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Abstract
Recently, the central Fubini polynomials were introduced in connection with central
factorial numbers of the second kind. In this paper, we consider two variable
higher-order central Fubini polynomials as a ‘central analogue’ of two variable
higher-order Fubini polynomials. We investigate some properties, identities, and
recurrence relations for these polynomials by making use of generating functions and
umbral calculus. In particular, we obtain various expressions for the two variable
higher-order central Fubini polynomials and express them in terms of some families
of special polynomials and vice versa.
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1 Introduction
For n ∈N∪ {0}, the central factorial x[n] is defined as

x[0] = 1, x[n] = x
(

x +
n
2

– 1
)(

x +
n
2

– 2
)

· · ·
(

x –
n
2

+ 1
)

(n ≥ 1). (1)

As is well known, the central factorial numbers of the second kind T(n, k) (n, k ≥ 0) are
defined by

xn =
n∑

k=0

T(n, k)x[k] (n ≥ 0) (see [7–9, 11, 13, 16–18]). (2)

From (2), we can derive the following generating function for T(n, k):

1
k!

(
e

t
2 – e– t

2
)k =

∞∑
n=k

T(n, k)
tn

n!
(k ≥ 0) (see [7–9, 11–13, 16–18]). (3)

It is known that the two variable Fubini polynomials F (r)
n (x; y) of order r are defined by

(
1

1 – y(et – 1)

)r

ext =
∞∑

n=0

F (r)
n (x; y)

tn

n!
(see [1, 2, 4–6, 14]), (4)

where r is a positive integer.
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In particular, if r = 1, then Fn(x; y) = F (1)
n (x; y) are called two variable Fubini polynomials.

For x = 0, F (r)
n (y) = F (r)

n (0; y) and F (r)
n = F (r)

n (1) = F (r)
n (0; 1) are respectively called the Fubini

polynomials of order r and the Fubini numbers of order r. Further, in the special case of
y = 1, F (r)

n (x; 1) are the ordered Bell polynomials of order r. Recently, the central Fubini
polynomials have been defined by

1
1 – x(e t

2 – e– t
2 )

=
1

1 – 2x sinh( t
2 )

=
∞∑

n=0

Fn,c(x)
tn

n!
(see [8]). (5)

From (5), one can see that

Fn,c(x) =
n∑

k=0

k!T(n, k)xk (n ≥ 0) (see [8]). (6)

Next, we will quickly review very basics of umbral calculus. Let C be the field of complex
numbers, and let

F :=

{
f (t) =

∞∑
k=0

ak
tk

k!

∣∣∣ ak ∈C

}
.

We set P = C[x] and define P
∗ by the vector space of all linear functionals on P. For any

given L ∈ P
∗ and p(x) ∈ P, throughout the paper, 〈L | p(x)〉 represents the action of the

linear functional L on p(x). For f (t) =
∑∞

k=0 ak
tk

k! ∈F , 〈f (t) | ·〉 denotes the linear functional
on P given by

〈
f (t) | xn〉 = an (n ≥ 0) (see [10, 15]). (7)

For L ∈ P
∗, let fL(t) =

∑∞
k=0〈L | xk〉 tk

k! ∈ F . Then we have 〈fL(t) | xn〉 = 〈L | xn〉, (n ≥ 0), and
the map L 	−→ fL(t) is a vector space isomorphism from P

∗ to F . Thus, F may be viewed as
the vector space of all linear functionals on P as well as the algebra of formal power series
in t. Hence, an element f (t) ∈ F will be thought of as both a formal power series and a
linear functional on P. F is called the umbral algebra, the study of which is the umbral
calculus.

The order O(f (t)) of f (t)( �= 0) ∈ F is the smallest integer k such that the coefficient of
tk does not vanish. For f (t), g(t) ∈ F with O(g(t)) = 0, O(f (t)) = 1, there exists a unique
sequence of polynomials Sn(x) (deg Sn(x) = n) such that

〈
g(t)

(
f (t)

)k | Sn(x)
〉

= n!δn,k (n, k ≥ 0) (see [15]), (8)

where δn,k is the Kronecker symbol. Such a sequence is called the Sheffer sequence for
(g(t), f (t)), which is denoted by Sn(x) ∼ (g(t), f (t)). It is known that Sn(x) ∼ (g(t), f (t)) if
and only if

1
g(f̄ (t))

exf̄ (t) =
∞∑

n=0

Sn(x)
tn

n!
(see [3, 10, 15]), (9)
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where f̄ (t) is the compositional inverse of f (t) satisfying f (f̄ (t)) = f̄ (f (t)) = t. For Sn(x) ∼
(g(t), f (t)), we have the following Sheffer identity:

Sn(x + y) =
n∑

k=0

(
n
k

)
Sk(x)Pn–k(y), (10)

where Pn(x) = g(t)Sn(x) ∼ (1, f (t)) (see [15]).
For any h(t) ∈F , p(x) ∈ P, we have

〈
h(t) | xp(x)

〉
=

〈
∂th(t) | p(x)

〉
(see [15]). (11)

Let Sn(x) ∼ (g(t), f (t)) and rn(x) ∼ (h(t), l(t)). Then we have

Sn(x) =
n∑

k=0

Cn,krk(x), (12)

where

Cn,k =
1
k!

〈
h(f̄ (t))
g(f̄ (t))

(
l
(
f̄ (t)

))k
∣∣∣ xn

〉
(see [3, 10, 15]). (13)

In the forthcoming section, we will consider two variable higher-order central Fubini
polynomials as a ‘central analogue’ of two variable higher-order Fubini polynomials. We
introduce some properties and present several identities and recurrence relations for these
polynomials by making use of generating functions and umbral calculus. Further, we show
various expressions for the two variable higher-order central Fubini polynomials and ex-
press them in terms of some families of special polynomials and vice versa in the following
section.

2 Two variable higher-order central Fubini polynomials
In view of (4), we consider the two variable higher-order central Fubini polynomials which
are given by

(
1

1 – y(e t
2 – e– t

2 )

)r

ext =
∞∑

n=0

F (r)
n,c(x; y)

tn

n!
, (14)

where r is a positive integer. Here, in this paper, y will be an arbitrary but fixed real number
so that F (r)

n,c(x; y) are polynomials in x for each fixed y.
From (9) and (14), we note that

F (r)
n,c(x; y) ∼ ((

1 – y
(
e

t
2 – e– t

2
))r , t

)
. (15)

When r = 1, F (1)
n,c (x; y) = Fn,c(x; y) are called two variable central Fubini polynomials and

F (r)
n,c(y) = F (r)

n,c(0; y) are called central Fubini polynomials of order r. When r = 1, Fn,c(y) =
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F (1)
n,c (y) are called the central Fubini polynomials. From (14), we note that

∞∑
n=0

F (r)
n,c(x; y)

tn

n!
=

( ∞∑
l=0

F (r)
l,c (y)

tl

l!

)( ∞∑
m=0

xm

m!
tm

)

=
∞∑

n=0

( n∑
l=0

(
n
l

)
F (r)

l,c (y)xn–l

)
tn

n!
. (16)

Thus, by comparing the coefficients on both sides of (16), we get

F (r)
n,c(x; y) =

n∑
l=0

(
n
l

)
F (r)

l,c (y)xn–l (n ≥ 0). (17)

By (17), we easily get d
dx F (r)

n,c(x; y) = nF (r)
n–1,c(x; y), (n ∈N). From (14), we note that

∞∑
n=0

F (r)
n,c(y)

tn

n!
=

(
1 – y

(
e

t
2 – e– t

2
))–r

=
∞∑

k=0

(
r + k – 1

k

)
ykk!

1
k!

(
e

t
2 – e– t

2
)k

=
∞∑

k=0

(
r + k – 1

k

)
k!yk

∞∑
n=k

T(n, k)
tn

n!

=
∞∑

n=0

( n∑
k=0

(
r + k – 1

k

)
k!ykT(n, k)

)
tn

n!
. (18)

Comparing the coefficients on both sides of (18), we have the following theorem.

Theorem 1 For n ≥ 0, we have

F (r)
n,c(y) =

n∑
k=0

(
r + k – 1

k

)
k!ykT(n, k).

The ordered central Bell numbers of order r are defined by the generating function

(
1

1 – (e t
2 – e– t

2 )

)r

=
(

1
1 – 2 sinh( t

2 )

)r

=
∞∑

n=0

b(r)
n,c

tn

n!
. (19)

Corollary 1 For n ≥ 0, we have

b(r)
n,c =

n∑
k=0

(
r + k – 1

k

)
k!T(n, k).

Remark 1 When r = 1, bn,c = b(1)
n,c are called the ordered central Bell numbers. Note that

bn,c =
n∑

k=0

k!T(n, k) (n ≥ 0).



Kim et al. Journal of Inequalities and Applications        (2019) 2019:146 Page 5 of 13

By (14), we get

∞∑
n=0

F (r)
n,c(y)

tn

n!
=

(
1

1 – y(e t
2 – e– t

2 )

)r

=
∞∑

m=0

(
r + m – 1

m

)
ym(

e
t
2 – e– t

2
)m

=
∞∑

m=0

(
r + m – 1

m

)
ym

m∑
l=0

(
m
l

)
(–1)m–le(l– m

2 )t

=
∞∑

n=0

( ∞∑
m=0

(
r + m – 1

m

)
ymδm0n

)
tn

n!
, (20)

where δ is the central difference operator given by

δf (x) = f (x + 1/2) – f (x – 1/2). (21)

Therefore, by (20), we obtain the following theorem.

Theorem 2 For n ≥ 0, we have

F (r)
n,c(y) =

∞∑
m=0

(
r + m – 1

m

)
ymδm0n,

where δf is as in (21). In particular,

b(r)
n,c =

∞∑
m=0

(
r + m – 1

m

)
δm0n.

From (14), we can derive the following equation (22):

∞∑
n=0

F (r)
n,c(x; y)

tn

n!
=

(
1

1 – y(e t
2 – e– t

2 )

)r

ext

=

( ∞∑
l=0

F (r)
l,c (y)

tl

l!

)( ∞∑
m=0

xm tm

m!

)

=
∞∑

n=0

( n∑
l=0

(
n
l

)
F (r)

l,c (y)xn–l

)
tn

n!
. (22)

Comparing the coefficients on both sides of (22), the following theorem is obtained.

Theorem 3 For n ≥ 0, we have

F (r)
n,c(x; y) =

n∑
l=0

l∑
k=0

(
n
l

)(
r + k – 1

k

)
k!T(l, k)xn–lyk .



Kim et al. Journal of Inequalities and Applications        (2019) 2019:146 Page 6 of 13

In particular,

F (r)
n,c(y) =

n∑
k=0

(
r + k – 1

k

)
k!T(n, k)yk .

Remark 2 From (14), we note that

F (r)
n,c(x1 + x2; y) =

n∑
m=0

(
n
m

)
F (r)

m,c(x1; y)xn–m
2 (n ≥ 0). (23)

From r ∈N with r ≥ 2, we have

(
1

1 – y(e t
2 – e– t

2 )

)r

=
(

1
1 – y(e t

2 – e– t
2 )

)r–1( 1
1 – y(e t

2 – e– t
2 )

)

=

( ∞∑
m=0

F (r–1)
m,c (y)

tm

m!

)( ∞∑
l=0

Fl,c(y)
tl

l!

)

=
∞∑

n=0

( n∑
m=0

(
n
m

)
F (r–1)

m,c (y)Fn–m,c(y)

)
tn

n!
. (24)

Therefore, by (14) and (24), we obtain the following convolution formula.

Theorem 4 For r ∈ N with r ≥ 2 and n ≥ 0, we have

F (r)
n,c(y) =

n∑
m=0

(
n
m

)
F (r–1)

m,c (y)Fn–m,c(y).

Now, we observe that

(
1 – y

(
e

t
2 – e– t

2
))r =

∞∑
l=0

(
r
l

)
l!(–y)l 1

l!
(
e

t
2 – e– t

2
)l

=
∞∑

k=0

( k∑
l=0

(
r
l

)
(–y)ll!T(k, l)

)
tk

k!
. (25)

From (14) and (25), we have

∞∑
n=0

xn tn

n!
=

∞∑
k=0

( k∑
l=0

(
r
l

)
(–y)ll!T(k, l)

)
tk

k!

∞∑
m=0

F (r)
m,c(x; y)

tm

m!

=
∞∑

n=0

( n∑
k=0

(
n
k

) k∑
l=0

(
r
l

)
(–y)ll!T(k, l)F (r)

n–k,c(x; y)

)
tn

n!
. (26)

Therefore, by (26), we obtain the following theorem.

Theorem 5 For n ≥ 0, we have

xn =
n∑

k=0

n–k∑
l=0

(
n
k

)(
r
l

)
(–y)ll!T(n – k, l)F (r)

k,c(x; y).
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In particular, n ∈N,

F (r)
n,c(y) = –

n–1∑
k=0

n–k∑
l=0

(
n
k

)(
r
l

)
(–y)ll!T(n – k, l)F (r)

k,c(y).

From (4) and (9), we note that

F (r)
n,c(x; y) ∼ ((

1 – y
(
e

t
2 – e– t

2
))r , t

) (
n ∈N∪ {0}). (27)

For n ∈N, by (11), we get

F (r)
n,c(z; y) =

〈
1

(1 – y(e t
2 – e– t

2 ))r
ezt

∣∣∣ xn
〉

=
〈(

∂t
1

(1 – y(e t
2 – e– t

2 ))r

)
ezt

∣∣∣ xn–1
〉

+
〈

1
(1 – y(e t

2 – e– t
2 ))r

(
∂tezt) ∣∣∣ xn–1

〉
. (28)

It is easy to show that

〈(
∂t

(
1 – y

(
e

t
2 – e– t

2
))–r)ezt | xn–1〉 = ry

(
1
2

F (r+1)
n–1,c

(
z +

1
2

; y
)

+
1
2

F (r+1)
n–1,c

(
z –

1
2

; y
))

. (29)

Clearly, the second term of (28) is zF (r)
n–1,c(z; y).

Therefore, we obtain the following theorem.

Theorem 6 For n ≥ 0, we have

F (r)
n+1,c(x; y) = xF (r)

n,c(x; y) +
r
2

y
(

F (r+1)
n,c

(
x +

1
2

; y
)

+ F (r+1)
n,c

(
x –

1
2

; y
))

and

F (r)
n+1,c(y) =

r
2

y
(

F (r+1)
n,c

(
1
2

; y
)

+ F (r+1)
n,c

(
–

1
2

; y
))

.

Now, we will express the two variable higher-order central Fubini polynomials F (r)
n,c(x; y)

as linear combinations of some well-known special polynomials.
We first recall that

F (r)
n,c(x; y) ∼ ((

1 – y
(
e

t
2 – e– t

2
))r , t

)
.

If we let

F (r)
n,c(x; y) =

∞∑
m=0

Cn,mSm(x), (30)
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where Sn(x) ∼ (h(t), l(t)). Then, from (12) and (13), we see that

Cn,m =
1

m!

〈
h(t)

(1 – y(e t
2 – e– t

2 ))r

(
l(t)

)m
∣∣∣ xn

〉

=
1

m!

〈
h(t)

(
l(t)

)m
∣∣∣ 1

(1 – y(e t
2 – e– t

2 ))r
xn

〉

=
1

m!
〈
h(t)

(
l(t)

)m | F (r)
n,c(x; y)

〉
. (31)

Therefore, the following theorem can be established.

Theorem 7 Let Sn(x) ∼ (h(t), l(t)) for n ≥ 0, then we have

F (r)
n,c(x; y) =

n∑
m=0

Cn,mSm(x),

where

Cn,m =
1

m!
〈
h(t)l(t)m | F (r)

n,c(x; y)
〉
.

Let Bn(x) (n ≥ 0) be the ordinary Bernoulli polynomials given by

t
et – 1

ext =
∞∑

n=0

Bn(x)
tn

n!
.

Note that Bn(x) ∼ ( et–1
t , t).

Assume that

F (r)
n,c(x; y) =

n∑
m=0

Cn,mBm(x), (32)

where

Cn,m =
1

m!

〈
et – 1

t

∣∣∣ tmF (r)
n,c(x; y)

〉

=
(

n
m

)〈
et – 1

t

∣∣∣ F (r)
n–m,c(x; y)

〉

=
(

n
m

)∫ 1

0
F (r)

n–m,c(u; y) du

=
(

n
m

)
1

n – m + 1
(
F (r)

n–m+1,c(1; y) – F (r)
n–m+1,c(y)

)

=
1

n + 1

(
n + 1

m

)(
F (r)

n–m+1,c(1; y) – F (r)
n–m+1,c(y)

)
. (33)

Therefore, by (33), we obtain the following theorem.
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Theorem 8 For n ≥ 0, we have

F (r)
n,c(x; y) =

1
n + 1

n∑
m=0

(
n + 1

m

)(
F (r)

n–m+1,c(1; y) – F (r)
n–m+1,c(y)

)
Bm(x).

The falling factorial sequence is defined by

(x)0 = 1, (x)n = x(x – 1)(x – 2) · · · (x – n + 1) (n ≥ 1).

Note that the generating function of (x)n is given by

(1 + t)x =
∞∑

n=0

(x)n
tn

n!
. (34)

By (34), we get (x)n ∼ (1, et – 1).
Assume that

F (r)
n,c(x; y) =

m∑
n=0

Cn,m(x)m, (35)

Then, by Theorem 7, we have

Cn,m =
1

m!
〈(

et – 1
)m | F (r)

n,c(x; y)
〉

=
〈

1
m!

(
et – 1

)m
∣∣∣ F (r)

n,c(x; y)
〉

=
∞∑

k=m

S2(k, m)
1
k!

〈
tk | F (r)

n,c(x; y)
〉

=
n∑

k=m

S2(k, m)
(

n
k

)
F (r)

n–k,c(y), (36)

where S2(n, k) are the numbers of the second kind given by

xn =
n∑

k=0

S2(n, k)(x)k (n ≥ 0).

Therefore, we obtain the following theorem.

Theorem 9 For n ≥ 0, we have

F (r)
n,c(x; y) =

n∑
m=0

n∑
k=m

(
n
k

)
S2(k, m)F (r)

n–k,c(y)(x)m.

It is well known that the Bell polynomials are defined by the generating function

ex(et–1) =
∞∑

n=0

Beln(x)
tn

n!
. (37)
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Thus, by (37), we get

Beln(x) ∼ (
1, log(1 + t)

)
(n ≥ 0). (38)

Assume that

F (r)
n,c(x; y) =

n∑
m=0

Cn,m Belm(x). (39)

By Theorem 7, we get

Cn,m =
〈

1
m!

(
log(1 + t)

)m
∣∣∣ F (r)

n,c(x; y)
〉

=
∞∑

k=m

S1(k, m)
1
k!

〈
tk | F (r)

n,c(x; y)
〉

=
n∑

k=m

(
n
k

)
S1(k, m)F (r)

n–k,c(y), (40)

where S1(n, k) are the Stirling numbers of the first kind defined by

(x)n =
n∑

k=0

S1(n, k)xk (n ≥ 0).

Therefore, we obtain the following theorem.

Theorem 10 For n ≥ 0, we have

F (r)
n,c(x; y) =

n∑
m=0

n∑
k=m

(
n
k

)
S1(k, m)F (r)

n–k,c(y) Belm(x).

Let p(x) ∈C[x] be a polynomial of degree ≤ n. Then we can write

p(x) =
n∑

m=0

amF (r)
m,c(x; y) for am ∈C. (41)

We observe that

〈(
1 – y

(
e

t
2 – e– t

2
))rtm | p(x)

〉
=

n∑
l=0

al
〈(

1 – y
(
e

t
2 – e– t

2
))rtm | F (r)

l,c (x; y)
〉

=
n∑

l=0

all!δm,l

= m!am. (42)
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Thus, by (42), we get

am =
1

m!
〈(

1 – y
(
e

t
2 – e– t

2
))rtm | p(x)

〉

=
1

m!

〈 ∞∑
l=0

(
r
l

)
l!(–y)l 1

l!
(
e

t
2 – e– t

2
)l

∣∣∣∣ tmp(x)

〉

=
1

m!

〈 ∞∑
l=0

(
r
l

)
l!(–y)l

∞∑
k=l

T(k, l)
tk

k!

∣∣∣∣ tmp(x)

〉

=
1

m!

〈 ∞∑
k=0

1
k!

k∑
l=0

(
r
l

)
l!(–y)lT(k, l)

∣∣∣∣ tm+kp(x)

〉

=
1

m!

n–m∑
k=0

1
k!

k∑
l=0

(
r
l

)
l!(–y)lT(k, l)

〈
1 | tm+kp(x)

〉
. (43)

Therefore, we obtain the following theorem.

Theorem 11 For p(x) ∈C[x] with deg p(x) ≤ n, we have

p(x) =
n∑

m=0

amF (r)
m,c(x; y) (am ∈C),

where

am =
1

m!

n–m∑
k=0

1
k!

k∑
l=0

(
r
l

)
l!(–y)lT(k, l)

〈
1 | tm+kp(x)

〉
.

For example, let p(x) = Bn(x) (n ≥ 0). Then we have

Bn(x) =
n∑

m=0

amF (r)
m,c(x; y) (n ≥ 0), (44)

where

am =
1

m!

n–m∑
k=0

1
k!

k∑
l=0

(
r
l

)
l!(–y)lT(k, l)

〈
1 | tm+kBn(x)

〉

=
n–m∑
k=0

k∑
l=0

(
r
l

)
l!(–y)lT(k, l)

(
n
m

)(
n – m

k

)〈
1 | Bn–m–k(x)

〉

=
n–m∑
k=0

k∑
l=0

(
r
l

)
l!
(

n
m

)(
n – m

k

)
(–y)lT(k, l)Bn–m–k , (45)

where Bn = Bn(0) are Bernoulli numbers. Thus, by (44) and (45), we get

Bn(x) =
n∑

m=0

n–m∑
k=0

k∑
l=0

(
r
l

)
l!
(

n
m

)(
n – m

k

)
(–y)lT(k, l)Bn–m–kF (r)

m,c(x; y). (46)
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Assume that

xn =
n∑

m=0

amF (r)
m,c(x; y) (n ≥ 0), (47)

where

am =
1

m!

n–m∑
k=0

1
k!

k∑
l=0

(
r
l

)
l!(–y)lT(k, l)

〈
1 | tm+kxn〉

=
1

m!

n–m∑
k=0

1
k!

k∑
l=0

(
r
l

)
l!(–y)lT(k, l)(n)m+k

〈
1 | xn–m–k 〉

=
1

m!
1

(n – m)!

n–m∑
l=0

(
r
l

)
l!(–y)lT(n – m, l)(n)n

=
(

n
m

) n–m∑
l=0

(
r
l

)
l!(–y)lT(n – m, l). (48)

Hence,

xn =
n∑

m=0

(
n
m

) n–m∑
l=0

(
r
l

)
l!(–y)lT(n – m, l)F (r)

m,c(x; y).

3 Conclusions
Recently, the two variable Fubini polynomials were introduced by Kargin (see [4]) and the
central Fubini polynomials associated with central factorial numbers of the second kind
by Kim et al. (see [8]). In this paper, we considered two variable higher-order central Fubini
polynomials as a ‘central analogue’ of two variable higher-order Fubini polynomials. We
investigated some properties, identities, and recurrence relations for these polynomials by
making use of generating functions and umbral calculus. In particular, we obtained various
expressions for the two variable higher-order central Fubini polynomials and expressed
them in terms of some families of special polynomials and vice versa.
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