi ≥ 0 (i = 1, 2, . . . , m), η ∈ (1,∞) are constants and

Γ (ν) >
m∑

i=1

γiΓ (ν)
Γ (ν + βi)

(logη)ν+βi–1.
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The investigations about fractional differential equations have received much develop-
ment, and many applications of fractional differential equations have appeared in some
fields which include physics, engineering, biological science, chemistry, etc; see [4, 5, 7–
12, 15, 16, 19, 27] and the references cited therein. Among these works, a large part of
their topics is always Riemann–Liouville or Caputo-type fractional equations. As we know,
Hadamard fractional derivative is also a famous fractional derivative given by Hadamard
in 1892 (see [6]), and we can find this kind of derivative in the literature. The key of this
definition involves a logarithmic function of arbitrary exponent. In the past decades, there
were more studies on Hadamard fractional differential equations under different bound-
ary conditions, see [1–3, 13, 14, 17, 18, 20–25] for instance. Recently, it is worth mention-
ing that Ahmad and Ntouyas [1, 2] investigated some Hadamard fractional differential
equations or systems involving fractional integral boundary value conditions. By means
of two methods: (i) Banach fixed point theorem and (ii) Leray–Schauder alternative, some
sufficient conditions of the existence and uniqueness of solutions for these problems were
given.

In [3], the authors discussed a Hadamard fractional differential inclusion under three-
point boundary conditions⎧⎨

⎩
HDνy(t) ∈ F(t, y(t)), 1 < t < e,

y(1) = 0, y(e) = HIβy(η),
(1.2)

where 1 < ν ≤ 2, 1 < η < e, F : [1, e] × (–∞, +∞) → �(–∞, +∞) is a multivalued map,
�(–∞, +∞) denotes the set constituted by all nonempty subsets of (–∞, +∞). By applying
usual fixed point theorems of multi-valued maps, the existing results of solutions were
given.

In a recent article [17], the authors studied a Hadamard fractional differential equation
on infinite intervals⎧⎨

⎩
HDνx(t) + a(t)f (x(t)) = 0, 1 < ν ≤ 2, t ∈ (1,∞),

x(1) = 0, Dν–1x(∞) =
∑m

i=1 λi
HIβi x(η),

(1.3)

where η ∈ (1,∞), λi ≥ 0, βi > 0 (i = 1, 2, . . . , m) are constants. They gave the multiple posi-
tive solutions via Leggett–Williams and Guo–Krasnoselkii’s fixed point theorems.

However, there are still few papers reported on some investigations of positive solutions
to Hadamard fractional differential equations on an infinite interval, and the uniqueness
of positive solutions is scarce. So in our paper, we use other methods to discuss problem
(1.1) by giving some different conditions. We shall establish the existence and uniqueness
results for positive solutions to problem (1.1). It should be pointed out that our results and
the methods used here are new to Hadamard fractional differential equations.

2 Preliminaries
Definition 2.1 ([7]) For any given function ϕ : [1,∞) → R, the concept of Hadamard frac-
tional integral of order ν is

HIνϕ(t) =
1

Γ (ν)

∫ t

1

(
log

t
s

)ν–1
ϕ(s)

s
ds, ν > 0,

where the right integral exists.
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Definition 2.2 ([7]) For any given function ϕ : [1,∞) → R, the concept of Hadamard frac-
tional derivative of order ν is

HDνϕ(t) =
1

Γ (n – ν)

(
t

d
dt

)n ∫ t

1

(
log

t
s

)n–ν–1
ϕ(s)

s
ds, n – 1 < ν < n,

where n = [ν] + 1, [ν] expresses the integer part of ν , log(·) = loge(·).

Throughout this paper, let

Ω = Γ (ν) –
m∑

i=1

γiΓ (ν)
Γ (ν + βi)

(logη)ν+βi–1,

from initial condition, Ω > 0.

Lemma 2.3 ([17]) Assume z ∈ C[1,∞) with 0 <
∫ ∞

1 z(s) ds
s < ∞, then the solution of the

following form of Hadamard fractional differential equation under integral boundary con-
ditions

⎧⎨
⎩

HDνx(t) + z(t) = 0, 1 < ν < 2, t ∈ (1,∞),

x(1) = 0, HDν–1x(∞) =
∑m

i=1 γi
HIβi x(η),

(2.1)

can be expressed by

x(t) =
∫ ∞

1
G(t, s)z(s)

ds
s

,

where

G(t, s) = g(t, s) +
m∑

i=1

γi(log t)ν–1

ΩΓ (ν + βi)
gi(η, s), (2.2)

and

g(t, s) =
1

Γ (ν)

⎧⎨
⎩(log t)ν–1 – (log( t

s ))ν–1, 1 ≤ s ≤ t < ∞,

(log t)ν–1, 1 ≤ t ≤ s < ∞,
(2.3)

gi(η, s) =

⎧⎨
⎩(logη)ν+βi–1 – (log( η

s ))ν+βi–1, 1 ≤ s ≤ η < ∞,

(logη)ν+βi–1, 1 ≤ η ≤ s < ∞.
(2.4)

Lemma 2.4 ([17]) The Green’s function G(t, s) showed in (2.2) has several characteristics:
(i) G(t, s) is a continuous function which satisfies G(t, s) ≥ 0 for (t, s) ∈ [1,∞) × [1,∞);

(ii) G(t,s)
1+(log t)ν–1 ≤ 1

Γ (ν) +
∑m

i=1
γigi(η,s)

ΩΓ (ν+βi)
for (t, s) ∈ [1,∞) × [1,∞);

(iii) G(t, s) ≤ ( 1
Γ (ν) +

∑m
i=1

γigi(η,s)
ΩΓ (ν+βi)

)(log t)ν–1 for (t, s) ∈ [1,∞) × [1,∞).

For getting our results, it is essential to list some useful concepts in Banach spaces and
the main tool, i.e., a fixed point theorem for generalized concave operators. For this knowl-
edge, we can see [26, 28, 29] for details.
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Assume that (E,‖ · ‖) is a real Banach space, then E can be partially ordered by a cone
P ⊂ E, that is, x ≤ y if and only if y – x ∈ P. When x ≤ y and x 	= y, we write x < y or y > x.
θ is the zero element in E. We say that P ⊂ E is a cone if it is a non-empty closed convex
set and it satisfies (i) x ∈ P, λ ≥ 0 ⇒ λx ∈ P; (ii) x ∈ P, –x ∈ P ⇒ x = θ .

For any x, y ∈ E, θ ≤ x ≤ y, there is a constant M > 0 such that ‖x‖ ≤ M‖y‖. We call P
normal and M is said to be the normality constant of P. Let x1, x2 ∈ E and define a set
[x1, x2] = {x ∈ E|x1 ≤ x ≤ x2}, we call it an order interval between x1 and x2.

For x, y ∈ E, we define x ∼ y, which means that there exist λ > 0 and μ > 0 such that
λx ≤ y ≤ μx. Evidently, ∼ is an equivalence relation. For fixed h > θ (i.e., h ≥ θ and h 	= θ ),
we denote a set Ph = {x ∈ E|x ∼ h}. Clearly, Ph ⊂ P is convex and λPh = Ph for any λ > 0.

In paper [29], the authors investigated a special operator equation

u = Tu + x0. (2.5)

The existence and uniqueness of positive solutions to (2.5) are obtained. Moreover, an
interesting theorem is also given as follows.

Lemma 2.5 (Theorem 2.1 in [29]) If h > θ and P is a normal cone. Suppose that:
(D1) T : P → P is an increasing operator;
(D2) x0 ∈ P satisfies Th + x0 ∈ Ph;
(D3) For all u ∈ P and r ∈ (0, 1), there is ψ(r) ∈ (r, 1) such that T(ru) ≥ ψ(r)Tu.

Then there is a unique element in Ph which satisfies equation (2.5).

Remark 2.6 If condition (D3) for T holds, then the operator T is called generalized con-
cave. Take x0 = θ , the conclusion also holds. That is, operator Tu = u has a unique solution
in Ph.

3 Main results
We will discuss (1.1) in a space E given by

E =
{

x ∈ C
(
[1,∞)

)
: sup

t∈[1,∞)

|x(t)|
1 + (log t)ν–1 < ∞

}
.

This space can be always seen in literature. Set

‖x‖ = sup
t∈[1,∞)

|x(t)|
1 + (log t)ν–1 .

From [14], (E,‖ · ‖) is a Banach space with this norm. Moreover, we give a cone P in E
defined by

P =
{

x ∈ E : x(t) ≥ 0, t ∈ [1,∞)
}

.

If x, y ∈ P and x ≤ y, then we have 0 ≤ x(t) ≤ y(t), and thus

sup
1≤t<∞

x(t)
1 + (log t)ν–1 ≤ sup

1≤t<∞
y(t)

1 + (log t)ν–1 ,

that is, ‖x‖ ≤ ‖y‖, it means that P is normal.
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Theorem 3.1 Assume that
(H1) f : [1,∞) × [0,∞) → [0,∞) is a continuous function, f (t, 0) 	≡ 0 for t ∈ [1,∞);
(H2) for fixed t ∈ [1,∞), f (t, x) is increasing in x ∈ [0,∞);
(H3) if x is bounded, then f (t, (1 + (log t)ν–1)x) is bounded for [1,∞);
(H4) for τ ∈ (0, 1), there is ψ(τ ) ∈ (τ , 1) such that f (t, τx) ≥ ψ(τ )f (t, x), t ∈ [1,∞), x ∈

[0,∞);
(H5) b(t), c(t) are continuous with 0 <

∫ ∞
1 b(s) ds

s < ∞, 0 ≤ ∫ ∞
1 c(s) ds

s < ∞.
Then problem (1.1) has a unique solution x∗ in Ph, where h(t) = (log t)ν–1, t ∈ [1,∞).

Proof For x ∈ E, we define

Tx(t) =
∫ +∞

1
G(t, s)b(s)f

(
s, x(s)

)ds
s

, x0(t) =
∫ +∞

1
G(t, s)c(s)

ds
s

,

where G(t, s) is the same as in (2.2). From Lemma 2.3, if x is a solution of problem (1.1),
then x is a solution of the operator equation Tx + x0 = x. And vice versa.

First, we prove that T : P → P. For x ∈ P, then x(t)
1+(log t)ν–1 < ∞, t ∈ [1,∞). By (H3), we

know that there exists Mx > 0 such that f (s, (1 + (log s)ν–1) x(s)
1+(log s)ν–1 ) ≤ Mx. Further, by

Lemma 2.4, (H3), and (H5), we can get

Tx(t)
1 + (log t)ν–1 =

∫ ∞

1

G(t, s)
1 + (log t)ν–1 b(s)f

(
s, x(s)

)ds
s

≤
∫ ∞

1

(
1

Γ (ν)
+

m∑
i=1

γigi(η, s)
ΩΓ (ν + βi)

)
b(s)

× f
(

s,
(
1 + (log s)ν–1) x(s)

1 + (log s)ν–1

)
ds
s

≤
(

1
Γ (ν)

+
m∑

i=1

γi(logη)ν+βi–1

ΩΓ (ν + βi)

)
Mx

∫ ∞

1
b(s)

ds
s

< ∞.

Also, it follows from (H1) and Lemma 2.4 that Tx ∈ C[1,∞). So we obtain that T : P → P.
By (H2), one can prove that T : P → P is increasing.

In the sequel, we show that T satisfies the three conditions in Lemma 2.5. Note that
h(t) = (log t)ν–1, t ∈ [1,∞), and 1 < ν < 2, we get sup1≤t<∞

h(t)
1+(log t)ν–1 = 1 < ∞, that is, h ∈ P.

Next we mainly prove that Th ∈ Ph.
Since h(t)

1+(log t)ν–1 ≤ 1 for t ∈ [1,∞), and by (H3), there is Mh > 0 such that

f
(

t,
(
1 + (log t)ν–1) h(t)

1 + (log t)ν–1

)
≤ Mh. (3.1)

Let

l1 =
m∑

i=1

γi

ΩΓ (ν + βi)

∫ m

1
b(s)gi(η, s)f (s, 0)

ds
s

,

l2 = Mh

(
1

Γ (ν)
+

1
Ω

m∑
i=1

γi(logη)ν+βi–1

Γ (ν + βi)

)
·
∫ ∞

1
b(s)

ds
s

.
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Because Γ (ν) >
∑m

i=1
γiΓ (ν)
Γ (ν+βi)

(logη)ν+βi–1 > 0, there must exist nonzero elements from γ1,
γ2, . . . ,γm. So

∑m
i=1

γi
ΩΓ (ν+βi)

> 0. From conditions (H1) and (H5), we see that b(s)f (s, 0) is
continuous with b(s)f (s, 0) 	≡ 0 for s ∈ [1,∞). Hence,

∫ m
1 b(s)f (s, 0) ds

s > 0 and one gets l1 > 0.
Further, by (H2), we get Mh ≥ f (t, 0, 0) for t ∈ [1,∞). Because gi(η, s) ≤ (logη)ν+βi–1, we
easily get l2 ≥ l1. By (H2), we have

Th(t) =
∫ ∞

1
G(t, s)b(s)f

(
s, (log s)ν–1)ds

s

≥
∫ ∞

1
G(t, s)b(s)f (s, 0)

ds
s

≥
∫ ∞

1

m∑
i=1

γi(log t)ν–1

ΩΓ (ν + βi)
gi(η, s)b(s)f (s, 0)

ds
s

≥
m∑

i=1

γi

ΩΓ (ν + βi)

∫ m

1
b(s)gi(η, s)f (s, 0)

ds
s

· (log t)ν–1

= l1(log t)ν–1 = l1h(t).

Also, from Lemma 2.4, (H2), and (3.1),

Th(t) =
∫ ∞

1
G(t, s)b(s)f

(
s, (log s)ν–1)ds

s

=
∫ ∞

1
G(t, s)b(s)f

(
s,

(
1 + (log s)ν–1) (log s)ν–1

1 + (log s)ν–1

)
ds
s

≤
∫ ∞

1
G(t, s)b(s)Mh

ds
s

≤
∫ ∞

1

(log t)ν–1

Γ (ν)
b(s)Mh

ds
s

+
∫ +∞

1

m∑
i=1

γi(log t)ν–1

ΩΓ (ν + βi)
gi(η, s)b(s)Mh

ds
s

≤ Mh

(
1

Γ (ν)
+

1
Ω

m∑
i=1

γi(logη)ν+βi–1

Γ (ν + βi)

)
·
∫ ∞

1
b(s)

ds
s

· (log t)ν–1

= l2(log t)ν–1 = l2h(t).

Hence, l1h(t) ≤ Th(t) ≤ l2h(t), t ∈ [1,∞). That is, l1h ≤ Th ≤ l2h. So Th ∈ Ph.
Next we indicate that the third condition (D3) of Lemma 2.5 holds. If τ ∈ (0, 1), x ∈ P, by

(H4) and Lemma 2.4, we obtain

T(τx)(t) =
∫ ∞

1
G(t, s)b(s)f

(
s, τx(s)

)ds
s

≥ ψ(τ )
∫ ∞

1
G(t, s)b(s)f

(
s, x(s)

)ds
s

= ψ(τ )Tx(t).

That is, T(τx) ≥ ψ(τ )Tx, τ ∈ (0, 1), x ∈ P.
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Next we consider x0. From (H5), c(t) 	≡ 0, and by Lemma 2.4,

x0(t)
1 + (log t)ν–1 =

∫ ∞

1

G(t, s)
1 + (log t)ν–1 c(s)

ds
s

≤
(

1
Γ (ν)

+
m∑

i=1

γi(logη)ν+βi–1

ΩΓ (ν + βi)

)∫ ∞

1
c(s)

ds
s

< ∞.

So x0 ∈ P. Set

l =

(
1

Γ (ν)
+

m∑
i=1

γi(logη)ν+βi–1

ΩΓ (ν + βi)

)∫ ∞

1
c(s)

ds
s

,

then l > 0. By Lemma 2.4,

x0(t) ≤ l(log t)ν–1 = lh(t), t ∈ [1,∞).

Hence, 0 ≤ x0 ≤ lh. Further,

l1h ≤ x0 + Th ≤ (l2 + l)h.

Hence x0 + Ah ∈ Ph. The second condition (D2) in Lemma 2.5 is satisfied. Now we can use
Lemma 2.5. So x = Tx + x0 has a unique solution x∗ in Ph. Hence there exist λ,μ > 0 such
that

0 ≤ λ(log t)ν–1 = λh(t) ≤ μh(t) = μ(log t)ν–1, t ∈ [1,∞).

In other words, x∗(t) is a unique positive solution of our problem (1.1) in Ph. �

Considering Theorem 3.1 and Remark 2.6, we can present the following corollary.

Corollary 3.2 Suppose that (H1)–(H5) hold with c(t) ≡ 0, t ∈ [1,∞). Then the following
fractional problem

⎧⎨
⎩

HDνx(t) + b(t)f (t, x(t)) = 0, 1 < ν < 2, t ∈ (1,∞),

x(1) = 0, HDν–1x(∞) =
∑m

i=1 γi
HIβi x(η),

has a unique positive solution x∗ in Ph, here h(t) = (log t)ν–1, t ∈ [1,∞).

Remark 3.3 In literature, for Hadamard fractional problems under various boundary con-
ditions, the unique results similar to Theorem 3.1 and Corollary 3.2 have not been seen.
So our results are new to Hadamard fractional problems with boundary conditions. Let
f ≡ C > 0, then conditions (H1)–(H4) are naturally satisfied and problem (1.1) has a unique
solution x(t) =

∫ 1
0 G(t, s)[b(s)C + c(s)] ds, t ∈ [0,∞). From Lemma 2.4, the unique solution

x ∈ Ph, and thus it is a positive solution.
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4 An example
Example 4.1 We discuss a specific Hadamard fractional problem

⎧⎪⎨
⎪⎩

HD 3
2 x(t) + t–2( x

1
3 (t)

1+(log t)
1
2

+ 1) + e–t = 0, t ∈ (1,∞),

x(1) = 0, HD 1
2 x(∞) = HI 3

2 x(e) + 2HI 5
2 x(e),

(4.1)

where ν = 3
2 , m = 2, η = e, γ1 = 1, γ2 = 2, β1 = 3

2 , β2 = 5
2 , b(t) = t–2 and

f (t, x) =
x 1

3

1 + (log t) 1
2

+ 1, c(t) = e–t .

Then Ω = Γ ( 3
2 ) –

∑2
i=1

γiΓ ( 3
2 )

Γ ( 3
2 +βi)

(log e) 3
2 +βi–1 ≈ 0.1477 > 0. Evidently, f (t, x) satisfies (H1),

(H2). It follows from x is bounded that f (t, (1 + (log t) 1
2 )x) = x 1

3 + 1 < ∞ for t ∈ [1,∞), so
(H3) is also satisfied with f (t, 0) = 1 > 0.

Let ψ(τ ) = τ
1
3 , then ψ(τ ) ∈ (τ , 1) for τ ∈ (0, 1). For τ ∈ (0, 1), x ≥ 0, we have

f (t, τx) =
τ

1
3 x 1

3

1 + (log t) 1
2

+ 1 ≥ τ
1
3

(
x 1

3

1 + (log t) 1
2

+ 1
)

= ψ(τ )f (t, x).

Moreover,

∫ ∞

1
b(t)

dt
t

=
∫ ∞

1
t–2 dt

t
=

1
2

< ∞,
∫ ∞

1
c(t)

dt
t

=
∫ ∞

1
e–t dt

t
=

1
e

< ∞.

So conditions (H4), (H5) are satisfied. From Theorem 3.1, problem (4.1) has a unique so-
lution x∗ in Ph, here h(t) = (log t) 1

2 , t ∈ [1,∞).
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