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Abstract
In this article, we construct new Lyapunov-type inequalities for odd order boundary
value problems. The aim of this article is to find the maximum of Green’s function
|G2n+1(x, s)| corresponding to two-point boundary value problems. To the best of our
knowledge, there is no paper dealing with Lyapunov-type inequalities for odd order
boundary value problems by bounding the Green’s function of the same problem. In
addition, some applications of the obtained inequalities are also given.
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1 Introduction
In this article, we get new Lyapunov-type inequalities for the (2n + 1)th order problem

y(2n+1) + (–1)n–1r(x)y = 0, (1.1)

y(k)(x1) = y(k)(x2) = 0 for k = 0, 1, . . . , n – 1, (1.2)

(–1)n–1y(n)(x1) = y(n)(x2), (1.3)

where n ∈N, x1, x2 are real numbers with x1 < x2, r ∈ C([0,∞),R), and y is a real solution
(not identically zero) of (1.1)–(1.3).

In 1907, Lyapunov [1] got an important inequality. If r ∈ C([0,∞),R) and y is a solution
(not identically zero) of the problem

y′′ + r(x)y = 0, (1.4)

y(x1) = y(x2) = 0, (1.5)

then the inequality

4
x2 – x1

≤
∫ x2

x1

∣∣r(s)
∣∣ds (1.6)

holds. Note that the constant 4 in (1.6) is the best possibility (see [2, p. 345], [3, p. 267]).
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With the help of Green’s function, Hartman [2] generalized the Lyapunov inequality
(1.6) as follows: If r ∈ C([0,∞),R) and y is a solution (not identically zero) on [x1, x2] for
problem (1.4)–(1.5), then the inequality

1 ≤
∫ x2

x1

(s – x1)(x2 – s)
x2 – x1

r+(s) ds (1.7)

holds, where r+(x) = max{r(x), 0}. It is obvious that the function M(x) = (x – x1)(x2 – x)
takes its absolute maximum value at x1+x2

2 , i.e.,

M(x) ≤ max
x1≤x≤x2

M(x) = M
(

x1 + x2

2

)
=

(
x2 – x1

2

)2

. (1.8)

Thus, inequality (1.7) is a natural generalization of inequality (1.6).
In the literature, the authors found some Lyapunov-type inequalities for higher order

problems [4–24]. When we look at the work done in the literature, we see that the best
Lyapunov constant is obtained by taking the absolute maximum of the Green’s functions.
Lyapunov-type inequalities for higher order problems by using the Green’s function of the
same problem can be found in Agarwal and Özbekler [4, 5], Beesack [8], Das and Vatsala
[10, 11], and Yang [24]. Moreover, by using Green’s functions corresponding to even or-
der boundary value problems, Lyapunov-type inequalities for boundary value problems
of order (2n + 1) can be found in Aktaş et al. [7], and Dhar and Kong [12, 13]. To the best
of our knowledge there is almost no study about Lyapunov-type inequalities for odd order
problem that uses the Green’s function of the same problem. Therefore, our aim is to get
new Lyapunov-type inequalities for odd order boundary value problem by means of the
properties of Green’s functions corresponding to the same problem. Before introducing
our main results, we remember some important results obtained earlier.

Now, we give the definition of Green’s function for two point nth order linear boundary
value problems.

Definition A ([25, Definition 2.1]) It is said that Gn(x, s) is a Green’s function for the prob-
lem

Lny(x) = 0 for x ∈ I = [x1, x2], Ui(y) = 0 for i = 1, 2, . . . , m, (1.9)

where

Lny(x) ≡ a0(x)y(n)(x) + a1(x)y(n–1)(x) + · · · + an(x)y(x) for x ∈ I (1.10)

and

Ui(y) ≡
n–1∑
j=0

(
αi

j y
(j)(x1) + β i

j y
(j)(x2)

)
for i = 1, 2, . . . , m and m ≤ n (1.11)

being αi
j , β i

j real constants for all i = 1, 2, . . . , m, j = 0, 1, . . . , n – 1, ak(x) is a continuous real
function for all k = 0, 1, . . . , n, and a0(x) �= 0 for all x, if it satisfies the following properties:

(G1) Gn is defined on the square I × I .
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(G2) For k = 0, 1, . . . , n – 2, the partial derivatives ∂k Gn
∂xk exist and they are continuous on

I × I .
(G3) ∂n–1Gn

∂xn–1 and ∂nGn
∂xn exist and are continuous on the triangles x1 ≤ x < s ≤ x2 and x1 ≤

s < x ≤ x2.
(G4) For each x ∈ (x1, x2), there exist lateral limits ∂n–1Gn

∂xn–1 (x, x+) and ∂n–1Gn
∂xn–1 (x, x–) (i.e., the

limits when (x, s) → (x, x) with s > x or with s < x); moreover,

∂n–1Gn

∂xn–1

(
x, x+)

–
∂n–1Gn

∂xn–1

(
x, x–)

= –
1

a0(x)
. (1.12)

(G5) For each s ∈ (x1, x2), the function x → Gn(x, s) is a solution of the differential equa-
tion Lny(x) = 0 on x ∈ [x1, s) and x ∈ (s, x2]. That is,

a0(x)
∂nGn(x, s)

∂xn + a1(x)
∂n–1Gn(x, s)

∂xn–1 + · · · + an(x)Gn(x, s) = 0 (1.13)

on both intervals.
(G6) For each s ∈ (x1, x2), the function x → Gn(x, s) satisfies the boundary conditions

Ui(Gn(·, s)) = 0 for i = 1, 2, . . . , m:

n–1∑
j=0

(
αi

j
∂ jGn(x1, s)

∂xj + β i
j
∂ jGn(x2, s)

∂xj

)
= 0 for i = 1, 2, . . . , m. (1.14)

The main importance of the above definition is that the integral operator, whose kernel
is a Green’s function, gives us the solution for the semi-homogeneous problem

Lny(x) = σ (x) for x ∈ I, Ui(y) = 0 for i = 1, 2, . . . , m and m ≤ n, (1.15)

where σ (x) is a continuous real function. In fact,

y(x) =
∫ x2

x1

Gn(x, s)σ (s) ds for x ∈ I (1.16)

is a solution of problem (1.15) [25].
In 1975, Das and Vatsala [10] obtained the following results for the (2n)th order problem:

y(2n) = (–1)n–1h(x), (1.17)

y(k)(x1) = y(k)(x2) = 0 for k = 0, 1, . . . , n – 1, (1.18)

where n ∈N, x1, x2 are real numbers with x1 < x2, and y(x) �= 0 for all x ∈ (x1, x2).

Lemma A ([10, Lemma 2.1]) Let n ∈N. Then the following identity

[
(x – x1)(x2 – s)

x2 – x1

]n n–1∑
j=0

(
n – 1 + j

j

)
(s – x)n–j–1

[
(s – x1)(x2 – x)

x2 – x1

]j

– (–1)n–1(x – s)2n–1
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=
[

(s – x1)(x2 – x)
x2 – x1

]n n–1∑
j=0

(
n – 1 + j

j

)
(x – s)n–j–1

[
(x – x1)(x2 – s)

x2 – x1

]j

(1.19)

holds.

Lemma B ([10, Theorem 2.1]) If y(x) is a solution (not identically zero) on [x1, x2] for prob-
lem (1.17)–(1.18), then

y(x) =
∫ x2

x1

G2n(x, s)h(s) ds (1.20)

holds, where

G2n(x, s) =
1

(2n – 1)!

×
⎧⎨
⎩

[ (x–x1)(x2–s)
x2–x1

]n ∑n–1
j=0

(n–1+j
j

)
(s – x)n–j–1[ (s–x1)(x2–x)

x2–x1
]j; x ≤ s ≤ x2,

[ (s–x1)(x2–x)
x2–x1

]n ∑n–1
j=0

(n–1+j
j

)
(x – s)n–j–1[ (x–x1)(x2–s)

x2–x1
]j; x1 ≤ s ≤ x.

(1.21)

It is easy to see that from Lemma A and Lemma B that we have the symmetric property
of Green’s function G2n(x, s), i.e., G2n(x, s) = G2n(s, x) for all x, s ∈ [x1, x2].

Theorem A ([10, Theorem 3.1]) If r ∈ C([0,∞),R) and y(x) is a solution (not identically
zero) on [x1, x2] for the problem

y(2n) + (–1)n–1r(x)y = 0 (1.22)

satisfying conditions (1.18), then the inequality

(2n – 1)
[
(n – 1)!

]2(x2 – x1)2n–1 ≤
∫ x2

x1

[
(s – x1)(x2 – s)

]2n–1r+(s) ds (1.23)

holds, where r+(x) = max{r(x), 0}.

In 2016, Dhar and Kong [13] obtained the following results for the (2n + 1)th order prob-
lem:

y(2n+1) + (–1)n–1r(x)y = 0, (1.24)

y(k+1)(x1) = y(k+1)(x2) = 0 for k = 0, 1, . . . , n – 1, (1.25)

y(c) = 0 for c ∈ [x1, x2], (1.26)

where n ∈N, x1, x2 are real numbers with x1 < x2, and y(x) �= 0 for all x ∈ [x1, x2] – {c}.

Theorem B ([13, Theorem 2.1]) If r ∈ C([0,∞),R) and y(x) is a solution (not identically
zero) on [x1, x2] for problem (1.24)–(1.26), then the inequality

22n(2n – 1)!
Sn(x2 – x1)2n <

∫ x2

x1

∣∣r(s)
∣∣ds (1.27)
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holds, where

Sn =
n–1∑
j=0

j∑
k=0

22k–2j
(

n – 1 + j
j

)(
j
k

)
B(n + 1, n + k – j), (1.28)

B(α,β) =
∫ 1

0 sα–1(1 – s)β–1 ds is the beta function for α,β > 0.

Theorem C ([13, Theorem 2.2]) Assume that r ∈ C([0,∞),R) and y(x) is a solution (not
identically zero) on [x1, x2] for problem (1.24)–(1.25).

(a) Suppose y(c) = 0 for c ∈ (x1, x2) and y(x) �= 0 for x ∈ [x1, x2] – {c}. Then one of the
inequalities given below holds:

(i) 22n(2n–1)!
Sn(x2–x1)2n <

∫ x2
x1

r–(s) ds,

(ii) 22n(2n–1)!
Sn(x2–x1)2n <

∫ x2
x1

r+(s) ds,

(iii) 22n(2n–1)!
Sn(x2–x1)2n <

∫ c
x1

r–(s) ds +
∫ x2

c r+(s) ds,
where Sn is given in (1.28) and

r∓(x) = max
{∓r(x), 0

}
. (1.29)

(b) Suppose y(x1) = 0 and y(x) �= 0 for x ∈ (x1, x2]. Then the inequality

22n(2n – 1)!
Sn(x2 – x1)2n <

∫ x2

x1

r+(s) ds (1.30)

holds, where Sn and r+(x) are given in (1.28) and (1.29), respectively.
(c) Suppose y(x2) = 0 and y(x) �= 0 for x ∈ [x1, x2). Then the inequality

22n(2n – 1)!
Sn(x2 – x1)2n <

∫ x2

x1

r–(s) ds (1.31)

holds, where Sn and r–(x) are given in (1.28) and (1.29), respectively.

In this article, we investigate a new Lyapunov-type inequality for BVP of order (2n + 1)
given in (1.1)–(1.3). Firstly, we construct the Green’s function for the same problem. And
then, by bounding the Green’s function, we obtain new Lyapunov-type inequalities for
problem (1.1)–(1.3). Finally, we give some applications of the obtained inequalities.

2 Main results
In the following result, we construct Green’s function for the (2n + 1)th order differential
equation

y(2n+1) = (–1)n–1g(x) (2.1)

with the boundary conditions (1.2)–(1.3) inspired by Das and Vatsala [10].

Lemma 2.1 If y(x) is a solution (not identically zero) of problem (2.1) with (1.2)–(1.3), then

y(x) =
∫ x2

x1

G2n+1(x, s)g(s) ds (2.2)
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holds, where

G2n+1(x, s) =
1

(2n)!

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[ (x–x1)(x2–s)
x2–x1

]n ∑n–1
j=0

(n–1+j
j

)
(s – x)n–j[ (s–x1)(x2–x)

x2–x1
]j;

x ≤ s ≤ x2

[ (x–x1)(x2–s)
x2–x1

]n ∑n–1
j=0

(n–1+j
j

)
(s – x)n–j[ (s–x1)(x2–x)

x2–x1
]j + (x–s)2n

(2n)! ;

x1 ≤ s ≤ x.

(2.3)

Proof First of all, we show that the function G2n+1(x, s) satisfies all the conditions of Defi-
nition A. Conditions (G1)–(G3) and (G5) are obviously satisfied. It is enough to show that
the function G2n+1(x, s) satisfies conditions (G4) and (G6).

Now, we show that the function G2n+1(x, s) satisfies condition (G4). Note that the func-
tion G2n+1(x, s) has the same terms except for (x–s)2n

(2n)! for x ≤ s and s ≤ x. Deriving 2n times
the function G2n+1(x, s) with respect to x, it is easy to see that we have

∂2nG2n+1

∂x2n

(
x, x+)

–
∂2nG2n+1

∂x2n

(
x, x–)

= –1. (2.4)

Therefore, the function G2n+1(x, s) satisfies condition (G4).
Now, we show that function G2n+1(x, s) satisfies condition (G6). For x ≤ s < x2, in

the derivative of the multiplication of the functions [ (x–x1)(x2–s)
x2–x1

]n and
∑n–1

j=0
(n–1+j

j
)
(s –

x)n–j–1[ (s–x1)(x2–x)
x2–x1

]j, one term always includes (x – x1)k for k = 1, 2, . . . , n, which is zero at
x = x1. Deriving n times other term and taking x = x1, we get

∂nG2n+1(x, s)
∂xn

∣∣∣
x=x1

= n!
[

(s – x1)(x2 – s)
x2 – x1

]n n–1∑
j=0

(n–1+j
j

)
. (2.5)

Similarly, for x1 < s ≤ x, we have

∂nG2n+1(x, s)
∂xn

∣∣∣
x=x2

= (–1)n–1n!
[

(s – x1)(x2 – s)
x2 – x1

]n n–1∑
j=0

(n–1+j
j

)
. (2.6)

Thus, we get

(–1)n–1 ∂nG2n+1(x, s)
∂xn

∣∣∣
x=x1

=
∂nG2n+1(x, s)

∂xn

∣∣∣
x=x2

. (2.7)

Therefore, the function G2n+1(x, s) satisfies condition (G6).
Thus, the function G2n+1(x, s) satisfies all the conditions of Definition A. It is said that

the function G2n+1(x, s) is a Green’s function for problem (2.1) with (1.2)–(1.3). Then, from
(1.15)–(1.16), we obtain (2.2) for the problem. �

Remark 2.1 We note that from the boundary condition (–1)n–1y(n)(x1) = y(n)(x2) in (1.3) is
not equal to zero from (2.5) and (2.6) since condition (G6) is satisfied for s ∈ (x1, x2).

Now, we prove the following lemma which is used by the anti-symmetric property of
Green’s function G2n+1(x, s), i.e., G2n+1(x, s) = –G2n+1(s, x) for all x, s ∈ [x1, x2].
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Lemma 2.2 Let n ∈N. Then the following identity

[
(x – x1)(x2 – s)

x2 – x1

]n n–1∑
j=0

(
n – 1 + j

j

)
(s – x)n–j

[
(s – x1)(x2 – x)

x2 – x1

]j

+ (–1)n–1(x – s)2n

= –
[

(s – x1)(x2 – x)
x2 – x1

]n n–1∑
j=0

(
n – 1 + j

j

)
(x – s)n–j

×
[

(x – x1)(x2 – s)
x2 – x1

]j

(2.8)

holds.

Proof We use the induction principle. It is obvious that the equality is true when n = 1. If
so, then we have

(x – x1)(x2 – s)(s – x)
x2 – x1

+ (x – s)2 = –
(s – x1)(x2 – x)(x – s)

x2 – x1
. (2.9)

In the next step, we assume that the equality is true for n = m, and we prove that it is true
for n = m + 1. By using the left-hand side of (2.8) with n = m + 1 and (2.9), we have

[
(x – x1)(x2 – s)

x2 – x1

]m
{ m∑

j=0

(
m + j

j

)
(s – x)m+1–j

[
(s – x1)(x2 – x)

x2 – x1

]j+1

–
m∑

j=0

(
m + j

j

)
(s – x)m+2–j

[
(s – x1)(x2 – x)

x2 – x1

]j
}

+ (–1)m(x – s)2m+2

=
[

(x – x1)(x2 – s)
x2 – x1

]m
{(

2m
m

)
(s – x)

[
(s – x1)(x2 – x)

x2 – x1

]m+1

–
m∑

j=0

(
m – 1 + j

j

)
(s – x)m+2–j

[
(s – x1)(x2 – x)

x2 – x1

]j
}

+ (–1)m(x – s)2m+2

=
[

(x – x1)(x2 – s)
x2 – x1

]m{(
2m
m

)
(s – x)

[
(s – x1)(x2 – x)

x2 – x1

]m+1

–
(

2m – 1
m

)
(s – x)2

[
(s – x1)(x2 – x)

x2 – x1

]m}

+
[

(s – x1)(x2 – x)
x2 – x1

]m m–1∑
j=0

(
m – 1 + j

j

)
(x – s)m+2–j

×
[

(x – x1)(x2 – s)
x2 – x1

]j

. (2.10)

By using the formula

(
m – 1 + j

j

)
=

(
m + j

j

)
–

(
m – 1 + j

j – 1

)
(2.11)
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for j = 1, . . . , m – 1 in (2.10), we have

–
[

(s – x1)(x2 – x)
x2 – x1

]m+1
{(

2m
m

)
(x – s)

[
(x – x1)(x2 – s)

x2 – x1

]m

+
m–1∑
j=0

(
m + j

j

)
(x – s)m+1–j

[
(x2 – s)(x – x1)

x2 – x1

]j
}

, (2.12)

which is equal to

–
[

(s – x1)(x2 – x)
x2 – x1

]m+1 m∑
j=0

(
m + j

j

)
(x – s)m+1–j

[
(x – x1)(x2 – s)

x2 – x1

]j

. (2.13)

This completes the proof. �

Remark 2.2 From Lemma 2.2, it is easy to see that the Green’s function G2n+1(x, s) has got
the anti-symmetric property G2n+1(x, s) = –G2n+1(s, x) for all x, s ∈ [x1, x2]. Then, we can
rewrite (2.3) as follows:

G2n+1(x, s)

=
1

(2n)!

⎧⎨
⎩

[ (x–x1)(x2–s)
x2–x1

]n ∑n–1
j=0

(n–1+j
j

)
(s – x)n–j[ (s–x1)(x2–x)

x2–x1
]j; x ≤ s ≤ x2,

–[ (s–x1)(x2–x)
x2–x1

]n ∑n–1
j=0

(n–1+j
j

)
(x – s)n–j[ (x–x1)(x2–s)

x2–x1
]j; x1 ≤ s ≤ x.

(2.14)

In the proof of Lemma 2.2, for x ≥ s, (2.6) can also be obtained by using (2.14). Moreover,
we have G2n+1(x, s) = s–x

2n G2n(x, s) for all x, s ∈ [x1, x2].

Theorem 2.1 If y(x) is a solution (not identically zero) on [x1, x2] for problem (1.1)–(1.3),
then the inequality

1 ≤
∫ x2

x1

∣∣G2n+1(x∗, s)
∣∣∣∣r(s)

∣∣ds (2.15)

holds, where G2n+1(x, s) is as defined in (2.3) or (2.14), and |y(x∗)| = max{|y(x)| : x1 ≤ x ≤ x2}.

Proof Let y(k)(x1) = y(k)(x2) = 0 for k = 0, 1, . . . , n – 1, (–1)n–1y(n)(x1) = y(n)(x2) with x1 < x2

and y(x) �= 0 for all x ∈ (x1, x2). Pick x∗ ∈ (x1, x2) so that |y(x∗)| = max{|y(x)| : x1 ≤ x ≤ x2}.
From (1.1) and (2.2) with g(x) = (–1)nr(x)y(x), we obtain

∣∣y(x∗)
∣∣ ≤

∫ x2

x1

∣∣G2n+1(x∗, s)
∣∣∣∣r(s)

∣∣∣∣y(s)
∣∣ds, (2.16)

and hence

∣∣y(x∗)
∣∣ ≤ ∣∣y(x∗)

∣∣
∫ x2

x1

∣∣G2n+1(x∗, s)
∣∣∣∣r(s)

∣∣ds. (2.17)

Dividing both sides by |y(x∗)|, we obtain inequality (2.15). �
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It is clear that since G2n(x, s) ≤ G2n(s, s) for all x, s ∈ [x1, x2] in the paper [10], we have the
following inequalities:

∣∣G2n+1(x, s)
∣∣ ≤ x2 – s

2n
G2n(s, s) for x1 ≤ s ≤ x (2.18)

and

G2n+1(x, s) ≤ s – x1

2n
G2n(s, s) for x ≤ s ≤ x2 (2.19)

from Remark 2.2. Then we define

G∗
2n+1(s) :=

⎧⎨
⎩

x2–s
2n G2n(s, s); s < x1+x2

2 ,
s–x1
2n G2n(s, s); s > x1+x2

2 .
(2.20)

By using inequalities (2.18)–(2.20), we obtain the following theorem and hence the proof
is omitted.

Theorem 2.2 If y(x) is a solution (not identically zero) on [x1, x2] for problem (1.1)–(1.3),
then the inequality

1 ≤
∫ x2

x1

∣∣G∗
2n+1(s)

∣∣∣∣r(s)
∣∣ds (2.21)

holds, where G∗
2n+1(s) is as defined in (2.20).

Now, we find the maximum of the function G2n+1(x, s) for x ≤ s ≤ x2. Since

(s – x1)j = (s – x + x – x1)j =
j∑

m=0

(
j

m

)
(x – x1)m(s – x)j–m, (2.22)

(x2 – x)j = (x2 – s + s – x)j =
j∑

k=0

(
j
k

)
(x2 – s)k(s – x)j–k , (2.23)

and

G2n+1(x, s) =
n–1∑
j=0

(
n – 1 + j

j

)
(x – x1)n(x2 – s)n(s – x)n–j(s – x1)j(x2 – x)j

(2n)!(x2 – x1)n+j (2.24)

for x ≤ s ≤ x2, we get

G2n+1(x, s) =
n–1∑
j=0

j∑
k=0

j∑
m=0

(
n – 1 + j

j

)(
j
k

)(
j

m

)
H1(x, s)

(2n)!(x2 – x1)n+j , (2.25)

where H1(x, s) := (x – x1)n+m(x2 – s)n+k(s – x)n+j–m–k . The function H1(x, s) takes its maxi-
mum value at the point

(x0, s0) =
(

x1(2n + j – m) + x2(m + n)
3n + j

,
x1(k + n) + x2(2n + j – k)

3n + j

)
, (2.26)
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and its maximum value is

H1

(
x1(2n + j – m) + x2(m + n)

3n + j
,

x1(k + n) + x2(2n + j – k)
3n + j

)

=
(k + n)k+n(m + n)m+n(x2 – x1)j+3n

(j + n – k – m)k+m–j–n(j + 3n)j+3n . (2.27)

Thus, we get

G2n+1(x, s) ≤ Cn(x2 – x1)2n

(2n)!
, (2.28)

where

Cn :=
n–1∑
j=0

j∑
k=0

j∑
m=0

(n–1+j
j

)( j
k
)( j

m
) (k + n)k+n(m + n)m+n

(j + n – k – m)k+m–j–n(j + 3n)j+3n (2.29)

for x ≤ s ≤ x2. Since G2n+1(x, s) = –G2n+1(s, x) for all x, s ∈ [x1, x2], we have

∣∣G2n+1(x, s)
∣∣ ≤ Cn(x2 – x1)2n

(2n)!
(2.30)

for all x, s ∈ [x1, x2].
Thus, by using the result obtained in (2.15), we get the following main theorem, and

hence the proof is omitted.

Theorem 2.3 If y(x) is a solution (not identically zero) on [x1, x2] for problem (1.1)–(1.3),
then the inequality

(2n)!
Cn(x2 – x1)2n ≤

∫ x2

x1

∣∣r(s)
∣∣ds (2.31)

holds, where Cn is given in (2.29).

Remark 2.3 Note that if we take n = 1 in Lemma 2.1, then

y(x) =
∫ x2

x1

G3(x, s)g(s) ds (2.32)

holds, where

G3(x, s) =

⎧⎨
⎩

(x–x1)(x2–s)(s–x)
2(x2–x1) ; x ≤ s ≤ x2,

– (x–s)(x2–x)(s–x1)
2(x2–x1) ; x1 ≤ s ≤ x.

(2.33)

Now, we find the absolute maximum of Green’s function (2.33). Consider G3(x, s) =
(x–x1)(x2–s)(s–x)

2(x2–x1) for x ≤ s ≤ x2. G3(x, s) takes its absolute maximum value at the point

(x0, s0) = ( 2x1+x2
3 , x1+2x2

3 ), and its absolute maximum value is G3( 2x1+x2
3 , x1+2x2

3 ) = (x2–x1)2

54 .
Since G3(x, s) = –G3(s, x) for all x, s ∈ [x1, x2], we have

∣∣G3(x, s)
∣∣ ≤ (x2 – x1)2

54
(2.34)
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for all x, s ∈ [x1, x2]. Thus, from (2.31) with n = 1, we have the following Lyapunov-type
inequality:

54
(x2 – x1)2 ≤

∫ x2

x1

∣∣r(s)
∣∣ds. (2.35)

We believe that constant 54 is the best possibility for problem (1.1)–(1.3) with n = 1 in
view of the fact that if constant 54 in the left-hand side of (2.35) cannot be replaced by any
larger constant.

To extend oscillation criteria given below with the help of Lyapunov-type inequality, we
can use an alternative way and use (2.31) (cf. [26]): y′′(x) and y′′(x)y–1(x) are continuous
for x1 ≤ x ≤ x2, with y(x1) = y(x2) = 0, then

4
x2 – x1

<
∫ x2

x1

∣∣y′′(s)y–1(s)
∣∣ds. (2.36)

Thus, from (2.31), we get the following extension: If y(2n+1)(x) and y(2n+1)(x)y–1(x) are con-
tinuous for x1 ≤ x ≤ x2, with y(k)(x1) = y(k)(x2) = 0 for k = 0, 1, . . . , n – 1, (–1)n–1y(n)(x1) =
y(n)(x2), then

(2n)!
Cn(x2 – x1)2n <

∫ x2

x1

∣∣y(2n+1)(s)y–1(s)
∣∣ds, (2.37)

where Cn is given in (2.29).
Finally, we consider another useful application of the Lyapunov-type inequality obtained

in (2.31) for the eigenvalue problem

y(2n+1) + λh(x)y = 0 (2.38)

with the conditions in (1.2)–(1.3). Thus, if there exists a solution (not identically zero) y(x)
of problem (2.38), then the inequality

(2n)!
Cn(x2 – x1)2n

∫ x2
x1

|h(s)|ds
< |λ|, (2.39)

holds, where Cn is given in (2.29).
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