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1 Introduction
Let H denote the class of all complex-valued harmonic functions f = h + ḡ in U = {z : |z| <
1}, where h and g are analytic in U and normalized such that

f (z) = h(z) + g(z) = z +
∞∑

j=2

ajzj +
∞∑

j=1

bjzj. (1.1)

A necessary and sufficient condition for f to be locally univalent and sense-preserving in
U is that Jf = |fz|2 – |fz̄|2 > 0 in U (see [1, 2]). Let SH denote the subclass of H consisting
of sense-preserving univalent functions in U. Then the function f ∈ SH of the form (1.1)
satisfies the condition |b1| < 1.

A 2p-times continuously differentiable complex-valued function F = u + iv in a domain
U is p-harmonic if F satisfies the p-harmonic equation �pF = �(�p–1F) = 0 (p = 1, 2, . . .),
where � represents the complex Laplacian operator:

� = 4
∂2

∂z ∂ z̄
:=

∂2

∂x2 +
∂2

∂y2 .

Obviously, if we take p = 1 and p = 2, then F is harmonic and biharmonic, respectively.
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A function F is p-harmonic in a simply connected domain U if and only if F has the
following representation:

F(z) =
p∑

k=1

|z|2(k–1)fp–k+1(z)
(
k ∈ {1, 2, . . . , p}), (1.2)

where each fp–k+1(z) is harmonic (or �fp–k+1 = 0) (see [3]) and fp–k+1(z) has the form

fp–k+1 = hp–k+1 + ḡp–k+1, (1.3)

where

hp–k+1(z) =
∞∑

j=1

aj,p–k+1zj (a1,p = 1, k ≥ 1), (1.4)

gp–k+1(z) =
∞∑

j=1

bj,p–k+1zj (k ≥ 1). (1.5)

Denote by SHp the class of functions F of the form (1.2) that are p-harmonic, univa-
lent, and sense-preserving in the unit disk. Recently, there has been significant interest in
results about the class SHp (see, for details, [4–9]).

Denote by HLp(α,λ) (0 ≤ α < 1,λ ≥ 0) the class of all mappings of the form (1.2) which
satisfy the condition

p∑

k=1

∞∑

j=2

(
2(k – 1) +

jλ(j – α)
1 – α

)(|aj,p–k+1| + |bj,p–k+1|
)

≤ 1 – |b1,p| –
p∑

k=2

(2k – 1)
(|a1,p–k+1| + |b1,p–k+1|

)
(1.6)

with

0 ≤ |b1,p| +
p∑

k=2

(2k – 1)
(|a1,p–k+1| + |b1,p–k+1|

)
< 1. (1.7)

Clearly, inequality (1.6) implies that

p∑

k=1

∞∑

j=1

(
(k – 1) +

jλ(j – α)
2(1 – α)

)(|aj,p–k+1| + |bj,p–k+1|
) ≤ 1, (1.8)

where a1,p = 1, k ∈ {1, . . . , p}.
It is easy to see that various subclasses of SHp consisting of mappings F(z) of the form

(1.2) and (1.3) can be represented as HLp(α,λ)(b1,p = a1,p–k+1 = b1,p–k+1 = 0, k = 2, . . . , p) for
suitable choices of p,α, and λ in the earlier studies by various authors.

(i) HLp(0, 0) = HSp and HLp(0, 1) = HCp (see Qiao and Wang [4]);
(ii) HLp(α, 0) = HSp(α) and HLp(α, 1) = HCp(α) (see Saurabh Porwal and Dixit [5]);

(iii) HL1(α, 0) = HS(α) and HL1(α, 1) = HC(α) (see Öztürk and Yalcin [10]);
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(vi) HL1(0, 0) = HS and HL1(0, 1) = HC (see Avci and Zlotkiewicz [11]).
For λ ∈N = {1, 2, . . .} ∪ {0}, we have the following inclusion relation:

HLp(α,λ) ⊂ HLp(α,λ – 1) ⊂ · · · ⊂ HLp(α, 2) ⊂ HCp(α) ⊂ HSp(α).

Suppose that F is a p-harmonic mapping with expression (1.2). Following Ruscheweyh
[12], we use N δ

λ,α(F) to denote the δ-neighborhood of F in p-harmonic mappings:

N δ
λ,α(F) =

{
F̃ : |b1,p – B1,p| +

p∑

k=2

(2k – 1)
(|a1,p–k+1 – A1,p–k+1| + |b1,p–k+1 – B1,p–k+1|

)

+
p∑

k=1

∞∑

j=2

(
2(k – 1) +

jλ(j – α)
1 – α

)(|aj,p–k+1 – Aj,p–k+1|

+ |bj,p–k+1 – Bj,p–k+1|
) ≤ δ

}
,

where

F̃ = z +
∞∑

j=2

Aj,pzj +
∞∑

j=1

B̄j,pz̄j +
p∑

k=2

|z|2(k–1)

( ∞∑

j=1

Aj,p–k+1zj +
∞∑

j=1

B̄j,p–k+1z̄j

)
.

If F , G ∈ SHp satisfy

F =
p∑

k=1

|z|2(k–1)

( ∞∑

j=1

aj,p–k+1zj +
∞∑

j=1

b̄j,p–k+1z̄j

)

and

G =
p∑

k=1

|z|2(k–1)

( ∞∑

j=1

Aj,p–k+1zj +
∞∑

j=1

B̄j,p–k+1z̄j

)
,

then the convolution F ∗ G of F and G is defined to be the mapping

F ∗ G =
p∑

k=1

|z|2(k–1)

( ∞∑

j=1

aj,p–k+1Aj,p–k+1zj +
∞∑

j=1

b̄j,p–k+1B̄j,p–k+1z̄j

)
.

Let

THp =
{

F(z) : F ∈ SHp with a1,p = 1, aj,p–k+1 ≥ 0, bj,p–k+1 ≥ 0 for j ≥ 1, k = 1, . . . , p
}

and denote HLp(α,λ) = HLp(α,λ) ∩ THp.
The main objective of the paper is to introduce a new subclass of p-harmonic mappings

and investigate the univalence and sense-preserving, extreme points, neighborhoods and
Hadamard product of mappings for the above subclass. Relevant connections of the results
presented here with the results of Qiao et al. [4] and Porwal et al. [5] are briefly indicated.
Finally, we also prove new properties of the Hadamard product of these classes.
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2 Main results
Firstly, we discuss the inclusion relation of HLp(α,λ).

Theorem 2.1 Let λ2 ≥ λ1 ≥ 0, 1 > α2 ≥ α1 ≥ 0, then HLp(α2,λ2) ⊆ HLp(α1,λ1).

Proof Let F ∈ HLp(α2,λ2), then using (1.6), we have

p∑

k=1

∞∑

j=2

(
2(k – 1) +

jλ1 (j – α1)
1 – α1

)(|aj,p–k+1| + |bj,p–k+1|
)

≤
p∑

k=1

∞∑

j=2

(
2(k – 1) +

jλ2 (j – α2)
1 – α2

)(|aj,p–k+1| + |bj,p–k+1|
)

≤ 1 – |b1,p| –
p∑

k=2

(2k – 1)
(|a1,p–k+1| + |b1,p–k+1|

)
,

therefore F ∈ HLp(α1,λ1), and so HLp(α2,λ2) ⊆ HLp(α1,λ1). �

Next, we prove that the mapping in HLp(α,λ) is univalent and sense-preserving.

Theorem 2.2 Each mapping in HLp(α,λ) is univalent and sense-preserving.

Proof Let F ∈ HLp(α,λ) and z1, z2 ∈U with z1 �= z2, so that |z1| ≤ |z2|:
∣∣F(z1) – F(z2)

∣∣

=

∣∣∣∣∣

p∑

k=1

(|z1|2(k–1)fp–k+1(z1) – |z2|2(k–1)fp–k+1(z2)
)
∣∣∣∣∣

≥ |z1 – z2|
{

1 –

∣∣∣∣∣

∞∑

j=2

aj,p
zj

1 – zj
2

z1 – z2
+

∞∑

j=1

b̄j,p
z̄j

1 – z̄j
2

z1 – z2

∣∣∣∣∣

}

–

∣∣∣∣∣

p∑

k=2

( ∞∑

j=1

aj,p–k+1
|z1|2(k–1)zj

1 – |z2|2(k–1)zj
2

z1 – z2

+
∞∑

j=1

b̄j,p–k+1
|z1|2(k–1)z̄j

1 – |z2|2(k–1)z̄j
2

z1 – z2

)∣∣∣∣∣

≥ |z1 – z2|
(

1 – |b1,p| – |z2|
∞∑

j=2

j
(|aj,p| + |bj,p|

)
)

– |z2|
p∑

k=2

∞∑

j=1

(
2(k – 1) + j

)(|aj,p–k+1| + |bj,p–k+1|
)

≥ |z1 – z2|
(

1 – |b1,p| – |z2|
∞∑

j=2

jλ(j – α)
1 – α

(|aj,p| + |bj,p|
)
)

– |z2|
p∑

k=2

∞∑

j=1

(
2(k – 1) +

jλ(j – α)
1 – α

)(|aj,p–k+1| + |bj,p–k+1|
)
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≥ |z1 – z2|
(
1 – |b1,p|

)(
1 – |z2|

)

> 0,

which proves univalence.
In order to prove that F is sense-preserving, we need to show that JF = |Fz|2 – |Fz̄|2 > 0:

JF (z) = |Fz|2 – |Fz̄|2 =
(|Fz| + |Fz̄|

)(|Fz| – |Fz̄|
)

=
(|Fz| + |Fz̄|

)
{∣∣∣∣∣1 +

∞∑

j=2

jaj,pzj–1 +
p∑

k=2

∞∑

j=2

|z|2(k–1)jaj,p–k+1zj–1

+
p∑

k=2

|z|2(k–1)ja1,p–k+1 +
p∑

k=2

(k – 1)|z|2(k–1)

×
( ∞∑

j=1

aj,p–k+1zj–1 +
z̄
z

∞∑

j=1

b̄j,p–k+1z̄j–1

)∣∣∣∣∣

–

∣∣∣∣∣

∞∑

j=1

jb̄j,pz̄j–1 +
p∑

k=2

∞∑

j=2

|z|2(k–1)jb̄j,p–k+1z̄j–1

+
p∑

k=2

|z|2(k–1)b̄1,p–k+1 +
p∑

k=2

(k – 1)|z|2(k–1)

×
(

z
z̄

∞∑

j=1

aj,p–k+1zj–1 +
z̄
z

∞∑

j=1

b̄j,p–k+1z̄j–1

)∣∣∣∣∣

}

≥ (|Fz| + |Fz̄|
)
[

1 – |b1,p| –
p∑

k=2

(2k – 1)
(|a1,p–k+1| + |b1,p–k+1|

)

– |z|
p∑

k=1

∞∑

j=2

(
2(k – 1) + j

)(|aj,p–k+1| + |bj,p–k+1|
)
]

≥ (|Fz| + |Fz̄|
)
[

1 – |b1,p| –
p∑

k=2

(2k – 1)
(|a1,p–k+1| + |b1,p–k+1|

)

– |z|
p∑

k=1

∞∑

j=2

(
2(k – 1) +

jλ(j – α)
1 – α

)(|aj,p–k+1| + |bj,p–k+1|
)
]

≥ (|Fz| + |Fz̄|
)(

1 – |b1,p|
)(

1 – |z|)

> 0.

From z �= 0 and the obvious fact JF (0) > 0, we thus complete the proof. �

Example 2.1 Let F(z) = z + 1
(2p–1) |z|2(p–1)z̄. Then F(z) is a p-harmonic function and

p∑

k=1

∞∑

j=1

(
(k – 1) +

jλ+1

2

)(|aj,p–k+1| + |bj,p–k+1|
)

< 1,

using (1.8), we get F ∈ HLp(0,λ).
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Also, we determine the extreme points of HLp(α,λ).

Theorem 2.3 Let F be given by (1.2). Then F ∈ HLp(α,λ) if and only if

F(z) =
p∑

k=1

∞∑

j=1

(
Xj,p–k+1hj,p–k+1(z) + Yj,p–k+1gj,p–k+1(z)

)
, (2.1)

where

hj,p–k+1(z) = z + |z|2(k–1) zj

(k – 1) + jλ(j–α)
2(1–α)

(2 ≤ k ≤ p; j ≥ 1),

gj,p–k+1(z) = z + |z|2(k–1) z̄j

(k – 1) + jλ(j–α)
2(1–α)

(2 ≤ k ≤ p; j ≥ 1),

h1,p(z) = z, h1,j(z) = z +
zj

jλ(j–α)
2(1–α)

(j ≥ 2),

g1,j(z) = z +
z̄j

jλ(j–α)
2(1–α)

(j ≥ 1)

and

p∑

k=1

∞∑

j=1

(Xj,p–k+1 + Yj,p–k+1) = 1 (Xj,p–k+1 ≥ 0, Yj,p–k+1 ≥ 0).

In particular, the extreme points of HLp(α,λ) are {hj,p–k+1(z)} and {gj,p–k+1(z)}, where j ≥ 1
and 1 ≤ k ≤ p.

Proof Since

F(z) =
p∑

k=1

∞∑

j=1

(
Xj,p–k+1hj,p–k+1(z) + Yj,p–k+1gj,p–k+1(z)

)

= z +
p∑

k=2

|z|2(k–1)
∞∑

j=1

(
Xj,p–k+1

(k – 1) + jλ(j–α)
2(1–α)

zj +
Yj,p–k+1

(k – 1) + jλ(j–α)
2(1–α)

z̄j
)

+
∞∑

j=1

Xj,p
jλ(j–α)

1–α

zj +
∞∑

j=1

Yj,p
jλ(j–α)

2(1–α)

z̄j

and

p∑

k=1

∞∑

j=2

(
(k – 1) +

jλ(j – α)
2(1 – α)

)(∣∣∣∣
Xj,p–k+1

(k – 1) + jλ(j–α)
2(1–α)

∣∣∣∣ +
∣∣∣∣

Yj,p–k+1

(k – 1) + jλ(j–α)
2(1–α)

∣∣∣∣

)

+ |Y1,p| +
p∑

k=2

(2k – 1)
2

(∣∣∣∣
X1,p–k+1

2k–1
2

∣∣∣∣ +
∣∣∣∣
Y1,p–k+1

2k–1
2

∣∣∣∣

)

≤
p∑

k=1

∞∑

j=2

(Xj,p–k+1 + Yj,p–k+1) +
p∑

k=2

(X1,p–k+1 + Y1,p–k+1) + Y1,p
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Figure 1 When F(z) is a 4-harmonic function

≤ 1 – X1,p

≤ 1,

we see that F ∈ HLp(α,λ).
Conversely, assuming that F ∈ HLp(α,λ) and setting

Xj,p–k+1 =
(

(k – 1) +
jλ(j – α)
2(1 – α)

)
aj,p–k+1 (2 ≤ k ≤ p, j ≥ 1),

Xj,p =
jλ(j – α)
2(1 – α)

aj,p (j ≥ 2),

Yj,p–k+1 =
(

(k – 1) +
jλ(j – α)
2(1 – α)

)
bj,p–k+1 (1 ≤ k ≤ p, j ≥ 1)

and

X1,p = 1 –
p∑

k=1

∞∑

j=2

(Xj,p–k+1 + Yj,p–k+1) –
p∑

k=2

(X1,p–k+1 + Y1,p–k+1) – Y1,p,

where X1,p ≥ 0. Then, as required, we obtain

F(z) =
p∑

k=1

∞∑

j=1

(
Xj,p–k+1hj,p–k+1(z) + Yj,p–k+1gj,p–k+1(z)

)
.

�

Example 2.2 Let F(z) = z + 1
(2p–1) |z|2(p–1)z + 1

(2p–1) |z|2(p–1)z̄. Then F(z) is a p-harmonic func-
tion, and using Theorem 2.3, we have F ∈ HLp(0,λ). Here, we give the figures for p = 4 and
p = 10, respectively (see Fig. 1 and Fig. 2).

Theorem 2.4 Let F be given by (1.2) and F ∈ HLp(α,λ). Then, for |z| = r < 1, we have

∣∣F(z)
∣∣ ≤

( p∑

k=1

(|a1,p–k+1| + |b1,p–k+1|
)
)

r

+
1

ψ2,1(λ,α)

(
1 – |b1,p| –

p∑

k=2

(|a1,p–k+1| + |b1,p–k+1|
)
)

r2 (2.2)
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Figure 2 When F(z) is a 10-harmonic function

and

∣∣F(z)
∣∣ ≥

(
1 – |b1,p| –

p∑

k=2

(|a1,p–k+1| + |b1,p–k+1|
)
)

r

–
1

ψ2,1(λ,α)

(
1 – |b1,p| –

p∑

k=2

(|a1,p–k+1| + |b1,p–k+1|
)
)

r2, (2.3)

where

ψj,k(λ,α) = (k – 1) +
jλ(j – α)
2(1 – α)

. (2.4)

Proof Let F ∈ HLp(α,λ). Taking the absolute value of F(z), we have

∣∣F(z)
∣∣ ≤

( p∑

k=1

(|a1,p–k+1| + |b1,p–k+1|
)
)

r +

( p∑

k=1

∞∑

j=2

(|a1,p–k+1| + |b1,p–k+1|
)
)

r2

≤
( p∑

k=1

(|a1,p–k+1| + |b1,p–k+1|
)
)

r

+

(
1

ψ2,1(λ,α)

p∑

k=1

∞∑

j=2

ψj,k(λ,α)
(|a1,p–k+1| + |b1,p–k+1|

)
)

r2

≤
( p∑

k=1

(|a1,p–k+1| + |b1,p–k+1|
)
)

r

+
1

ψ2,1(λ,α)

(
1 – |b1,p| –

p∑

k=2

(|a1,p–k+1| + |b1,p–k+1|
)
)

r2

and

∣∣F(z)
∣∣ ≥

( p∑

k=1

(|a1,p–k+1| + |b1,p–k+1|
)
)

r –

( p∑

k=1

∞∑

j=2

(|a1,p–k+1| + |b1,p–k+1|
)
)

r2

≥
( p∑

k=1

(|a1,p–k+1| + |b1,p–k+1|
)
)

r
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–

(
1

ψ2,1(λ,α)

p∑

k=1

∞∑

j=2

ψj,k(λ,α)
(|a1,p–k+1| + |b1,p–k+1|

)
)

r2

≥
(

1 – |b1,p| –
p∑

k=2

(|a1,p–k+1| + |b1,p–k+1|
)
)

r

–
1

ψ2,1(λ,α)

(
1 – |b1,p| –

p∑

k=2

(|a1,p–k+1| + |b1,p–k+1|
)
)

r2. �

Corollary 2.5 Let F be given by (1.2) and F ∈ HLp(α,λ). Then

{
ω : |ω| < ρ

} ⊂ F(U),

where

ρ =
1 + ψ2,1(λ,α)

ψ2,1(λ,α)
–

1 – ψ2,1(λ,α)
ψ2,1(λ,α)

(
|b1,p| +

p∑

k=2

(|a1,p–k+1| + |b1,p–k+1|
)
)

and ψj,k(λ,α) is given by (2.4).

Theorem 2.6 The class F ∈ HLp(α,λ) is closed under combination.

Proof For i = 1, 2, . . . , let Fi ∈ HLp(α,λ), where

Fi(z) = z +
∞∑

j=2

aij,pzj +
∞∑

j=1

bij,pz̄j +
p∑

k=2

|z|2(k–1)
∞∑

j=1

(|aj,p–k+1|zj + |b̄j,p–k+1|z̄j).

Then, by (1.6) and (2.4), we get

p∑

k=1

∞∑

j=2

ψj,k(λ,α)
(|aj,p–k+1| + |bj,p–k+1|

) ≤ 1 – |b1,p| –
p∑

k=2

(|a1,p–k+1| + |b1,p–k+1|
)
. (2.5)

For
∑∞

i=1 ti = 1, 0 ≤ ti ≤ 1, the convex combination of Fi may be written as

∞∑

i=1

tiFi = z –
∞∑

j=2

( ∞∑

i=1

ti
[|aij,p|zj + |bij,p|z̄j]

)

–
p∑

k=2

|z|2(k–1)
∞∑

j=1

( ∞∑

i=1

ti
[|aij,p–k+1|zj + |bij,p–k+1|z̄j]

)
.

Then, by (2.5), we obtain

p∑

k=1

∞∑

j=2

ψj,k(λ,α)

( ∞∑

i=1

ti
[|aij,p–k+1 + |bij,p–k+1|

]
)

=
∞∑

i=1

ti

[ p∑

k=1

∞∑

j=2

ψj,k(λ,α) · (|aij,p–k+1| + |bij,p–k+1|
)
]
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≤
[

(1 – |b1,p| –
p∑

k=2

(|a1,p–k+1| + |b1,p–k+1|
)
] ∞∑

i=1

ti

= 1 – |b1,p| –
p∑

k=2

(|a1,p–k+1| + |b1,p–k+1|
)
.

Therefore, using (1.6), we obtain
∑∞

i=1 tiFi ∈ HLp(α,λ). �

Theorem 2.7 Let

F1(z) = z +
∞∑

j=2

aj,pzj +
p∑

j=2

|z|2(k–1)

( ∞∑

j=1

aj,p–k+1zj +
∞∑

j=1

b̄j,p–k+1z̄j

)

belong to HLp(α,λ2). If λ2 > λ1 ≥ 0 and

δ ≤ (1 – c0)
(
1 – |b1,p|

)
–

p∑

k=2

(2k – 1)
(|a1,p–k+1| + |b1,p–k+1|

)
, (2.6)

then N δ
λ1,α(F1) ⊂ HLp(α,λ1), where

c0 =
2(p – 1)(1 – α) + 2λ1 (2 – α)
2(p – 1)(1 – α) + 2λ2 (2 – α)

. (2.7)

Proof The δ-neighborhood of F1 is the set

N δ
λ1,α(F1) =

{
F2 :

p∑

k=1

∞∑

j=2

(
2(k – 1) +

jλ1 (j – α)
1 – α

)(|aj,p–k+1 – Aj,p–k+1|

+ |bj,p–k+1 – Bj,p–k+1|
)

+ |b1,p + B1,p| +
p∑

k=2

(2k – 1)
(|a1,p–k+1 – A1,p–k+1|

+ |b1,p–k+1 – B1,p–k+1|
) ≤ δ

}
,

where

F2(z) = z +
∞∑

j=2

Aj,pzj +
∞∑

j=1

B̄j,pz̄j +
∞∑

k=2

|z|2(k–1)

( ∞∑

j=1

Aj,p–k+1zj +
∞∑

j=1

B̄j,p–k+1z̄j

)
.

If

δ ≤ (1 – c0)
(
1 – |b1,p|

)
–

p∑

k=2

(2k – 1)
(|a1,p–k+1| + |b1,p–k+1|

)
,

then we have

∞∑

j=2

jλ1 (j – α)
1 – α

|Aj,p| +
∞∑

j=1

jλ1 (j – α)
1 – α

|Bj,p|
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+
p∑

k=2

∞∑

j=2

(
2(k – 1) +

jλ1 (j – α)
1 – α

)(|Aj,p–k+1| + |Bj,p–k+1|
)

≤
p∑

k=2

(2k – 1)
(|a1,p–k+1 – A1,p–k+1| + |b1,p–k+1 – B1,p–k+1| + |b1,p – B1,p|

)

+
p∑

k=2

∞∑

j=2

(
2(k – 1) +

jλ1 (j – α)
1 – α

)
(
(|aj,p–k+1 – A1,p–k+1| + |bj,p–k+1 – Bj,p–k+1|

)

+
p∑

k=2

(2k – 1)
(|a1,p–k+1| + |b1,p–k+1|

)
+ |b1,p|

+
p∑

k=2

∞∑

j=2

(
2(k – 1) +

jλ1 (j – α)
1 – α

)
(
(|aj,p–k+1| + |bj,p–k+1|

)

≤ δ +
p∑

k=2

(2k – 1)
(|a1,p–k+1| + |b1,p–k+1|

)
+ |b1,p|

+ c0

p∑

k=2

∞∑

j=2

(
2(k – 1) +

jλ2 (j – α)
1 – α

)(|aj,p–k+1| + |bj,p–k+1|
)

≤ δ + c0 + (1 – c0)

( p∑

k=2

(2k – 1)
(|a1,p–k+1| + |b1,p–k+1|

)
+ |b1,p|

)

≤ 1.

Hence F2 ∈ HLp(α,λ1). �

Remark 2.8
1. If α = 0,λ = 0 and α = 0,λ = 1, then Theorem 2.2, Theorem 2.4, and Theorem 2.7,

respectively, coincide with Theorem 3.1, Theorem 4.3, Theorem 4.4, Lemma 4.1, and
Theorem 5.1 in [4].

2. If λ = 0 and λ = 1, then Theorem 2.2, Theorem 2.3, and Theorem 2.7, respectively,
coincide with Theorem 3.1, Theorem 3.6, Theorem 3.7, and Theorem 4.1 in [5].

At last, we discuss the Hadamard product of HLp(α,λ).

Theorem 2.9 Let λ ≥ 0, 0 ≤ α < 1, p ∈ {1, 2, . . .}. If F , G ∈ HLp(α,λ), then F ∗ G ∈
HLp(α,λ), where

2λ–1(2 – α) ≥ (1 – α)p2 . (2.8)

Proof Let F , G ∈ HLp(α,λ), then, from (1.8), we know that, in order to prove F ∗ G ∈
HLp(α,λ), we need to show that

p∑

k=1

∞∑

j=1

(
(k – 1) +

jλ(j – α)
2(1 – α)

)(|Aj,p–k+1||aj,p–k+1| + |Bj,p–k+1||bj,p–k+1|
) ≤ 1. (2.9)
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Since F , G ∈ HLp(α,λ), using (1.8), we have

p∑

k=1

∞∑

j=1

(
(k – 1) +

jλ(j – α)
2(1 – α)

)(|aj,p–k+1| + |bj,p–k+1|
) ≤ 1 (2.10)

and

p∑

k=1

∞∑

j=1

(
(k – 1) +

jλ(j – α)
2(1 – α)

)(|Aj,p–k+1| + |Bj,p–k+1|
) ≤ 1. (2.11)

From (2.10) and (2.11), we obtain

∞∑

j=1

(
(k – 1) +

jλ(j – α)
2(1 – α)

)(|aj,p–k+1| + |bj,p–k+1|
) ≤ 1 (2.12)

and

∞∑

j=1

(
(k – 1) +

jλ(j – α)
2(1 – α)

)(|Aj,p–k+1| + |Bj,p–k+1|
) ≤ 1. (2.13)

Using the Cauchy–Schwarz inequations, from (2.12) and (2.13), we get

∞∑

j=1

(
(k – 1) +

jλ(j – α)
2(1 – α)

)√(|Aj,p–k+1| + |Bj,p–k+1|
)(|aj,p–k+1| + |bj,p–k+1|

) ≤ 1, (2.14)

because

(|Aj,p–k+1||aj,p–k+1| + |Bj,p–k+1||bj,p–k+1|
)

≤ (|Aj,p–k+1| + |Bj,p–k+1|
)(|aj,p–k+1| + |bj,p–k+1|

)
(1 ≤ k ≤ 1, j ∈N). (2.15)

So from (2.14) and (2.15), we have

∞∑

j=1

(
(k – 1) +

jλ(j – α)
2(1 – α)

)√(|Aj,p–k+1||aj,p–k+1| + |Bj,p–k+1||bj,p–k+1|
) ≤ 1,

and hence

p∑

k=1

∞∑

j=1

(
(k – 1) +

jλ(j – α)
2(1 – α)

)√(|Aj,p–k+1||aj,p–k+1| + |Bj,p–k+1||bj,p–k+1|
) ≤ p, (2.16)

which implies that

√(|Aj,p–k+1||aj,p–k+1| + |Bj,p–k+1||bj,p–k+1|
) ≤ p

((k – 1) + jλ(j–α)
2(1–α) )

. (2.17)

In addition, if

(|Aj,p–k+1||aj,p–k+1| + |Bj,p–k+1||bj,p–k+1|
) ≤ 1

p

√(|Aj,p–k+1||aj,p–k+1| + |Bj,p–k+1||bj,p–k+1|
)
,
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that is,

√(|Aj,p–k+1||aj,p–k+1| + |Bj,p–k+1||bj,p–k+1|
) ≤ 1

p
, (2.18)

then we obtain the conditions of satisfaction (2.9). Again, combining (2.17) and (2.18) with
k = 1 and j = 2, we can get

p
( 2λ(2–α)

2(1–α) )
≤ 1

p
,

which deduces condition (2.8). The proof is completed. �

Taking λ = 0 and λ = 1 in Theorem 2.9, respectively, we obtain the following corollaries.

Corollary 2.10 Let 0 ≤ α < 1, 2 – α ≥ 2(1 – α)p2(p ≥ 1). If F , G ∈ HSp(α), then F ∗ G ∈
HSp(α).

Corollary 2.11 Let 0 ≤ α < 1, 2 – α ≥ (1 – α)p2(p ≥ 1). If F , G ∈ HCp(α), then F ∗ G ∈
HCp(α).

3 Conclusions
In this paper, we mainly introduce a new subclass of p-harmonic mappings and investigate
the univalence and sense-preserving, extreme points, distortion bounds, convex combi-
nation, neighborhoods of mappings belonging to the subclass. Relevant connections of
the results presented here with the results of Qiao et al. [4] and Porwal et al. [5] are briefly
indicated. Finally, we also prove new properties of the Hadamard product of these classes.
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