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1 Introduction
Young’s inequality for real numbers states that, for a, b ∈R

+ and p, q > 1 satisfying 1
p + 1

q =
1, we have

ab ≤ ap

p
+

bq

q
. (1.1)

This inequality is equivalent to saying

apbq ≤ p
p + q

ap+q +
q

p + q
bp+q, ∀p, q > 0 (1.2)

or

aνb1–ν ≤ νa + (1 – ν)b, 0 ≤ ν ≤ 1. (1.3)

Thus, this inequality is about comparing a product of powers of a and b with a convex
sum of a and b.

Recall that when p + q ∈N, we have

(a + b)p+q =
p+q∑

n=0

cnap+q–nbn; cn =
(

p + q
n

)
.

Thus, ap+q and bp+q are the first and last terms in the expansion of (a + b)p+q. On the other
hand, apbq is some term in the “middle” of the expansion, which occurs when n = q.

This proposes the question whether or not we can compare apbq with terms before we
reach the first and last terms. That is, is it possible to have an interpolated inequality of
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the form

apbq ≤ αap+rbq–r + βaq–rbp+r

for p, q > 0 and α + β = 1? We can use inequality (1.3) to obtain the following interpolated
version, whose simple proof appeared in [8].

Proposition 1.1 Let a, b ∈R
+ and let p ≥ q ≥ r ≥ 0. Then

apbq ≤ p – q + r
p – q + 2r

ap+rbq–r +
r

p – q + 2r
aq–rbp+r . (1.4)

Proof Let p–q+r
p–q+2r = ν . Then r

p–q+2r = 1 – ν , and hence

p – q + r
p – q + 2r

ap+rbq–r +
r

p – q + 2r
aq–rbp+r = ν

(
ap+rbq–r) + (1 – ν)

(
aq–rbp+r)

≥ (
ap+rbq–r)ν(aq–rbp+r)1–ν

= apbq,

where the last line is easily obtained by simplifying the powers. �

Now inequality (1.4) is an equality when r = 0 and is reduced to the well-known Young
inequality when r = q. However, as r increases from 0 to q, we obtain “interpolated” in-
equalities.

At this point, one starts asking about how good these interpolated inequalities are when
compared with the original Young inequality. That is, is there any comparison between

p – q + r
p – q + 2r

ap+rbq–r +
r

p – q + 2r
aq–rbp+r and

p
p + q

ap+q +
q

p + q
bp+q?

We will show that these r-versions increase as r increases from 0 to q, meaning that all
these interpolated inequalities lie in the middle of Young’s inequality. See Proposition 3.7
below for the general proof. It should be noted that in this article we will be dealing with
rings in general. The scalar versions have been already shown in [8].

Then, the natural question that has been seen with the different types of inequalities is
whether or not one can generalize these inequalities to spaces other than real numbers,
and whether, of the most common spaces, the space Mn of all matrices is of size n × n.

The matrix version of Young’s inequality states that, for X ∈Mn and A, B ∈M
+
n (the class

of positive semidefinite matrices in Mn), we have

∣∣∣∣∣∣ApXBq∣∣∣∣∣∣ ≤ p
p + q

∣∣∣∣∣∣Ap+qX
∣∣∣∣∣∣ +

q
p + q

∣∣∣∣∣∣XBp+q∣∣∣∣∣∣

for any unitarily invariant norm ‖| ‖| on Mn. This inequality was first proved in [1].
Using log-convexity, it was proved in [6] that for similar A, B, X we have

∣∣∣∣∣∣ApXBq∣∣∣∣∣∣ ≤ p – q + r
p – q + 2r

∣∣∣∣∣∣Ap+rXBq–r∣∣∣∣∣∣ +
r

p – q + 2r
∣∣∣∣∣∣Aq–rXBp+r∣∣∣∣∣∣, ∀p ≥ q ≥ r ≥ 0
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and that these inequalities interpolate increasingly between

∣∣∣∣∣∣ApXBq∣∣∣∣∣∣ and
p

p + q
∣∣∣∣∣∣Ap+qX

∣∣∣∣∣∣ +
q

p + q
∣∣∣∣∣∣XBp+q∣∣∣∣∣∣.

Again, see Proposition 3.7 below for the general result.
Before proceeding any further, we remark that our restriction that p ≥ q is artificial as if

p < q, we just switch the coefficients.
The literature is rich of Young-type inequalities that try to refine the original inequality

by adding a term to the left-hand side of the inequality, meaning a better inequality. For
example, in [4] the authors proved that when A, B ∈ M

+
n and X ∈Mn, then for the conjugate

exponents p, q we have

‖AXB‖2
2 +

1
r2

∥∥ApX – XBq∥∥2
2 ≤

∥∥∥∥
ApX

p
+

XBq

q

∥∥∥∥
2

2
, (1.5)

where r = max{p, q}.
On the other hand, it was proved in [5] that, for the same A, B, X, p, q, r, we have

‖|AXB‖| +
1
r
(∣∣∣∣∣∣ApX

∣∣∣∣∣∣1/2 –
∣∣∣∣∣∣XBq∣∣∣∣∣∣1/2) ≤ ‖|ApX‖|

p
+

‖|XBq‖|
q

for any unitarily invariant norm ‖| ‖|.
We refer the reader to [9] and the references therein for a general discussion of the Young

matrix inequality.
In this work we tackle the problem in a different approach, where we introduce infinitely

many Young-type inequalities, among which the known Young inequality is the weakest.
We shall present our proofs in terms of what we defined as a ring-pair and a norm-mean

mapping. This setting is general and can be applied on any ring, not necessarily R or Mn,
when certain properties hold. The idea of our proof is based on delicate treatments of the
dyadic expansions of real numbers.

We emphasize that the new delicate approach presented in this paper is the main goal
of this work. The applications in R or Mn have already been dealt with in [6–8].

2 Needed setup
Recall that a dyadic is an expression of the form 1

2i for some i ∈ N. It is known that if
α ∈ (0, 1) then α is the sum, possibly an infinite sum, of dyadics. That is, there is a sequence
of naturals {in : 1 ≤ n ≤ N} such that α =

∑N
n=1

1
2in , with the possibility that N = ∞. In this

context, we assume ij < ij+1 for all j. A dyadic 1
2i will be said to be in the dyadic expansion

of α if 1
2i appears in the above sum. In this case, we write 1

2i ∈ D(α). The first observation
we need in our proofs in this article is that we can write this sum in blocks. Namely, let

N1 = min

{
n ∈N :

1
2n ∈ D(α)

}
,

K1 = min

{
n ∈N :

1
2n ∈ D(α) and

1
2n+1 /∈ D(α)

}
,
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Nj+1 = min

{
n ≥ Kj–1 :

1
2n ∈ D(α) and

1
2n–1 /∈ D(α)

}
, j ≥ 1,

Kj+1 = min

{
n ≥ Nj+1 :

1
2n ∈ D(α) and

1
2n+1 /∈ D(α)

}
, j ≥ 1.

At each step, if the set corresponding to Nj+1 is empty, stop the process (that gives a finite
outer sum in (2.1)). Moreover, let Kj+1 = ∞ when the corresponding minimum is taken
over an empty set. In that case, if such Kj exists, the process stops, giving a finite outer
sum and an infinite inner sum in (2.1). Then we would have

α =
∑

j

Kj∑

i=Nj

1
2i . (2.1)

We shall call
∑Kj

i=Nj
1
2i a block of the dyadic expansion of α.

The other observation is that if α,β ∈ (0, 1) are such that α + β = 1, then we can write
two disjoint dyadic representations of α and β due to the fact that

∑∞
i=1

1
2i = 1. Moreover,

if we assume that α > β , then α > 1
2 , so 1

2 would be the first dyadic of α. In this case, N1 = 1
and if

α =
∑

j

Kj∑

i=Nj

1
2i ,

then

β =
∑

j

Nj+1–1∑

i=Kj+1

1
2i .

In other words, if 1
2n is the last dyadic of the jth block of α, then 1

2n+1 is the first dyadic in
the jth block of β . This observation will be used efficiently in our proofs.

Now, we prove the needed setup for our proofs. We remind the reader that the process
of writing the dyadic expansion of a number is well known. However, we shall present it
here in a way that helps accomplish our proofs in the next section.

The next lemma will play a crucial role in the proof of our main result. This lemma gives
the dyadic expansion of numbers in (0, 1) in a way that can be used for our results.

Lemma 2.1 Let α,β > 0 be such that β ≥ 2α, and let

y1 = α, r0 = 0,

rn = max
{

k ∈N : yn · 2k ≤ β
}

; n ≥ 1,

yn = β – yn–1 · 2rn–1 ; n ≥ 2.

Then
(1) For n ≥ 3, we have

yn = β

[
1 +

n–2∑

i=1

(–1)i
i∏

j=1

2rn–j

]
+ (–1)n–1α · 2r1+···+rn–1 . (2.2)
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(2) If yn �= 0 for all n ∈N, then the jth blocks of the dyadic expansions of β–α

β
and α

β
are

1
2r0+···+r2j–2

r2j–1∑

i=1

1
2i and

1
2r1+···+r2j–1

r2j∑

i=1

1
2i , (2.3)

respectively.
(3) If yn = 0 for some n ∈ N , and if this n is the first such index, then

β – α

β
=

([(n–1)/2]+1∑

j=1

1
2r1+r2+···+r2j–2

r2j–1∑

i=1

1
2i

)

and

α

β
=

([n/2]∑

j=1

1
2r1+r2+···+r2j–1

r2j∑

i=1

1
2i

)
,

with the convention that rn = ∞.

Proof The first statement can be easily inducted. Hence, we proceed to proving the second
statement.

Observe that β–α

β
≥ 1

2 because β ≥ 2α. Consequently, the first dyadic of β–α

β
is 1

2 , and
the first block of the dyadic expansion of it will have the form

∑k1
i=1

1
2i where

k1 = max

{
k ∈N :

β – α

β
–

k∑

i=1

1
2i ≥ 0

}
.

But when simplified, the above expression reduces exactly to k1 = max{k ∈ N : 2kα ≤ β}.
That is, k1 = r1. This means that the first block of the dyadic expansion of β–α

β
is

∑r1
i=1

1
2i .

Now, since β–α

β
+ α

β
= 1, the first dyadic of α

β
will be the first dyadic after the last dyadic of

the first block of β–α

β
, which is 2r1 . That is, the first block of α

β
will have the form 1

2r1

∑k2
i=1

1
2i ,

where

k2 = max

{
k ∈N :

α

β
–

1
2r1

k2∑

i=1

1
2i ≥ 0

}
.

Again, by simplifying the above expression, we will have k2 = max{k ∈ N : (β – 2r1α)2k ≤ β ,
which means that k2 = r2. This proves the truth of (2.3) when j = 1.

Now assume that (2.3) for all j ≤ n for some n ∈ N. We prove now that the (n + 1)st
blocks of β–α

β
and α

β
are

1
2r0+···+r2n

r2n+1∑

i=1

1
2i and

1
2r1+···+r2n+1

r2n+2∑

i=1

1
2i ,

respectively.
We prove this for β–α

β
and leave the other one for the reader because of the similarity.
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Observe that the first dyadic of the (n + 1)-st block of β–α

β
is the first dyadic after the

last dyadic of the nth block of α
β

. But by the inductive step, this last dyadic is 1
2r1+r2+···+r2n .

Consequently, the (n + 1)st block of β–α

β
will be

1
2r1+r2+···+r2n

k′∑

i=1

1
2i ,

where

k′ = max

{
k ∈N :

β – α

α
–

n∑

j=1

1
2r0+···+r2j–2

r2j–1∑

i=1

1
2i –

1
2r1+···+r2n

k∑

i=1

1
2i ≥ 0

}
. (2.4)

By adding the geometric series in this expression, then multiplying by

β · 2r1+···+r2n · 2k

and using equation (2.2), the above expression reduces to

k′ = max
{

k ∈N : y2n+1 · 2k ≤ β
}

,

which means k′ = r2n+1. This completes the inductive proof.
For the third statement, observe first that n ≥ 2. We prove the case when n is even and

leave the odd case to the reader. If yn = 0, then rn–1 will be the last normal index rn. Since
n is even, n – 1 is odd, and hence, the last normal block will belong to β–α

β
. In this case,

using the computations in (2.4),

β – α

α
=

n
2 –1∑

j=1

1
2r0+···+r2j–2

r2j–1∑

i=1

1
2i +

1
2r1+···+rn–2

rn–1∑

i=1

1
2i , (2.5)

where we replaced n by n
2 – 1 because in (2.4) we were interested in the index r2n+1 and

now we want rn–1. But then this last equation can be written as

β – α

β
=

[(n–1)/2]+1∑

j=1

1
2r1+r2+···+r2j–2

r2j–1∑

i=1

1
2i

because n is even. As for α
β

, we have α
β

= 1 – β–α

β
, which reduces to the wanted formula by

noting that 1 =
∑∞

i=1
1
2i . This completes the proof of the lemma. �

3 The interpolated Young inequality
Definition 3.1 Let M be a ring, and let M′ ⊂ M be such that

• Ax is well defined for all A ∈ M′ and x > 0.
• Ax ∈ M′ for all A ∈ M′ and x > 0.

Then the pair (M, M′) will be called a ring-pair.
Now, if F : M −→ [0,∞) satisfies
• F(AXB) ≤ 1

2 F(A2X + XB2), ∀A, B ∈ M′, X ∈ M,
• F(A + B) ≤ F(A) + F(B),

then F will be called a norm-mean mapping on (M, M′).
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Example 3.2 Let F : Mn −→ [0,∞) be defined by F(X) = ‖|X‖|. Then F is norm-mean
on (Mn,M+

n). Here, ‖| ‖| is any unitarily invariant norm. Indeed, the inequality ‖|AXB‖| ≤
1
2‖|A2X + XB2‖| was proved for all A, B ∈M

+
n and X ∈ Mn in [2].

We prove the following interpolating inequality for norm-mean mappings.

Proposition 3.3 Let (M, M′) be a ring-pair, A, B ∈ M′, and X ∈ M. Then, for p, q ≥ 0 and
r ≤ min{p, q}, we have

F
(
ApXBq) ≤ 1

2
F
(
Ap+rXBq–r + Ap–rXBq+r) (3.1)

for any norm-mean mapping F on (M, M′).

Proof Observe that

F
(
ApXBq) = F

(
Ar(Ap–rXBq–r)Br) ≤ 1

2
F
(
Ap+rXBq–r + Ap–rXBq+r),

where we have used the inequality F(AXB) ≤ 1
2 F(A2X + XB2) of F . �

The following lemma is the result of successive applications of Proposition 3.1.

Lemma 3.4 Let (M, M′) be a ring-pair, A, B ∈ M′, and 0 < r ≤ q ≤ p. If

k1 = max
{

k ∈N : 2k · r ≤ p – q + 2r
}

,

then, for the norm-mean mapping F on (M, M′),

F
(
ApXBq) ≤

k1∑

i=1

1
2i F

(
Ap+rXBq–r) +

1
2k1

F
(
Ap–2k1 ·r+rXBq+2k1 ·r–r). (3.2)

Proof If k1 = 1, then a direct application of (3.1) yields

F
(
ApXBq) ≤ 1

2
F
(
Ap+rXBq–r) +

1
2

F
(
Ap–rXBq+r)

=
1
2

F
(
Ap+rXBq–r) +

1
2

F
(
Ap–2k1 ·r+rXBq+2k1 ·r–r).

On the other hand, if k1 > 1, we use induction on m ∈ {1, 2, . . . , k1 – 1}. If m = 1, then we
have the statement by our proof of k1 = 1.

Suppose now that, for any m ∈ {1, 2, . . . , k1 – 1}, we have

F
(
ApXBq) ≤

m∑

i=1

1
2i F

(
Ap+rXBq–r) +

1
2m F

(
Ap–2m·r+rXBq+2m·r–r). (3.3)

To prove it for m + 1, observe first that k1 = max{k ∈N : 2k · r ≤ p – q + 2r} and that m < k1,
hence 2m+1 · r ≤ p – q + 2r. That is, q + 2m · r – r ≤ p – 2m · r + r. Consequently, we can apply
(3.1) on the term F(Ap–2m·r+rXBq+2m·r–r) of (3.3), but by adding and subtracting 2m · r to get

F
(
Ap–2m·r+rXBq+2m·r–r) ≤ 1

2
F
(
Ap+rXBq–r) +

1
2

F
(
Ap–2m+1·r+rXBq+2m+1·r–r).
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Combine this with (3.3) to get

F
(
ApXBq) ≤

m∑

i=1

1
2i F

(
Ap+rXBq–r) +

1
2m+1 F

(
Ap+rXBq–r) 1

2m+1 F
(
Ap–2m+1·r+rXBq+2m+1·r–r)

=
m+1∑

i=1

1
2i F

(
Ap+rXBq–r) +

1
2m+1 F

(
Ap–2m+1·r+rXBq+2m+1·r–r).

This completes the proof. �

Now, what happens if we apply Lemma 3.4 on the term F(Ap–2k1 ·r+rXBq+2k1 ·r–r) appearing
in the lemma? Observe first that the A power now is smaller than the B power. That is,
p – 2k1 · r + r < q + 2k1 · r – r. Indeed, if p – 2k1 · r + r ≥ q + 2k1 · r – r, we would have
2k1+1 · r ≤ p – q + 2r, contradicting the definition of k1. Thus, we may apply the lemma with
p replaced by q1 := q + 2k1 · r – r, q replaced by p1 := p – 2k1 · r + r. Since p – q + 2r – 2k1 · r ≤
min{q + 2k1 · r – r, p – 2k1 · r + r}, we may apply the lemma using r(1) = p – q + 2r – 2k1 · r.
Observe that in this case the new power of A will be “the old smaller power –the new r”
and the new power of B will be “the old larger power +the new value of r”; which gives the
powers p – 2k1 · r + r – (p – q + 2r – 2k1 · r) = q – r for A and q + 2k1 · r – r + (p – q + 2r – 2k1 · r) =
p + r for B.

F
(
Ap–2k1 ·r+rXBq+2k1 ·r–r) ≤

k2∑

i=1

1
2i F

(
Aq–rXBp+r)

+
1

2k2
F
(
Ap1+2k2 ·r(1)–r(1)

XBq1–2k2 ·r(1)+r(1))
, (3.4)

where

k2 = max
{

k ∈N : 2kr(1) ≤ q1 – p1 + 2r(1)}

= max
{

k ∈N : 2k(p – q + 2r – 2k1 · r
) ≤ p – q + 2r

}
,

where the last line is an immediate substitution of the values of p1, q1, and r(1).
Going back to the notations of Lemma 2.1, let β = p – q + 2r and α = r. Then clearly,

β ≥ 2α because p ≥ q. Consequently, we may rewrite the definitions of k1 and k2 as

k1 = max
{

k ∈N : 2k · α ≤ β
}

and k2 = max
{

k ∈N : y2 · 2k ≤ β
}

.

In other words,

k1 = r1, k2 = r2 and r(1) = y2.

If we substitute inequality (3.4) in inequality (3.2), we get

F
(
ApXBq) ≤

r1∑

i=1

1
2i F

(
Ap+rXBq–r) +

1
2r1

r2∑

i=1

F
(
Aq–rXBp+r)

+
1

2r1+r2
F
(
Aq–r+2r2 ·y2 XBp+r–2r2 ·y2

)
.

By applying Lemma 3.4 successively, we get the following easily inducted lemma.
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Lemma 3.5 Let (M, M′) be a ring-pair, X ∈ M, A, B ∈ M′, and 0 < r ≤ q ≤ p. If yn �= 0 for
all n ∈N, then for each n ∈ N, we have

F
(
ApXBq) ≤

([(n–1)/2]+1∑

j=1

1
2r1+r2+···+r2j–2

r2j–1∑

i=1

1
2i

)
F
(
Ap+rXBq–r)

+

([n/2]∑

j=1

1
2r1+r2+···+r2j–1

r2j∑

i=1

1
2i

)
F
(
Aq–rXBp+r) + G(n), (3.5)

where

G(n) =
1

2r1+r2+···+rn
F
(
Ap+r–yn·2rn XBq–r+yn·2rn )

, if n is odd,

and

G(n) =
1

2r1+r2+···+rn
F
(
Aq–r+yn·2rn XBp+r–yn·2rn )

, if n is even.

On the other hand, if n is the first index such that yn = 0, then we have the above formula
for that particular n. In this case, G(n) will be added to one of the sums.

To better understand the statement of this lemma, we strongly advice the reader to con-
sider a numerical example.

The above dyadic blocks have already appeared in Lemma 2.1. Thus, we have, using
Lemma 2.1,

([(n–1)/2]+1∑

j=1

1
2r1+r2+···+r2j–2

r2j–1∑

i=1

1
2i

)
≤ β – α

β
=

p – q + r
p – q + 2r

and

([n/2]∑

j=1

1
2r1+r2+···+r2j–1

r2j∑

i=1

1
2i

)
≤ α

β
=

r
p – q + 2r

for each n ∈ N.
Consequently, by letting n → ∞, we get our first main result.

Theorem 3.6 Let (M, M′) be a ring-pair, and let F : M → [0,∞) be norm-mean on (M, M′).
Then, for p ≥ q ≥ r ≥ 0, we have

F
(
ApXBq) ≤ p – q + r

p – q + 2r
F
(
Ap+rXBq–r) +

r
p – q + 2r

F
(
Aq–rXBp+r) (3.6)

for all X ∈ M and A, B ∈ M′.

The next result tells us that these r-versions are better than the original inequality (1.2)
as they increase with r.
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Proposition 3.7 Let (M, M′) be a ring-pair, F : M → [0,∞) be norm-mean on (M, M′), X ∈
M, A, B ∈ M′, and p ≥ q > 0. Then the function

f (r) =
p – q + r

p – q + 2r
F
(
Ap+rXBq–r) +

r
p – q + 2r

F
(
Aq–rXBp+r)

is increasing on [0, q].

Proof Let 0 < r1 < r2 ≤ q. Apply inequality (3.6) taking r = r1 to get

F
(
ApXBq) ≤ p – q + r1

p – q + 2r1
F
(
Ap+r1 XBq–r1

)
+

r1

p – q + 2r1
F
(
Aq–r1 XBp+r1

)
. (3.7)

Now, apply the same inequality (3.6) on F(Ap+r1 XBq–r1 ) taking r = r2 – r1 to get

F
(
Ap+r1 XBq–r1

) ≤ (p + r1) – (q – r1) + (r2 – r1)
(p + r1) – (q – r1) + 2(r2 – r1)

F
(
Ap+r1+(r2–r1)XBq–r1–(r2–r1))

+
r2 – r1

(p + r1) – (q – r1) + 2(r2 – r1)
F
(
Aq–r1–(r2–r1)XBp+r1+(r2–r1))

=
p – q + r1 + r2

p – q + 2r2
F
(
Ap+r2 XBq–r2

)
+

r2 – r1

p – q + 2r2
F
(
Aq–r2 XBp+r2

)
. (3.8)

On the other hand, applying inequality (3.6) on F(Aq–r1 XBp+r1 ) taking r = r2 – r1 and ob-
serving that B has the larger power yields

F
(
Aq–r1 XBp+r1

) ≤ r2 – r1

p – q + 2r2
F
(
Ap+r2 XBq–r2

)
+

p – q + r1 + r2

p – q + 2r2
F
(
Aq–r2 XBp+r2

)
. (3.9)

Now, taking (3.8) and (3.9) into consideration, we get

f (r1) =
p – q + r1

p – q + 2r1
F
(
Ap+r1 XBq–r1

)
+

r1

p – q + 2r1
F
(
Aq–r1 XBp+r1

)

≤ p – q + r1

p – q + 2r1

[
p – q + r1 + r2

p – q + 2r2
F
(
Ap+r2 XBq–r2

)
+

r2 – r1

p – q + 2r2
F
(
Aq–r2 XBp+r2

)]

+
r1

p – q + 2r1

[
r2 – r1

p – q + 2r2
F
(
Ap+r2 XBq–r2

)
+

p – q + r1 + r2

p – q + 2r2
F
(
Aq–r2 XBp+r2

)]

=
(p – q + r1)(p – q + r1 + r2) + r1(r2 – r1)

(p – q + 2r1)(p – q + 2r2)
F
(
Ap+r2 XBq–r2

)

+
(p – q + r1)(r2 – r1) + r1(p – q + r1 + r2)

(p – q + 2r1)(p – q + 2r2)
F
(
Aq–r2 XBp+r2

)

=
p – q + r2

p – q + 2r2
F
(
Ap+r2 XBq–r2

)
+

r2

p – q + 2r2
F
(
Aq–r2 XBp+r2

)

= f (r2).

This proves that f is increasing on [0, q]. �

In fact this monotone behavior of f tells a lot about the well-known Young inequality

F
(
ApXBq) ≤ p

p + q
F
(
Ap+qX

)
+

q
p + q

F
(
XBp+q), A, B ∈ M′, p ≥ q > 0.
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Observe that f (0) = F(ApXBq) and f (q) = p
p+q F(Ap+qX) + q

p+q F(XBp+q). Hence, this Young
inequality is the weakest inequality among all the interpolated inequalities! However, it is
the only one that isolates A from B.

It is worth trying to prove the monotone behavior of f using other techniques; because
in the above proof we relied on our proof of inequality (3.6). Thus, if one can prove that f
is increasing using some other method, that would be another proof of inequality (3.6).

The following result allows us to treat different powers of A, B. The proof can be easily
obtained by induction on n.

Corollary 3.8 Let (M, M′) be a ring-pair, F : M → [0,∞) be norm-mean on (M, M′), X ∈
M, A, B ∈ M′. Also, let {pi, qi, ri : i = 1, . . . , n} be nonnegative numbers satisfying

pi ≥ qi ≥ ri, pi + ri = pj + rj and qi – ri = qj – rj, ∀i, j = 1, . . . , n.

Then

F

( n∑

i=1

Api XBqi

)
≤

(
n –

∑n
i=1 ri

p1 – q1 + 2r1

)
F
(
Ap1+r1 XBq1–r1

)

+
∑n

i=1 ri

p1 – q1 + 2r1
F
(
Aq1–r1 XBp1+r1

)
. (3.10)

4 Applications in R and Lp spaces
We begin by asking which functions on R are norm-mean.

Proposition 4.1 If f : R −→ [0,∞) is continuous, then f is norm-mean on (R,R+) if and
only if

f (x) =

⎧
⎨

⎩
αx, x ≥ 0,

–βx, x < 0

for some α,β > 0.

Proof Direct computations show the “if” part. For the “only if” part, suppose that f : R−→
[0,∞) is a continuous mean-norm mapping on (R,R+). Then, clearly, f (0) = 0. Let x, y ∈R

and let σ = x+y
|x+y| . If x + y = 0, let σ = 1. Observe that

f
(

x + y
2

)
= f

(√|x + y|σ
2

√|x + y|
)

≤ 1
2

f
((√|x + y|)2 σ

2
+

σ

2
(√|x + y|)2

)

=
1
2

f (x + y)

=
f (x) + f (y)

2
.

Since f is continuous, f is convex.
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Now, if x, y > 0 or if x, y < 0, we have

f (x) + f (y) = f
(

(x + y)
|x|

|x + y| +
(

1 –
|x|

|x + y|
)

× 0
)

+ f
(

(x + y)
|y|

|x + y| +
(

1 –
|y|

|x + y|
)

× 0
)

≤ |x|
|x + y| f (x + y) +

|y|
|x + y| f (x + y)

= f (x + y),

where we have used the facts that f is convex and f (0) = 0.
Thus, we have proved that f (x + y) ≥ f (x) + f (y), when x, y > 0 or x, y < 0. But because f is

norm-mean, we have f (x+y) ≤ f (x)+ f (y). This proves that f (x+y) = f (x)+ f (y), when x, y >
0 or x, y < 0. But the only function (nonnegative by assumption) satisfying this linearity is

f (x) =

⎧
⎨

⎩
αx, x ≥ 0,

–βx, x < 0

for some α,β > 0. �

Corollary 4.2 Let a, b be any positive numbers, and let p ≥ q ≥ r ≥ 0. Then

apbq ≤ p – q + r
p – q + 2r

ap+rbq–r +
r

p – q + 2r
aq–rbp+r . (4.1)

We treat some special cases of this inequality, where some nice symmetries appear:
1. When p = q, the above inequality reduces to the well-known inequality that

x + 1
x ≥ 2 for x > 0.

2. Let r > 0 be arbitrary, q = mr, and p = nq for some n, m ∈N. By letting amr = x and
bmr = y, inequality (4.1) reduces to: given x, y > 0, we have

xny ≤ nm – m + 1
nm – m + 2

m

√
x
y

xny +
1

nm – m + 2
m

√
y
x

xyn, n, m ∈ N.

Observe that this inequality becomes an equality as m → ∞.
3. Let r > 0 be arbitrary, n, m ∈N, q = mr, p = (n + m)r, anr = x, and bnr = y. Then we

get: given x > 0, we have

x ≤ (n + 1)x
n + 2

n

√
x
y

+
y

n + 2
n

√
y
x

, ∀y > 0, n ∈N.

Corollary 4.3 Let f , g : X → R be measurable functions on the measure space X. Then

∥∥f pgq∥∥
1 ≤ p – q + r

p – q + 2r
∥∥f p+rgq–r∥∥

1 +
r

p – q + 2r
∥∥f q–rgp+r∥∥

1

for p ≥ q ≥ r.
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As a consequence of this last corollary, we get the following result, which has its own
impact in the theory of Lp spaces.

Corollary 4.4 Let f , g : X → R be measurable functions on the measure space X, and let
q ≤ p. If there exists r ≤ q such that both f p+rgq–r and f q–rgp+r are integrable, then so is
f pgq.

Observe that if, in the above corollary, g = 1, then the result can be stated as follows.

Corollary 4.5 For 0 < k < p < �, we have L�(X)∩Lk(X) ⊂ Lp(X). In particular, if f ∈ L�(X)∩
Lk(X), then

‖f ‖p
p ≤ � – p

� – k
‖f ‖k

k +
p – k
� – k

‖f ‖�
�. (4.2)

Proof In Corollary 4.3, replace g by 1, q – r by k, and p + r by �. Then p – q + 2r = � – k,
p – q + r = p – k, and r = � – p. Consequently,

∥∥f p∥∥
1 ≤ p – k

� – k
∥∥f �

∥∥
1 +

� – p
� – k

∥∥f k∥∥
1,

which implies the wanted inequality. �

The inclusion part of this corollary is well known in the theory of Lp spaces, but it is
usually stated as follows: if 0 < q < p < r, then Lr(X) ∩ Lq(X) ⊂ Lp(X).

It is worth to mention the nice relation between the norm inequality (4.2) and the known
inequality in the literature. We refer the reader to any standard book on Lp spaces, for
example, [3], p. 185.

Proposition 4.6 ([3], p. 185) If 0 < k < p < �, then Lk ∩ L� ⊂ Lp and

‖f ‖p ≤ ‖f ‖λ
k‖f ‖1–λ

� , for λ =
p–1 – �–1

k–1 – �–1 .

That is,

‖f ‖p
p ≤ ‖f ‖k �–p

�–k
k ‖f ‖�

p–k
�–k

� .

Observe that this upper bound is strongly related to that of (4.2) by the known Young
inequality:

aνb1–ν ≤ νa + (1 – ν)b, ∀a, b > 0, 0 < ν < 1.

That is,

‖f ‖k �–p
�–k

k ‖f ‖�
p–k
�–k

� ≤ � – p
� – k

‖f ‖k
k +

p – k
� – k

‖f ‖�
�.
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5 Applications in Mn

Theorem 5.1 Let X ∈Mn, A, B ∈M
+
n . If 0 ≤ r ≤ q ≤ p, then

∣∣∣∣∣∣ApXBq∣∣∣∣∣∣ ≤ p – q + r
p – q + 2r

∣∣∣∣∣∣Ap+rXBq–r∣∣∣∣∣∣ +
r

p – q + 2r
∣∣∣∣∣∣Aq–rXBp+r∣∣∣∣∣∣

for any unitarily invariant norm ‖| ‖|.

The proof is immediate because any unitarily invariant norm is norm-mean on (Mn,M+
n).

See Example 3.2.

Remark One can use the fact that the function g : (0,∞) × (0,∞) → [0,∞) defined by
g(p, q) = ‖|ApXBq‖| is log-convex to prove the above inequality; as one can see in [6]. How-
ever, our purpose in this article is not only the result itself, but the new delicate treatment
of dyadics and its relation with Young’s inequality.

At this point we remark that the well-known inequality (1.5) is not valid for any unitarily
invariant norm. That is, the following generalization is not true [4]:

‖|AXB‖| ≤
∣∣∣∣

∣∣∣∣

∣∣∣∣
ApX

p
+

XBq

q

∣∣∣∣

∣∣∣∣

∣∣∣∣;
1
p

+
1
q

= 1.

Simulating our generalization, one can prove the following 2-norm version, with the aid
of (4.1). We refer the reader to [8] for the following two results.

Theorem 5.2 Let A, B ∈M
+
n , X ∈Mn, and p ≥ q ≥ 0. Then, for each 0 ≤ r ≤ q, we have

∥∥ApXBq∥∥
2 ≤

∥∥∥∥
p – q + r

p – q + 2r
Ap+rXBq–r +

r
p – q + 2r

Aq–rXBp+r
∥∥∥∥

2
. (5.1)

Again, we prove that these 2-norm versions interpolate increasingly between

∥∥ApXBq∥∥
2 and

∥∥∥∥
p – q + r

p – q + 2r
Ap+rXBq–r +

r
p – q + 2r

Aq–rXBp+r
∥∥∥∥

2
.

Proposition 5.3 Let A, B ∈M
+
n , X ∈Mn, and p ≥ q ≥ 0. Then the function

f (r) =
∥∥∥∥

p – q + r
p – q + 2r

Ap+rXBq–r +
r

p – q + 2r
Aq–rXBp+r

∥∥∥∥
2

(5.2)

is increasing on [0, q].

Proof Following our notations in Theorem 5.2, observe that

f (r) =
(∑

i,j

f 2
ij (r)|yij|2

)1/2

,

where

fij(r) = αλ
p+r
i μ

q–r
j + βλ

q–r
i μ

p+r
j .
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Observe that since fij is increasing for every i, j, by Proposition 3.7 and |yij|2 > 0, the result
follows. �

Now following Corollary 3.8 and Theorem 5.2 we can prove the following.

Corollary 5.4 Let A, B ∈ M
+
n , X ∈Mn, and {pi, qi, ri} be nonnegative numbers such that

pi ≥ qi ≥ ri, pi + ri = pj + rj and qi – ri = qj – rj, ∀i, j = 1, . . . , n.

Then
∥∥∥∥∥

n∑

i=1

Api XBqi

∥∥∥∥∥
2

≤
∥∥∥∥

(
n –

∑n
i=1 ri

p1 – q1 + 2r1

)
Ap1+r1 XBq1–r1

+
∑n

i=1 ri

p1 – q1 + 2r1
Aq1–r1 XBp1+r1

∥∥∥∥
2
. (5.3)
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