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1 Introduction
Soft set theory, which was asserted by Molodtsov [12] in 1999, contains alternative tools
for state mathematical problems with different viewpoint. The theory has many applica-
tions in engineering, modeling problems, medical and social sciences, economics, etc. In
recent years many mathematicians have studied soft topological and soft algebraic struc-
tures [2, 11, 20, 23].

Otherwise the theory of fixed point has a big role in different branches of mathematics.
Soft metric spaces were defined by Das and Samanta [5], and Hosseinzadeh [8] developed
the theoretical properties of soft metric spaces by initiating new definition of soft metric.
Also Yazar, Aras, and Bayramov studied some fixed point theorems for soft contractive
mappings [22]. In recent papers we defined the soft rectangular metric spaces by using
Branciari’s [4] rectangular metric and acquired some fixed point results such as Banach
contraction theorem for rectangular soft metric spaces [17], and the other properties are
investigated in [18, 19]. Immediately afterwards, in this paper we focus on Jungck’s com-
mon fixed point consequences for commuting mappings [9] and present some theorems
in rectangular soft metric spaces. More details on fixed point theorems and common fixed
point theorems can be found at [1, 3, 6, 7, 10, 13–16, 21].

2 Preliminaries
Definition 2.1 ([12]) Let E be a parameter set. A pairwise (S ,E) is called to be a soft set
on the universal set X, where S is a transformation supplied with S : E →P(X).

That is to say, a soft set over X is a parameterized family of subsets of the universal set X.
For any parameter x ∈ E,S(x) could be regarded as the set of x-approximate members of
the soft set (S ,E).
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Definition 2.2 ([11]) Assume that (S , A) and (G ′, A′) are two soft sets on U . (S , A) is
named to be a soft subset of (G ′, A′), and we denote it by (S , A)⊂̃(G ′, A′) if

(1) A ⊆ A′ and
(2) S(x) ⊆ G ′(x) for all x ∈ A.

Then (S , A) is a super set of in soft manner (G ′, A′), if (G ′, A′) is a soft subset of (S , A). We
indicate it by (S , A)⊃̃(G ′, A′).

Definition 2.3 ([11]) Suppose that (S ,E) is a soft set on X. Then
(1) (S ,E) is named to be a null set in soft manner, symbolized by ∅̌ if, for every e ∈ E,

S(e) = ∅.
(2) (S ,E) is called to be absolute soft set, signified by Ě if, for every e ∈ E, S(e) = X .

Definition 2.4 ([8]) Presume that A ⊆ E is a parameter set. The binary (α, t) is called to
be a soft parametric scalar if t ∈ R and α ∈ A. The parametric scalar (α, t) is entitled not
negative if t ≥ 0. Let (α, t) and (β , t′) be two soft parametric scalars. (α, t) is said to be no
less than (β , t′), and it is written as (α, t) 
 (β , t′), if t ≥ t′.

Definition 2.5 ([8]) Let A ⊆ E be a parameter set. Suppose that (γ , t) and (β , t′) are two
parametric scalars in soft manner. So the addition between soft parametric scalars and
scalar multiplication on soft parametric scalars is described as follows:

(γ , t) �
(
β , t′) =

({γ ,β}, t + t′)

and

λ(γ , t) = (γ ,λt) for every λ ∈R.

Definition 2.6 ([8]) Suppose that (S ,E) is a soft set on the universal X. The function f is
called on (S ,E) parametric scalar-valued if there are mappings f1 : E → E and f2 : S(E) →
R so that f (S ,E) = (f1, f2)(E,S(E)).

In a similar manner, we can amplify the parametric scalar-valued function defined above
as f : (S ,E)× (S ,E) → (E,R) by f (E×E,S(E)×S(E)) = (f1, f2)(E×E,S(E)×S(E)), where
f1 : E×E→ E and f2 : S(E) × S(E) →R.

Definition 2.7 ([8]) Let (S ,E) be a soft set over X, and let ϕ̌ : E×E→ E be a parametric
mapping. The parametric scalar-valued transformation Ď : (S ,E) × (S ,E) → (E,R+{0}) is
called to be a soft metric on (S ,E) if Ď supplies the following requirements:

(1) Ď((x,S(x)), (x′,S(x′))) 
 (ϕ̌(x, x′), 0) and if x = x′, then the equality holds.
(2) Ď((x,S(x)), (x′,S(x′))) = Ď((x′,S(x′)), (x,S(x))) for all x, x′ ∈ E.
(3) Ď((x,S(x)), (x′′,S(x′′))) � Ď(((x,S(x)), (x′,S(x′))) � Ď((x′,S(x′)), (x′′,S(x′′))) for all

x, x′, x′′ ∈ E.
The pairwise ((S ,E), Ď) is reputed to be a soft metric space on X.

Definition 2.8 ([4]) Assume that A is a not null set, and let d : A × A → [0,∞] carry out
the following conditions for all u, v ∈ A and all different w, t ∈ A, each of which is dissimilar
from u and v:

(RM1) d(u, v) = 0 ⇔ u = v,
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(RM2) d(u, v) = d(v, u),
(RM3) d(u, v) ≤ d(u, w) + d(w, t) + d(t, v).

At that time d is named a rectangular metric and the pairwise (A, d) is named a rectangular
metric space(RMS).

Definition 2.9 ([3]) Let A �= ∅. An element a ∈ A is a fixed point of f : A → A if f (a) = a.

Definition 2.10 ([3]) Let T be a transformation of a metric space (M,σ ) into (M,σ ). We
express that T is a contraction transformation if there exists a number α such that 0 < α < 1
and σ (Tu, Tv) ≤ ασ (u, v) (∀u, v ∈ M).

Theorem 2.11 ([3]) Any contraction transformation of a complete non-empty metric space
M into M has only one fixed point in M.

Definition 2.12 ([17, 19]) Suppose that ϕ̌ : E×E→ E is a scalar-valued parametric func-
tion. The parametric scalar-valued mapping ĎR : (S ,E) × (S ,E) → (E, R+ ∪ {0}) is called
to be a rectangular soft metric on (S ,E) if ĎR carries through the following properties:

(RSM1) ĎR((u,S(u)), (v,S(v))) 
 (ϕ̌(u, v), 0), if u = v, then the equality holds.
(RSM2) ĎR((u,S(u)), (v,S(v))) = (ϕ̌(u, v), 0) ⇔ for all ((u,S(u)), (v,S(v))) ∈ (S ,E),

(u,S(u)) = (v,S(v)) [for all u, v ∈ E, u = v].
(RSM3) ĎR((u,S(u)), (v,S(v))) = ĎR((v,S(v)), (u,S(u))) for all u, v ∈ E.
(RSM4) ĎR((u,S(u)), (v,S(v))) � ĎR((u,S(u)), (w,S(w))) � ĎR((w,S(w)), (t,S(t))) �

ĎR((t,S(t)), (v,S(v))) for all u, v, w, t ∈ E.
Then we express that the binary ((S ,E), ĎR) is a rectangular soft metric space over X.

Definition 2.13 ([17, 19]) Assume that (S ,E) is a soft set on X. A soft sequence in (S ,E)
is a mapping f : N → (S ,E) equipped with f (n) = (Sn,E) so that (Sn,E) is a soft subset of
(S ,E) for n ∈N, and this is symbolized by {(Sn,E)}∞n=1.

Definition 2.14 ([17, 19]) Presume that (S ,E) is a soft set on X. Let ĎR be a rectangular
soft metric on (S ,E), {(Sn,E)}∞n=1 be a soft sequence in (S ,E), and (x,S(x)) ∈ (S ,E). Then
we state that the {(Sn,E)}∞n=1 converges to (x,S(x)) if, for every positive number ε, there
exists a natural number N so that, for all n ∈N which n ≥ N , we have

ĎR
((

a,Sn(a)
)
,
(
x,S(x)

)) � (
ϕ̌(a, x), ε

)
.

Definition 2.15 ([17, 19]) Suppose that (S ,E) is a soft set on X. Let ĎR be a rectangular
soft metric on (S ,E) and {(Sn,E)}∞n=1 be a soft sequence in (S ,E). Then we express that
{(Sn,E)}∞n=1 is a Cauchy soft sequence if, for every positive number ε, there exists a natural
number N so that, for every natural number n, m which n, m ≥ N , we have

ĎR
((

a,Sn(a)
)
,
(
a,Sm(a)

)) � (
ϕ̌(a, a), ε

)
.

Theorem 2.16 ([17, 19]) Assume that (S ,E) is a soft set on X, let ĎR be a metric on (S ,E)
and (Sn,E)∞n=1 be a Cauchy soft sequence in (S ,E). If (Sn,E)∞n=1 is convergent in (S ,E), in
that case it converges to the unique member of (S ,E).
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Definition 2.17 ([17, 19]) Let (S ,E) be a soft set on X, let ĎR be a rectangular soft metric
on (S ,E). (S ,E) is said to be a complete rectangular soft metric space if every Cauchy soft
sequence converges in (S ,E).

Theorem 2.18 ([17, 19]) Let ((S ,E), ĎR) and ((S ′,E′), Ď′R) be two rectangular soft met-
ric spaces on X and Y , respectively. Let f = (f1, f2) : ((S ,E), ĎR) → ((S ′,E′), Ď′R) be a soft
mapping. Then f is soft continuous iff, for all (a,S(a)) ∈ (S ,E) and every positive number
ε, there exists a positive number δ so that, for every (b,S(b)) ∈ (S ,E),

Ď′R
((

f
(
a,S(a)

))
, f

((
b,S(b)

))) � (
ϕ̌′(ϕ̌(a, b)

)
, ε

)
whenever

ĎR
((

a,S(a)
)
,
(
b,S(b)

)) � (
ϕ̌(a, b)

)
, δ).

Definition 2.19 ([17, 19]) Let ((S ,E), ĎR) be a rectangular soft metric space on X and

f :
(
(S ,E), ĎR

) → (
(S ,E), ĎR

)

be a soft mapping. Then f is called to be soft contractive if there is a positive number λ

with 0 < λ < 1 such that

ĎR
((

f
(
a,S(a)

))
, f

((
b,S(b)

))) � λĎR
((

a,S(a)
)
,
(
b,S(b)

))
for all a, b ∈ E.

Theorem 2.20 ([17, 19]) Soft contractive mapping is soft continuous in a rectangular soft
metric space ((S ,E), ĎR).

Definition 2.21 ([17, 19]) Let ((S ,E), ĎR) be a complete rectangular soft metric space on
X, and let f : ((S ,E), ĎR) → ((S ,E), ĎR) be a soft transformation. A fixed soft set for f is a
soft subset of (S ,E) such as (a,S(a)) such that f ((a,S(a))) = (a,S(a)).

Theorem 2.22 ([17] (Banach contraction theorem for rectangular soft metric space)) Let
((S ,E), ĎR) be a complete rectangular soft metric space on X, and let

f :
(
(S ,E), ĎR

) → (
(S ,E), ĎR

)

be a rectangular soft contractive mapping. Hence f has a unique fixed soft set.

3 Main results
Definition 3.1 Assume that f and g are mappings from (S ,E) to (S ,E). Then we say f
commutes with g if f (g(x,S(x))) = g(f (x,S(x))) for all (x,S(x)) in (S ,E).

Definition 3.2 Let f : (S ,E) → (S ,E) and g : (S ,E) → (S ,E) be mappings in ((S ,E), ĎR).
A soft point (x,S(x)) ∈ (S ,E) is said to be a coincidence point of g and f iff g(x,S(x)) =
f (x,S(x)) = (x,S(x)). g and f are named to be weakly compatible if they commute at all
coincidence points.

Theorem 3.3 Presume that g and f are commuting transformations of a complete rectan-
gular soft metric space ((S ,E), ĎR) into itself satisfying the following inequality:

ĎR
(
g
(
x,S(x)

)
, g

(
y,S(y)

)) � λĎR
(
f
(
x,S(x)

)
, f

(
y,S(y)

))
(1)
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for all (x,S(x)), (y,S(y)) ∈ (S ,E), where 0 < λ < 1 and where (S ,E) is a soft set on X. If
g((S ,E)) ⊂ f ((S ,E)) and f is continuous in soft manner, then g and f have only one common
fixed point.

Proof Let (S0,E) ∈ (S ,E) be arbitrary. Then g((S0,E)) and f ((S0,E)) are well defined. Since
g((S0,E)) ∈ f ((S ,E)), there is (S1,E) ∈ (S ,E) so that f ((S1,E)) = g((S0,E)). As usually, if
(Sn,E) is selected, then we put a point f ((Sn+1,E)) in (S ,E) so that f ((Sn+1,E)) = g((Sn,E)).

We show that {f ((Sn,E))} is a Cauchy sequence.
From (1) we get

ĎR
(
f (Sm+k ,E), f (Sn+k ,E)

)
= ĎR

(
g(Sm+k–1,E), g(Sn+k–1,E)

)

� λĎR
(
f (Sm+k–1,E), f (Sn+k–1,E)

)
.

So,

ĎR
(
f (Sm+k ,E), f (Sn+k ,E)

) � λkĎR
(
f (Sm,E), f (Sn,E)

)
(2)

for all k ∈N.
Now, we ensure the following two situations.
Case 1: If f ((Sn,E)) = f ((Sn+1,E)) for some n, then g((Sn,E)) = f ((Sn,E)) = (w,S(w)). We

will verify that (w,S(w)) is a unique common fixed point of g and f . Essentially,
g((w,S(w))) = g(f (Sn,E)) = f (g(Sn,E)) = f ((w,S(w))).
Let ĎR((w,S(w)), g((w,S(w)))) � 0. In this case we have

ĎR
((

w,S(w)
)
, g

(
w,S(w)

))
= ĎR

(
g(Sn,E), g

((
w,S(w)

)))

� λĎR
(
f (Sn,E), f

((
w,S(w)

)))
,

which is a contradiction. Since condition (1) implies that g((Sn,E)) = f ((Sn,E)) = (w,S(w))
is a unique common fixed point g and f , the proof of Case 1 is finished.

Case 2: If f ((Sn,E)) �= f ((Sn+1,E)) for all n ≥ 0, then f ((Sn,E)) �= f ((Sn+k ,E)) for all n ≥ 0,
k ≥ 1. Namely, if f ((Sn,E))) = f ((Sn+k ,E)) for some n ≥ 0 and k ≥ 1, we have that

ĎR
(
f (Sn+1,E), f (Sn+k+1,E)

)
= ĎR

(
g(Sn,E), g(Sn+k ,E)

)

� λĎR
(
f (Sn,E), f (Sn+k ,E)

)

=
(
ϕ̌
(
f (Sn+1), f (Sn+k+1)

)
, 0

)
.

So, f ((Sn+1,E)) = f ((Sn+k+1,E)). Then (2) implies that

ĎR
(
f (Sn+1,E), f (Sn,E)

)
= ĎR

(
f (Sn+k+1,E), f (Sn+k ,E)

)

� λkĎR
(
f (Sn+1,E), f (Sn,E)

)

≺ ĎR
(
f (Sn+1,E), f (Sn,E)

)
,

which is a contradiction. Thus we assume that f ((Sn,E)) �= f ((Sm,E)) for all distinct
(Sn,E), (Sm,E) ∈ (S ,E). Note that f ((Sm+k ,E)) �= f ((Sn+k ,E)) for all natural numbers k
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and for all distinct n, m ∈ N and (Sn+k ,E), (Sm+k ,E) ∈ (S ,E)\{f ((Sn,E)), f ((Sm,E))}. Since
((S ,E), ĎR) is a rectangular soft metric space from the rectangular property of soft metric,
we obtain that

ĎR
(
f (Sm,E), f (Sn,E)

)
= ĎR

(
f (Sm,E), f (Sm+n0 ,E)

)

+ ĎR
(
f (Sm+n0 ,E), f (Sn+n0 ,E)

)

+ ĎR
(
f (Sn+n0 ,E), f (Sn,E)

)
,

where n0 ∈ N such that n0 < m, n.
Then

ĎR
(
f (Sm,E), f (Sn,E)

)
= λmĎR

(
f (S0,E), f (Sn0 ,E)

)
+ λn0ĎR

(
f (Sm,E), f (Sn,E)

)

+ λnĎR
(
f (S0,E), f (Sn0 ,E)

)

(
1 – λn0

)
ĎR

(
f (Sm,E), f (Sn,E)

)
=

(
λm + λn)ĎR

(
f (S0,E), f (Sn0 ,E)

)

ĎR
(
f (Sm,E), f (Sn,E)

) � λm + λn

1 – λn0
ĎR

(
g(S0,E), g(Sn0 ,E)

)
. (3)

Thus {f (Sn,E)} is a Cauchy sequence in (S ,E). By completeness of f (S ,E), there exists
(a,S(a)) ∈ (S ,E) such that

lim
n→∞ f

(
(Sn,E)

)
= lim

n→∞ g
(
(Sn–1,E)

)

=
(
a,S(a)

)
. (4)

Because of the soft continuity of f , (1) requires that both f and g are soft continuous.
Because of the commuting property of g and f , we provide

f
((

a,S(a)
))

= f
(

lim
n→∞ g(Sn,E)

)

= lim
n→∞ f

(
g(Sn,E)

)
= lim

n→∞ g
(
f (Sn,E)

)

= g
(

lim
n→∞ f (Sn,E)

)

= g
(
a,S(a)

)
. (5)

Let (b,S(b)) = f ((a,S(a))) = g((a,S(a))).
We get if

g
(
a,S(a)

)
= g

(
b,S(b)

)
(6)

from (1), we obtain

ĎR
(
g
((

a,S(a)
))

, g
(
b,S(b)

)) � λĎR
(
f
((

a,S(a)
))

, f
(
b,S(b)

))

= λĎR
(
g
((

a,S(a)
))

, g
(
b,S(b)

))

≺ ĎR
(
g
((

a,S(a)
))

, g
(
b,S(b)

))
,
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which is a contradiction. So we have g(a,S(a)) = g(b,S(b)), hence we obtain g(b,S(b)) =
f (b,S(b)) = (b,S(b)) and (b,S(b)) is a common fixed point for g and f . Situation (1) alludes
that (b,S(b)) is a unique common fixed point. �

Lemma 3.4 Let ((S ,E), ĎR) be a rectangular soft metric space, and let f , g : (S ,E) → (S ,E)
be two self mappings so that f ((S ,E))⊆̌g((S ,E)), i.e., f (E) ⊂ g(E), and for all e ∈ E,
S(f (e)) ⊂ S(g(e)).

If Jungck type soft sequence (S ′
n,E) = f ((Sn,E)) = g((Sn+1,E)), (S0,E) ∈ (S ,E), and

(S ′
n,E) �= (S ′

n+1,E) for all n ∈ N satisfies

ĎR
((
S ′

n+1,E
)
,
(
S ′

n,E
)) � λĎR

((
S ′

n,E
)
,
(
S ′

n–1,E
))

(7)

for all n ∈N, where 0 < λ < 1, then (S ′
n,E) = (S ′

m,E) whenever n �= m.

Proof Suppose that (S ′
n,E) = (S ′

m,E) for some n > m. Then we select (Sn+1,E) = (Sm+1,E)
and hereby also (S ′

n+1,E) = (S ′
m+1,E). Then (7) implies that

ĎR
((
S ′

n+1,E
)
,
(
S ′

n,E
)) ≺ ĎR

((
S ′

n,E
)
,
(
S ′

n–1,E
))

< · · · < ĎR
((
S ′

m+1,E
)
,
(
S ′

m,E
))

= ĎR
((
S ′

n+1,E
)
,
(
S ′

n,E
))

.

But this is a contradiction. We obtain that n �= m implies (S ′
n,E) �= (S ′

m,E). �

Let ψ demonstrate the set of all soft continuous parametric scalar-valued mappings
ψ : ((S , [0,∞))) → ((S , [0,∞))) such that ψ1 : [0,∞) → [0,∞), ψ2 : S([0,∞)) → R, and
ψ(S([0,∞))) = (ψ1,ψ2)(([0,∞),S([0,∞))), for which ψ(t,S(t)) = 0 iff (t,S(t)) = (0, {0}).

Theorem 3.5 Let ((S ,E), ĎR) be a rectangular soft metric space, and let f , g : (S ,E) →
(S ,E) be two self maps so that f ((S ,E))⊂̌g((S ,E)), i.e., f (E) ⊂ g(E), and for all e ∈ E

S(f (e)) ⊂ S(g(e)), one of these two soft subsets of (S ,E) being complete. If for some ψ =
(ψ1,ψ2), φ = (φ1,φ2), L ≥ 0, the functions ψ1 and ψ2 are non-decreasing

(ψ1,ψ2)
(
ĎR

(
f
((

x,S(x)
))

, f
(
y,S(y)

))) � (ψ1,ψ2)(M
((

x,S(x)
)
,
(
y,S(y)

))

– (φ1,φ2)(M
((

x,S(x)
)
,
(
y,S(y)

))

+ L(ψ1,ψ2)(N
((

x,S(x)
)
,
(
y,S(y)

))
(8)

for all (x,S(x)), (y,S(y)) ∈ (S ,E), where

M
((

x,S(x)
)
,
(
y,S(y)

))
= max

{
ĎR

(
g
((

x,S(x)
))

, g
(
y,S(y)

))
,

ĎR
(
g
((

x,S(x)
))

, f
(
x,S(x)

))
,

ĎR
(
g
((

y,S(y)
))

, f
(
y,S(y)

))}
(9)

N
((

x,S(x)
)
,
(
y,S(y)

))
= min

{
ĎR

(
g
((

x,S(x)
))

, f
(
x,S(x)

))

+ ĎR
(
g
((

y,S(y)
))

, f
(
y,S(y)

))
, ĎR

(
g
((

x,S(x)
))

, f
(
y,S(y)

))
,

ĎR
(
g
((

y,S(y)
))

, f
(
x,S(x)

))}
, (10)
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then f and g have a unique point of coincidence. If, furthermore, f , g are weakly compatible,
so they possess only one common fixed point.

Proof Firstly, it is straightforward to see that terms (8), (9), and (10) suggest that the point
of coincidence of f and g is unique(if it exists). On account of proving that f and g have a
point of coincidence, take a discretionary point (x0,S(x0)) ∈ (S ,E) and, using f (E) ⊂ g(E)
and S(f (x0)) ⊂ S(g(x0)), choose sequences {(Sn,E)} and {(S ′

n,E)} in (S ,E) such that

(
S ′

n,E
)

= f
(
(Sn,E)

)
= g

(
(Sn+1,E)

)
for n = 0, 1, 2 . . . (11)

If (S ′
k ,E) = (S ′

k+1,E) for some k ∈ N, then g(S ′
k+1,E) = (S ′

k ,E) = (S ′
k+1,E) = f ((S ′

k+1,E)) and
f and g have a point of coincidence. Assume further that (S ′

n,E) �= (S ′
n+1,E) for all n ∈ N.

Setting (x,S(x)) = (Sn+1,E), (y,S(y)) = (Sn,E) in (8), we obtain that

(ψ1,ψ2)
(
ĎR

((
S ′

n+1,E
)
, (Sn,E)

)) � (ψ1,ψ2)
(
ĎR

(
f (Sn+1,E), f (Sn,E)

))

� (ψ1,ψ2)
(
M

(
(Sn+1,E), (Sn,E)

))

– (φ1,φ2)
(
M

(
(Sn+1,E), (Sn,E)

))

+ L(ψ1,ψ2)
(
N

(
(Sn+1,E), (Sn,E)

))
, (12)

where

M
(
(Sn+1,E), (Sn,E)

)
= max

{
ĎR

((
S ′

n,E
)
,
(
S ′

n–1,E
))

, ĎR
((
S ′

n,E
)
,
(
S ′

n+1,E
))}

(13)

N
((

x,S(x)
)
,
(
y,S(y)

))
= min

{
ĎR

((
S ′

n,E
)
,
(
S ′

n+1,E
))

+ ĎR
((
S ′

n–1,E
)
,
(
S ′

n,E
))

,

ĎR
((
S ′

n,E
)
,
(
S ′

n,E
))

,

ĎR
((
S ′

n–1,E
)
,
(
S ′

n+1,E
))}

=
(
ϕ̌(x, y), 0

)
, (14)

where ϕ̌ : E×E→ E is a parametric function.
Further from (12), (13), and (14) we obtain that

(ψ1,ψ2)
(
ĎR

((
S ′

n+1,E
)
, (Sn,E)

)) � (ψ1,ψ2) max
{
ĎR

((
S ′

n,E
)
,
(
S ′

n–1,E
))

,

ĎR
((
S ′

n+1,E
)
,
(
S ′

n,E
))}

– (φ1,φ2) max
{
ĎR

((
S ′

n,E
)
,
(
S ′

n–1,E
))

,

ĎR
((
S ′

n+1,E
)
,
(
S ′

n,E
))}

. (15)

If ĎR((S ′
n,E), (S ′

n–1,E)) ≺ ĎR((S ′
n+1,E), (S ′

n,E)), then from (15) it follows that

(ψ1,ψ2)
(
ĎR

((
S ′

n+1,E
)
,
(
S ′

n,E
))) � (ψ1,ψ2)ĎR

((
S ′

n+1,E
)
,
(
S ′

n,E
))

– (φ1,φ2) max
{
ĎR

((
S ′

n+1,E
)
,
(
S ′

n,E
))}

≺ (ψ1,ψ2) max
{
ĎR

((
S ′

n+1,E
)
,
(
S ′

n,E
))}

, (16)
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which is a contradiction. Hence we have that

(ψ1,ψ2)
(
ĎR

((
S ′

n+1,E
)
,
(
S ′

n,E
))) � (ψ1,ψ2)ĎR

((
S ′

n,E
)
,
(
S ′

n–1,E
))

– (φ1,φ2) max
{
ĎR

((
S ′

n,E
)
,
(
S ′

n–1,E
))}

≺ (ψ1,ψ2) max
{
ĎR

((
S ′

n,E
)
,
(
S ′

n–1,E
))}

(17)

or ĎR((S ′
n+1,E), (S ′

n,E)) ≺ ĎR((S ′
n,E), (S ′

n–1,E)) for all n ∈N. Inasmuch as (ψ1,ψ2) is non-
decreasing, thereby there exists

lim
n→∞ ĎR

((
S ′

n+1,E
)
,
(
S ′

n,E
))

=
(
u,S(u)

) 
 (
ϕ̌
(
S ′

n+1,S ′
n
)
, 0

)
as n → ∞.

From (16) it follows that

(ψ1,ψ2)
(
u,S(u)

) � (ψ1,ψ2)
(
u,S(u)

)
– (φ1,φ2)

(
u,S(u)

)

� (ψ1,ψ2)
(
u,S(u)

)
,

that is, (u,S(u)) = 0̌.
Now we easily get that (S ′

n,E) �= (S ′
m,E) whenever n �= m. Indeed, if (S ′

n,E) = (S ′
m,E) for

some n > m, then we select (Sn+1,E) = (Sm+1,E) (and hereby also (S ′
n+1,E) = (S ′

m+1,E)). So
we have

ĎR
((
S ′

n+1,E
)
,
(
S ′

n,E
)) ≺ ĎR

((
S ′

n,E
)
,
(
S ′

n–1,E
))

≺ · · · ≺ ĎR
((
S ′

m+1,E
)
,
(
S ′

m,E
))

= ĎR
((
S ′

n+1,E
)
,
(
S ′

n,E
))

. (18)

The other part of the proof that {(S ′
n,E)} is a Cauchy soft sequence.

Now, let us show that (S ′
n,E) is a Cauchy soft sequence. Suppose otherwise. Then there

exist ε > 0, subsequences {(S ′
n(i),E)} and {(S ′

m(i),E)} of {(S ′
n,E)}, n(i) > m(i) > i, so that

ĎR
((

u,S ′
m(i)(u)

)
,
(
u,S ′

n(i)(u)
)) 
 (

ϕ̌(u, u), ε
)
, (19)

where n(i) is the smallest positive integer satisfying (19), i.e.,

ĎR
((

u,S ′
m(i)(u)

)
,
(
u,S ′

n(i)–1(u)
)) 
 (

ϕ̌(u, u), ε
)
.

By using the rectangular property of rectangular soft metric in (19), we have

(
ϕ̌(u, u), ε

) � ĎR
((

u,S ′
m(i)(u)

)
,
(
u,S ′

n(i)(u)
))

� ĎR
((

u,S ′
m(i)(u)

)
,
(
u,S ′

n(i)–2(u)
))

+ ĎR
((

u,S ′
n(i)–2(u)

)
,
(
u,S ′

n(i)–1(u)
))

+ ĎR
((

u,S ′
n(i)–1(u)

)
,
(
u,S ′

n(i)(u)
))

� (
ϕ̌(u, u), ε

)
+ ĎR

((
u,S ′

n(i)–2(u)
)
,
(
u,S ′

n(i)–1(u)
))

+ ĎR
((

u,S ′
n(i)–1(u)

)
,
(
u,S ′

n(i)(u)
))

.
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As n → ∞ and using (19), we get

(
ϕ̌(u, u), ε

) � ĎR
((

u,S ′
m(i)(u)

)
,
(
u,S ′

n(i)(u)
)) � ε,

i.e.,

lim
n→∞ ĎR

((
u,S ′

m(i)(u)
)
,
(
u,S ′

n(i)(u)
))

=
(
ϕ̌(u, u), ε

)
.

Also

ĎR
((

u,S ′
n(i)(u)

)
,
(
u,S ′

m(i)(u)
)) � ĎR

((
u,S ′

n(i)(u)
)
,
(
u,S ′

n(i)–1(u)
))

� ĎR
((

u,S ′
m(i)(u)

)
,
(
u,S ′

n(i)–2(u)
))

+ ĎR
((

u,S ′
n(i)–2(u)

)
,
(
u,S ′

n(i)–1(u)
))

+ ĎR
((

u,S ′
n(i)–1(u)

)
,
(
u,S ′

m(i)–1(u)
))

+ ĎR
((

u,S ′
m(i)–1(u)

)
,
(
u,S ′

m(i)(u)
))

and

ĎR
((

u,S ′
n(i)–1(u)

)
,
(
u,S ′

m(i)–1(u)
)) � ĎR

((
u,S ′

n(i)–1(u)
)
,
(
u,S ′

n(i)(u)
))

� ĎR
((

u,S ′
m(i)(u)

)
,
(
u,S ′

n(i)–2(u)
))

+ ĎR
((

u,S ′
n(i)–2(u)

)
,
(
u,S ′

n(i)–1(u)
))

+ ĎR
((

u,S ′
n(i)(u)

)
,
(
u,S ′

m(i)(u)
))

+ ĎR
((

u,S ′
m(i)(u)

)
,
(
u,S ′

m(i)–1(u)
))

.

As n → ∞, we get

(
ϕ̌(u, u), ε

) � ĎR
((

u,S ′
n(i)–1(u)

)
,
(
u,S ′

m(i)–1(u)
)) � (

ϕ̌(u, u), ε
)
,

lim
n→∞ ĎR

((
u,S ′

n(i)–1(u)
)
,
(
u,S ′

m(i)–1(u)
))

=
(
ϕ̌(u, u), ε

)
.

Now using (12)

(ψ1,ψ2)(ĎR
((

u,S ′
n(i)(u)

)
,
(
u,S ′

m(i)(u)
))

� (ψ1,ψ2)
(
ĎR

(
f
(
u,Sn(i)–1(u)

)
, f

(
u,Sm(i)–1(u)

)))

� (ψ1,ψ2)
(
M

((
u,Sn(i)–1(u)

)
,
(
u,Sm(i)–1(u)

)))

– (φ1,φ2)
(
M

((
u,Sn(i)–1(u)

)
,
(
u,Sm(i)–1(u)

)))

+ L(ψ1,ψ2)(N
(((

u,Sn(i)–1(u)
)
,
(
u,Sm(i)–1(u)

)))

N
(((

u,Sn(i)–1(u)
)
,
(
u,Sm(i)–1(u)

)))
= min

{
ĎR

(
g
((

u,Sn(i)–1(u)
)
, f

(
u,Sm(i)–1(u)

)))

+ ĎR
(
g
((

u,Sm(i)(u)
)
, f

(
u,Sm(i)–1(u)

)))
,

ĎR
(
g
((

u,Sn(i)–1(u)
)
, f

(
u,Sm(i)–1(u)

)))
,
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ĎR
(
g
((

u,Sm(i)–1(u)
)
, f

(
u,Sn(i)–1(u)

)))}

= min
{
ĎR

(((
u,S ′

n(i)–1(u)
)
,
(
u,Sn(i)(u)

)))

+ ĎR
(((

u,S ′
m(i)–1(u)

)
,
(
u,S ′

m(i)(u)
)))

,

ĎR
(((

u,S ′
n(i)–1(u)

)
,
(
u,Sm(i)(u)

)))
,

ĎR
(((

u,S ′
m(i)–1(u)

)
,
(
u,S ′

n(i)(u)
)))}

N(((u,Sn(i)–1(u)), (u,Sm(i)–1(u)))) → 0̌ as n → ∞.

M
(((

u,Sn(i)–1(u)
)
,
(
u,Sm(i)–1(u)

)))
= max

{
ĎR

(
g
((

u,Sn(i)–1(u)
)
, f

(
u,Sm(i)–1(u)

)))
,

ĎR
(
g
((

u,Sn(i)–1(u)
)
, f

(
u,Sn(i)–1(u)

)))
,

ĎR
(
g
((

u,Sn(i)–1(u)
)
, f

(
u,Sm(i)–1(u)

)))}

= max
{
ĎR

(((
u,S ′

n(i)–1(u)
)
,
(
u,S ′

m(i)(u)
)))

,

ĎR
(((

u,S ′
n(i)–1(u)

)
,
(
u,S ′

n(i)(u)
)))

,

ĎR
(((

u,S ′
n(i)–1(u)

)
,
(
u,S ′

m(i)(u)
)))}

= max
{(

ϕ̌(u, u), ε
)
, 0̌,

(
ϕ̌(u, u), ε

)}

=
(
ϕ̌(u, u), ε

)
.

Thus we have

(ψ1,ψ2)
(
ϕ̌(u, u), ε

) � (ψ1,ψ2)
(
ϕ̌(u, u), ε

)
– (φ1,φ2)

(
ϕ̌(u, u), ε

)
,

(φ1,φ2)
(
ϕ̌(u, u), ε

)
= 0 ⇒ ε = 0.

This contradicts our assumption that ε > 0. Therefore {(S ′
n,E)} is a soft Cauchy sequence.

Assume that the subspace g((S ,E)) is complete. Therefore (S ′
n,E) tends to some

g((z,S(z))) for some (z,S(z)) ∈ (S ,E). In order to prove that f ((z,S(z))) = g((z,S(z))), sup-
pose that f ((z,S(z))) �= g((z,S(z))). By (12), we have

(ψ1,ψ2)
(
ĎR

(
f
(
(Sn,E)

)
, f

(
z,S(z)

))) � (ψ1,ψ2)
(
M

(
(Sn,E),

(
z,S(z)

)))

– (φ1,φ2)
(
M

(
(Sn,E),

(
z,S(z)

)))

+ L(ψ1,ψ2)
(
N

(
(Sn,E),

(
z,S(z)

)))
, (20)

where

M
((

(Sn,E),
(
z,S(z)

)))
= max

{
ĎR

(
g(Sn,E), g

(
z,S(z)

))
,

ĎR
(
g(Sn,E), f (Sn,E)

)
,

ĎR
(
g
(
z,S(z)

)
, f

(
z,S(z)

))}

→ ĎR
(
g
(
z,S(z)

)
, f

(
z,S(z)

))
(21)
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as n → ∞ and

N
((

(Sn,E),
(
z,S(z)

)))
= min

{
ĎR

(
g(Sn,E), f (Sn,E)

)
,

ĎR
(
g
(
v,S(v)

)
, f

(
v,S(v)

))
,

ĎR
(
g
(
z,S(z)

)
, f (Sn,E)

)}

→ (ϕ̌
(
(Sn, z), 0

)
(22)

as n → ∞.
Applying upper limit as n → ∞ in (20), we acquire

(ψ1,ψ2)
(

lim
n→∞ sup ĎR

(
f
(
(Sn,E)

)
, f

(
z,S(z)

)))

� (ψ1,ψ2)ĎR
(
g
((

z,S(z)
))

, f
(
z,S(z)

))

– (φ1,φ2)ĎR
(
g
(
z,S(z)

)
, f

((
z,S(z)

)))

≺ (ψ1,ψ2)ĎR
(
g
((

z,S(z)
))

, f
(
z,S(z)

))
, (23)

and using the non-decreasing property of mapping (ψ1,ψ2), we have

lim
n→∞ sup ĎR

(
f
(
(Sn,E)

)
, f

(
z,S(z)

)) ≺ ĎR
(
g
((

z,S(z)
))

, f
(
z,S(z)

))
. (24)

On the other hand, by Theorem 1.17. (S ′
n,E) is different from both f ((z,S(z))) and

g((z,S(z))) for n big enough. Hereby we can enforce the soft rectangular inequality to
maintain

ĎR(f
((

z,S(z)
)
, g

(
z,S(z)

)) � ĎR
(
f
(
z,S(z)

)
, f

(
(Sn,E)

))

+ ĎR
(
f (Sn,E), f

(
(Sn+1,E)

))

+ ĎR(g
((

(Sn+1,E)
)
, g

(
z,S(z)

))
. (25)

Therefore it is maintained that

ĎR
(
f
((

z,S(z)
))) ≺ lim

n→∞ sup ĎR
(
f
(
(Sn,E)

)
, f

(
z,S(z)

))
. (26)

Because ĎR(f ((Sn,E)), f ((Sn+1,E))) → 0̌ and ĎR(f ((Sn+1,E)), g((Sn+1,E))) → 0̌ as n → ∞.
Now (23),(24), and (26) become

(ψ1,ψ2)
(
ĎR

(
g
((

z,S(z)
))

, f
(
z,S(z)

))) � (ψ1,ψ2)ĎR
(
g
((

z,S(z)
))

, f
(
z,S(z)

))

– (φ1,φ2)ĎR
(
g
(
z,S(z)

)
, f

((
z,S(z)

)))
(27)

or (φ1,φ2)ĎR(g(z,S(z)), f ((z,S(z)))) = 0̌, that is, f ((z,S(z))) = g((z,S(z))), a contradiction to
the assumption f ((z,S(z))) �= g((z,S(z))).

In this situation f and g are weakly compatible Jungck’s conclusion from rectangular soft
metric involves that f and g have only one common fixed point. �
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4 An application
In this section we present an application of Jungck type fixed point theorem for rectangular
soft metric space to taxicab metric.

Consider the usual metric d(xs, ys) = |xs – ys| on X = [0,∞] , A = Q
+ = {x ∈ Q : x > 0},

and assume (Š , Ě) is a soft set over X such that every (xs, Š(xs)) ∈ (Š , E) described as
(xs, Š(xs)) = [0,∞]. Let g, f : ((Š , Ě), ĎR) → ((Š , Ě), ĎR) be commuting mappings such
that g(Š , Ě) ⊂ f (Š , Ě) = [0,∞]. Take into account the mapping ĎR : (Š , Ě) × (Š , Ě) →
(Ě,R+ ∪ {0}) described by

ĎR
((

xs, Š(xs)
)
,
(
ys, Š(ys)

))
=

(
max{xs, ys}, |xs(1) – ys(1)| + |xs(2) – ys(2)|

)
.

Let g : ((Š , Ě), ĎR) → ((Š , Ě), ĎR) be a soft function given by

g
((

xs, Š(xs)
))

=
(

1
4

xs, Š
(

1
4

xs

))
=

[
0,

1
4

xs

]

and

ĎR
(
g
((

xs, Š(xs)
))

, g
((

ys, Š(ys)
)))

= ĎR

((
1
4

xs, Š
(

1
4

ys

))
,
(

1
4

ys, Š
(

1
4

ys

)))

=
(

max

{
1
4

xs,
1
4

ys

}
,
∣
∣∣
∣
1
4

xs(1) –
1
4

ys(1)

∣
∣∣
∣ +

∣
∣∣
∣
1
4

xs(2) –
1
4

ys(2)

∣
∣∣
∣

)

=
1
2

(
max

{
1
4

xs,
1
4

ys

}
,

1
2
(|xs(1) – ys(1)| + |xs(2) – ys(2)|

))

� 1
2
(
max{xs, ys}, |xs(1) – ys(1)| + |xs(2) – ys(2)|

)
.

Since g(Š , Ě) ⊂ f (Š , Ě), it requires that g(xs, Š(xs)) ≤ f (xs, Š(xs)). Hence

1
2
(
max{xs, ys}, |xs(1) – ys(1)| + |xs(2) – ys(2)|

) ≤ 1
2
ĎR

(
f
(
xs, Š(xs)

)
, f

(
ys, Š(ys)

))
.

Then, as a consequence of Theorem 3.3, f and g have a unique common fixed point.

5 Conclusion
In this paper we conclude that the rectangular soft metric which is used in the text in-
volves that two weakly compatible mappings have a unique fixed point due to Jungck’s
main results.
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2. Aras, Ç.G.G., Poşul, H.: On some new operations in probabilistic soft set theory. Eur. J. Pure Appl. Math. 9(3), 333–339

(2016)
3. Banach, S.: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundam.

Math. 3, 133–181 (1922)
4. Branciari, A.: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math.

(Debr.) 57, 31–37 (2000)
5. Das, S., Samanta, S.K.: Soft metric. Ann. Fuzzy Math. Inform. 6(1), 77–94 (2013)
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