(2019) 2019:132

RESEARCH

Open Access

The convergence of (p,q)-Bernstein operators for the Cauchy kernel with a pole via divided difference

Faisal Khan¹, Mohd Saif², Aiman Mukheimer³ and M. Mursaleen^{1*}

*Correspondence: mursaleenm@gmail.com ¹Department of Mathematics, Aligarh Muslim University, Aligarh, India Full list of author information is available at the end of the article

Abstract

In this paper, some qualitative approximation results for the (p,q)-Bernstein operators $B_{p,q}^n(f;x)$ are obtained for the Cauchy kernel $\frac{1}{x-\alpha}$ with a pole $\alpha \in [0, 1]$ for q > p > 1. The main focus lies in the study of behavior of operators $B_{p,q}^n(f;x)$ for the function $f_m(x) = \frac{1}{x-\rho^m q^{-m}}, x \neq p^m q^{-m}$ and $f_m(p^m q^{-m}) = a, a \in \mathbb{R}$ and the extra parameter p provides flexibility for the approximation.

MSC: 41A10; 41A25; 41A36

Keywords: (p,q)-integer; (p,q)-Bernstein operator; Convergence; Approximation of unbounded function; Cauchy kernel

1 Introduction and preliminaries

The uniform convergence of a sequence of operators to a continuous function was introduced by Bohman [9] and Korovkin [16]. Through *q*-calculus various modifications of Bernstein operators [7] have been studied so far [10, 18, 31]. The (p, q)-integers are the generalization of the *q*-integers, which has an important role in the representation theory of quantum calculus in the physics literature. Recently, the approximation by the (p, q)analog of a positive linear operator has become an active area of research. For the theory and numerical implementations of the (p, q)-analog of Bernstein operators introduced by Mursaleen et al. [22] and other (p, q)-analogs, the reader may refer to [1-5, 11-15, 19-21]and [32]. For most recent work on the (p, q)-approximation we refer to [8, 24, 26].

The (p,q)-integer, (p,q)-binomial expansion and the (p,q)-binomial coefficients are defined by

$$[m]_{p,q} := \frac{p^m - q^m}{p - q}, \quad m = 0, 1, 2, \dots, p > q \ge 1,$$

$$(a + b)_{p,q}^m := (a + b)(pa + qb)(p^2a + q^2b) \cdots (p^{m-1}a + q^{m-1}b)$$

$$= \sum_{r=0}^k p^{\frac{(m-r)(m-r-1)}{2}} q^{\frac{r(r-1)}{2}} \begin{bmatrix} m \\ r \end{bmatrix}_{p,q} a^r,$$

$$\begin{bmatrix} m \\ r \end{bmatrix}_{p,q} := \frac{[m]_{p,q}!}{[r]_{p,q}![m-r]_{p,q}!}.$$

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

It can easily be verified by induction that

$$(1+a)(p+qa)(p^{2}+q^{2}a)\cdots(p^{n-1}+q^{n-1}a)=\sum_{r=0}^{k}p^{\frac{(m-r)(m-r-1)}{2}}q^{\frac{r(r-1)}{2}}\binom{m}{r}_{p,q}a^{r}.$$

The (p, q)-analog of Euler's identity is defined by

$$\prod_{s=0}^{m-1} (p^s - q^s a) := \sum_{k=0}^m p^{\frac{(m-k)(m-k-1)}{2}} q^{\frac{k(k-1)}{2}} \begin{bmatrix} m \\ k \end{bmatrix}_{p,q} a^k$$

Let $f:[0,1] \longrightarrow \mathbb{R}$ and q > p > 1. The (p,q)-Bernstein operators [22] of f is defined as

$$B_{p,q}^{n}(f;x) := \sum_{k=0}^{n} f\left(\frac{[k]_{p,q}}{p^{k-n}[n]_{p,q}}\right) p_{n,k}(p,q;x), \quad n \in \mathbb{N},$$
(1.1)

where the polynomial $p_{n,k}(p,q;x)$ is given by

$$p_{n,k}(p,q;x) = \frac{1}{p^{\frac{n(n-1)}{2}}} \begin{bmatrix} n \\ k \end{bmatrix}_{p,q} p^{\frac{k(k-1)}{2}} x^k \prod_{s=0}^{n-k-1} (p^s - q^s x), \quad x \in [0,1], 0 < q < p < 1.$$
(1.2)

For p = 1, $B_{p,q}^n(f;x)$ turns into the *q*-Bernstein operator. We have

$$B_{p,q}^{n}(f;0) = f(0), \qquad B_{p,q}^{n}(f;1) = f(1), \quad n \in \mathbb{N}.$$
(1.3)

The following (p, q)-difference form of Bernstein operators [25] is given by

$$B_{p,q}^{n}(f;x) := \sum_{r=0}^{n} \lambda_{p,q}^{n} f\left[0, \frac{p^{n-1}[1]_{p,q}}{[n]_{p,q}}, \dots, \frac{p^{n-r}[r]_{p,q}}{[n]_{p,q}}\right] x^{r},$$
(1.4)

where $f[x_0, x_1, ..., x_n]$ indicates the *n*th order divided difference of *f* with pairwise distinct node, that is,

$$f[x_0] = f(x_0), \qquad f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0},$$
$$f[x_0, x_1, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{[x_n - x_0]}$$

and $\lambda_{p,q}^n$ is given by

$$\lambda_{p,q}^{n} = \begin{bmatrix} n \\ r \end{bmatrix}_{p,q} \frac{[r]_{p,q}!}{[n]_{p,q}^{r}} p^{\frac{(n-r)(n-r-1)}{2}} q^{\frac{r(r-1)}{2}}$$
$$= \left(1 - \frac{p^{n-1}[1]_{p,q}}{[n]_{p,q}}\right) \left(1 - \frac{p^{n-2}[2]_{p,q}}{[n]_{p,q}}\right) \cdots \left(1 - \frac{p^{n-r+1}[r-1]_{p,q}}{[n]_{p,q}}\right),$$
(1.5)

and $\lambda_{p,q}^0 = \lambda_{p,q}^1 = 1, 0 \le \lambda_{p,q}^n \le 1, r = 0, 1, ..., n.$

In this paper, some qualitative approximation results for the (p,q)-Bernstein operators $B_{p,q}^n(f;x)$ have been obtained for the Cauchy kernel $\frac{1}{x-\alpha}$ with a pole $\alpha \in [0,1]$ for q > p > 1.

The main focus lies in the study of behavior of operators $B_{p,q}^n(f;x)$ for the function $f_m(x) = \frac{1}{x-p^mq^{-m}}$, $x \neq p^mq^{-m}$ and $f_m(p^mq^{-m}) = a$, $a \in \mathbb{R}$ and the extra parameter p provides flexibility for the approximation.

The time scale $\mathbb{J}_{p,q}$ for q > p > 1 is denoted and defined as

$$\mathbb{J}_{p,q} = \{0\} \cup \{p^k q^{-k}\}_{k=0}^{\infty}.$$
(1.6)

Here, we consider the (p,q)-Bernstein operators with the Cauchy kernel $\frac{1}{x-\alpha}$, $\alpha \in [0,1]$. The previously obtained results [27–30] lead to the following conclusions.

• If $\alpha = 0$, that is, $f(x) = \frac{1}{x}$, $x \neq 0$ and f(0) = a, then, for $q \ge 2$,

$$\lim_{n \to \infty} B_{p,q}^n(f;x) = \begin{cases} f(x), & x \in \mathbb{J}_{p,q}, \\ \infty, & x \notin \mathbb{J}_{p,q}. \end{cases}$$
(1.7)

• If $\alpha \in \mathbb{J}_{p,q} \setminus [0,1]$ that is $f(x) = \frac{1}{(x-\alpha)}$ if $x \neq \alpha$ and $f(\alpha) = a$, then

$$\lim_{n\to\infty}B_{p,q}^n(f;x)=f(x),\quad x\in\mathbb{J}_{p,q}.$$

Furthermore, as $n \to \infty$, $B_{p,q}^n(f;x) \to f(x)$ uniformly on any compact subset of $(-\alpha, \alpha)$ and $B_{p,q}^n(f;x) \to \infty$ for $|x| > \alpha, x \notin \mathbb{J}_{p,q}$. Therefore, it is left to examine the case $\alpha \in \mathbb{J}_{p,q} \setminus \{0\}$ which is exactly the subject of the present paper. Let the function $f_m : \mathbb{R} \to \mathbb{R}$ be defined by

$$f_m(x) = \begin{cases} \frac{1}{(x - p^m q^{-m})^j}, & x \in \mathbb{R} \setminus \{p^m q^{-m}\}, \\ a, & x = p^m q^{-m}, \end{cases} \quad m \in \mathbb{N}_0, a \in \mathbb{R}.$$
(1.8)

2 Some auxiliary results

In this section, we prove some important lemmas.

Lemma 2.1 For the function f_m defined by (1.8), we have

(a) for $m \in \mathbb{N}$,

$$\lim_{n\to\infty}B_{p,q}^n(f_m;p^jq^{-j})=f_m(p^jq^{-j}),\quad j\in\mathbb{N}_0\setminus\{m,m+1\}.$$

Besides,

$$\begin{split} &\lim_{n\to\infty}B_{p,q}^n\big(f_m;p^mq^{-m}\big)=-\infty, \quad and \\ &\lim_{n\to\infty}B_{p,q}^n\big(f_m;p^{-(m+1)}q^{-(m+1)}\big)=f_m\big(p^{m+1}q^{-(m+1)}\big)-\frac{p^{-m}q^m[m+1]_{p,q}}{p^{-1}(q-1)[m]_{p,q}}. \end{split}$$

(b) *For* m = 0,

$$\lim_{n\to\infty} B_{p,q}^n(f_0;p^jq^{-j}) = f_0(p^jq^{-j}), \quad j\in\mathbb{N}_0$$

i.e., $B_{p,q}^n(f_0; \cdot)$ approximates f_0 on $\mathbb{J}_{p,q}$.

This describes the behavior of $B_{p,q}^n(f_m; \cdot)$ on the time scale $\mathbb{J}_{p,q}$.

Proof (a) From (1.2), we can easily see that $p_{n,n-k}(p,q;p^jq^{-j}) = 0$ for k > j, whence

$$B_{p,q}^{n}(f;p^{-j}q^{j}) = \sum_{k=0}^{\min\{k,j\}} f\left(\frac{[n-k]_{p,q}}{[n]_{p,q}}\right) p_{n,n-k}(p,q;p^{j}q^{-j}).$$
(2.1)

Besides

$$\lim_{n \to \infty} p_{n,n-k} (p,q; p^{j} q^{-j}) = \delta_{k,j} \quad \text{and} \quad \lim_{n \to \infty} \frac{[n-k]_{p,q}}{[n]_{p,q}} = p^{k} q^{-k}.$$
(2.2)

Thus, $\lim_{n\to\infty} f_m(\frac{[n-k]_{p,q}}{[n]_{p,q}})p_{n,n-k}(p,q;p^jq^{-j}) = f_m(p^kq^{-k})\delta_{j,k}$ for all $k \neq m$. Now by easy calculation, we have

$$\lim_{n \to \infty} f\left(\frac{[n-k]_{p,q}}{[n]_{p,q}}\right) p_{n,n-k}(p,q;p^{j}q^{-j}) = \begin{cases} -\infty, & j = m, \\ -\frac{p^{-m}q^{m}[m+1]_{p,q}}{p^{-1}(q-1)[m]_{p,q}}, & j = m+1, \\ 0, & \geq m+2, \end{cases}$$

and combining with (2.1) and (2.2) yields the result.

(b) It can be obtained easily from (1.3) and (2.2) as f_0 is continuous at all points $p^j q^{-j}$, $j \in \mathbb{N}$.

The next lemma is related to the coefficient of $B_{p,q}^n(f_0; \cdot)$.

Lemma 2.2 Let f_m be a function as in (1.8). If $B_{p,q}^n(f_m; x) = \sum_{k=0}^n C_{k,n}^{p,q} x^k$ and $\frac{[k]_{p,q}}{[n]_{p,q}} \neq p^m q^{-m}$ for k = 0, 1, 2, ..., n, then

$$C_{k,n}^{p,q} = -\frac{\lambda_{k,n}^{p,q} p^{-m(k+1)} q^{m(k+1)}}{(1 - \frac{p^{n-m-1}q^{m}[1]_{p,q}}{[n]_{p,q}})(1 - \frac{p^{n-m-2}q^{m}[2]_{p,q}}{[n]_{p,q}}) \cdots (1 - \frac{p^{n-m-k}q^{m}[k]_{p,q}}{[n]_{p,q}})},$$
(2.3)

where $\lambda_{k,n}^{p,q}$ are given by (1.5).

Proof Consider $f_m(z) = \frac{1}{z - p^m q^{-m}}$, which is analytic function in $\mathbb{C} \setminus \{p^m q^{-m}\}$. It is well known that [17] the *k*th order divided difference of *f* can be expressed as

$$f[x_0, x_1, \ldots, x_k] = \frac{1}{2\pi i} \oint_{\mathcal{L}} \frac{f(\zeta) d\zeta}{(\zeta - x_0)(\zeta - x_1) \cdots (\zeta - x_k)},$$

where \mathcal{L} is contour encircling x_0, \ldots, x_k and f is assumed to be analytic on and within \mathcal{L} . Hence, when the nodes 0, $\frac{[1]_{p,q}}{[n]_{p,q}}, \frac{[2]_{p,q}}{[n]_{p,q}}, \ldots, \frac{[k]_{p,q}}{[n]_{p,q}}$ are inside \mathcal{L} and the pole $\alpha = p^m q^{-m}$ is outside, one has

$$f\left[0, \frac{p^{n-1}[1]_{p,q}}{[n]_{p,q}}, \dots, \frac{p^{n-r}[r]_{p,q}}{[n]_{p,q}}\right] = \frac{1}{2\pi i} \oint_{\mathcal{L}} \frac{f_m(\zeta) \, d\zeta}{\zeta(\zeta - \frac{p^{n-1}[1]_{p,q}}{[n]_{p,q}}) \cdots (\zeta - \frac{p^{n-r}[r]_{p,q}}{[n]_{p,q}})}.$$
(2.4)

By the residue theorem

$$\begin{split} f\bigg[0, \frac{p^{n-1}[1]_{p,q}}{[n]_{p,q}}, \dots, \frac{p^{n-r}[r]_{p,q}}{[n]_{p,q}}\bigg] &= \sum_{j=0}^{k} \operatorname{Res}_{z=p^{n-j}\frac{[j]_{p,q}}{[n]_{p,q}}} \frac{f_m(z)}{\prod_{j=0}^{k} (z-p^{n-j}\frac{[j]_{p,q}}{[n]_{p,q}})} \\ &= -\operatorname{Res}_{z=p^mq^{-m}} \frac{f_m(z)}{\prod_{j=0}^{k} (z-p^{n-j}\frac{[j]_{p,q}}{[n]_{p,q}})} \\ &= -\frac{p^{-m(k+1)}q^{m(k+1)}}{\prod_{j=1}^{k} (1-p^{n-m-j}\frac{[j]_{p,q}}{[n]_{p,q}})}. \end{split}$$

Since $f_m(z) = f_m(x)$ for $z = x \in [0, 1]$, the statement follows from the divided difference representation (1.4).

Now, we find the asymptotic estimates for the coefficient $C_{k,n}^{p,q}$ in the next lemma.

Lemma 2.3 We have

$$\lim_{n \to \infty} \prod_{k=1}^{n-j} \left(1 - p^{n-m-j} q^m \frac{[k]_{p,q}}{[n]_{p,q}} \right) = \left(\frac{p^{2j-m}}{q^{j-m}}; \frac{p}{q} \right)_{\infty}$$

for j > *m*, *q* > *p* > 1.

Proof It is clear that

$$\log \prod_{k=1}^{n-j} \left(1 - p^{n-m-j} q^m \frac{[k]_{p,q}}{[n]_{p,q}} \right) = \sum_{k=j}^{n-1} \log \left(1 - p^{n-m-j} q^m \frac{[n-k]_{p,q}}{[n]_{p,q}} \right) = \sum_{k=j}^{\infty} a_{k,n}^{p,q},$$

where

$$a_{k,n}^{p,q} = \begin{cases} \log(1 - p^{n-m-j}q^m \frac{[n-k]_{p,q}}{[n]_{p,q}}), & k < n, \\ 0, & k \ge n. \end{cases}$$

Since

$$egin{aligned} &a_{k,n}^{p,q} ig| \leq ig| \logigg(1 - p^{n-m-j}q^m rac{[n-k]_{p,q}}{[n]_{p,q}}igg) igg| \ &\leq rac{q}{q-p} rac{p^{n-m-k}q^m [n-k]_{p,q}}{[n]_{p,q}} \leq rac{q}{q-p} p^{n-k-m}q^m, \end{aligned}$$

which gives $\sum_{k=j}^{\infty} |a_{k,n}^{p,q}| < \infty$, and by the Lebesgue dominated convergence theorem, we have

$$\begin{split} \lim_{n \to \infty} \sum_{k=j}^{n-1} \log \left(1 - p^{n-m-j} q^m \frac{[n-k]_{p,q}}{[n]_{p,q}} \right) &= \sum_{k=j}^{\infty} \left(\lim_{n \to \infty} \log \left(1 - p^{n-m-j} q^m \frac{[n-k]_{p,q}}{[n]_{p,q}} \right) \right) \\ &= \sum_{k=j}^{\infty} \lim_{n \to \infty} \left(1 - p^{n-k-m} \frac{q^m}{q^k} \right), \end{split}$$

as a result

$$\lim_{n \to \infty} \log \prod_{k=1}^{n-j} \left(1 - p^{n-m-j} q^m \frac{[n-k]_{p,q}}{[n]_{p,q}} \right) = \log \prod_{k=j}^{\infty} \left(1 - p^{n-k-m} \frac{q^m}{p^k} \right),$$

which completes the proof.

The following lemma gives an upper bound for n - m - 1.

Lemma 2.4 *If* $m \in \mathbb{N}$, k = 0, 1, 2, ..., n - m - 1, *then*

$$\left|C_{k,n}^{p,q}\right| \leq \mathcal{C}_{m,p,q}p^{-mn}q^{mn},$$

where C in RHS is a positive constant, whose value need not to be addressed.

Proof For n > m + 1 and from (2.3), we have

$$\begin{split} \left|C_{k,n}^{p,q}\right| &\leq \frac{p^{-m(k+1)}q^{m(k+1)}}{(1 - \frac{p^{n-m-1}q^{m}[1]_{p,q}}{[n]_{p,q}})(1 - \frac{p^{n-m-2}q^{m}[2]_{p,q}}{[n]_{p,q}})\cdots(1 - \frac{p^{n-m-k}q^{m}[k]_{p,q}}{[n]_{p,q}})}{(1 - \frac{p^{2(n-m-1)}q^{m}(n-m)}{q^{n-1}})(1 - \frac{p^{2(n-m-2)}q^{m}[2]_{p,q}}{[n]_{p,q}})\cdots(1 - \frac{p^{n-m-k}q^{m}[k]_{p,q}}{[n]_{p,q}})},\\ \left|C_{k,n}^{p,q}\right| &\leq \frac{p^{-mn}q^{mn}}{p^{2m}q^{2m}(\frac{p}{q};\frac{p}{q})_{\infty}}. \end{split}$$

Further, we discuss the nature of $C_{n-m+1,n}, \ldots, C_{n,n}$ as follows.

Lemma 2.5 For $m \in \mathbb{N}$, q > p > 1,

$$\left|C_{n-m,n}^{p,q}\right|\sim \mathcal{C}_{p,q,m}p^{-(m+1)n}q^{(m+1)n},\quad n
ightarrow\infty.$$

Proof Using (2.3), we obtain the following

$$\left|C_{n-m}^{p,q}\right| = \lambda_{n-m,n}^{p,q} \frac{p^{-m(n-m+1)}q^{m(n-m+1)}}{(1 - \frac{p^{n-m-1}q^{m}[1]_{p,q}}{[n]_{p,q}})(1 - \frac{p^{n-m-2}q^{m}[2]_{p,q}}{[n]_{p,q}})\cdots(1 - \frac{p^{n-m-(n-m)}q^{m}[n-m]_{p,q}}{[n]_{p,q}})}.$$

From Lemma 2.3, we have

$$\begin{split} |C_{n-m}^{p,q}| &\sim \frac{(\frac{p^{m+1}}{q^{m+1}}; \frac{p}{q})_{\infty} q^{m(n-m+1)} p^{-m(n-m+1)} p^{m}(p^{n}-q^{n})}{(\frac{p}{q}; \frac{p}{q})_{\infty} p^{n}(p^{m}-q^{m})} \\ &\sim \frac{(\frac{p^{m+1}}{q^{m+1}}; \frac{p}{q})_{\infty} q^{mn} p^{-mn} p^{m}(p^{n}-q^{n})}{(\frac{p}{q}; \frac{p}{q})_{\infty} q^{m(m-1)} p^{m(m-1)}(p^{m}-q^{m})}, \end{split}$$
(2.5)
$$C_{n-m,n}^{p,q} = C_{m}^{p,q} p^{-n(m+1)} q^{n(m+1)}.$$

The nature of the remaining coefficients $C_{n-m+1,n}, \ldots, C_{n,n}$ is given as follows.

Lemma 2.6 *For j* = 1, 2, ..., *m*, *we have*

$$\lim_{n \to \infty} \frac{C_{n-m+j,n}^{p,q}}{C_{n-m,n}^{p,q}} = (-1)^j \begin{bmatrix} m \\ j \end{bmatrix}_{p,q} p^{\frac{(n-j)(n-j-1)}{2}} q^{\frac{j(j-1)}{2}}.$$

Proof Using (2.3) and (1.5), we get

$$C_{n-m+j,n}^{p,q} = C_{n-m,n}^{p,q} \frac{\left(1 - \frac{p^{m}[n-m]p,q}{[n]p,q}\right) \cdots \left(1 - p^{m-j+1}\frac{[n-m+j-1]p,q}{[n]p,q}\right)}{(1 - p^{-1}q^{m}\frac{[n-m+1]}{[n]p,q}) \cdots \left(1 - p^{-j}q^{m}\frac{[n-m+j]p,q}{[n]p,q}\right)},$$

$$\lim_{n \to \infty} \frac{C_{n-m+j,n}^{p,q}}{C_{n-m,n}^{p,q}} = \frac{\left(1 - \frac{p^{m}}{q^{m}}\right) \cdots \left(1 - \frac{p^{m-j+1}}{q^{m-j+1}}\right)}{(1 - \frac{q}{p}) \cdots \left(1 - \frac{q^{j}}{p^{j}}\right)},$$

$$\lim_{n \to \infty} \frac{C_{n-m+j,n}^{p,q}}{C_{n-m,n}^{p,q}} = (-1)^{j} \begin{bmatrix} m\\ j \end{bmatrix}_{p,q} p^{\frac{(n-j)(n-j-1)}{2}} q^{\frac{j(j-1)}{2}}.$$

Corollary 2.7 *The following estimate holds:*

$$\left|C_{k,n}^{p,q}\right| \le C_{p,q,m} p^{-(m+1)n} q^{(m+1)n}, \quad k = 0, 1, 2, \dots, n,$$
(2.6)

and $C_{p,q,m}$ is independent of both k and n.

Corollary 2.8 *We have the following:*

$$\lim_{n \to \infty} \frac{C_{n-m,n} + \dots + C_{n-m+j,n} x^j + \dots + C_{n,n} x^n}{C_{n-m,n}} = (x; p, q)_m.$$
(2.7)

Proof The statement follows from Rothe's identity [6],

$$(x;p,q)_m = \sum_{j=0}^m (-1)^j \begin{bmatrix} m \\ j \end{bmatrix}_{p,q} p^{\frac{(n-j)(n-j-1)}{2}} q^{\frac{j(j-1)}{2}}.$$

3 Main results

• First we consider the case when pole $\alpha \in \mathbb{J}_{p,q} \setminus \{0, 1\}$.

Now, we obtain the results that concern with the uniform approximation of $f_m(x), m \in \mathbb{N}$ by its (p,q)-Bernstein operators. It may be noted that, while the case when $\alpha \in [0,1] \setminus \mathbb{J}_{p,q}$ can easily be examined by using the result and method of [27], the condition $\alpha \in \mathbb{J}_{p,q}$ requires a different approach.

Theorem 3.1 If $m \in \mathbb{N}$, then $B_{p,q}^n(f_m; x) \to f_m(x)$ as $n \to \infty$ uniformly on any compact subset of $(-p^{(m+1)}q^{(m+1)}, p^{(m+1)}q^{(m+1)})$.

Proof We consider the complex (p, q)-Bernstein operators given by

$$B_{p,q}^{n}(f;x) = \sum_{k=0}^{n} f\left(\frac{[k]_{p,q}}{p^{k-n}[n]_{p,q}}\right) p_{n,k}(p,q;x), \quad n \in \mathbb{N}, z \in \mathbb{C},$$
(3.1)

and the function $f_m(z) = \frac{1}{(z-p^m q^{-m})}$, $z \in \mathbb{C}$. Let *n* be large enough to satisfy the condition $\frac{[k]_{p,q}}{[n]_{p,q}} \neq p^m q^{-m}$. Then

$$B_{p,q}^{n}(f_{m};z) = \sum_{k=0}^{n} C_{k,n}^{p,q} z^{k},$$

where $C_{k,n}^{p,q}$ is given by (2.3). Let $\rho \in (0, p^{(m+1)}q^{-(m+1)})$. Therefore for $|z| \le \rho$ the following estimate is valid by Corollary 2.7:

$$\left|B_{p,q}^{n}(f_{m};z)\right| \leq \sum_{k=0}^{n} \left|C_{k,n}^{p,q}\rho^{k}\right| \leq \mathcal{C}_{p,q,m} \sum_{k=0}^{n} \left(p^{-(m+1)}q^{(m+1)}\rho\right)^{k} \leq \mathcal{C}_{p,q,m} \frac{1}{(1-p^{-(m+1)}q^{(m+1)}\rho)^{k}}$$

Hence it follows that the operators $\{B_{p,q}^n(f_m, z)\}$ are uniformly bounded in the disk $\{z : |z| \le \rho\}$ and convergent on the sequence $\{p^j q^{-j}\}_{j=m+2}^{\infty}$ having an accumulation point at 0 to the function $f_m(z)$ analytic in this disc. Using Vitali's convergence theorem, we have $B_{p,q}^n(f_m;z) \to f_m(z)$ $(n \to \infty)$ uniformly on any compact set in $\{z : |z| \le \rho\}$ as $\rho \in (0, p^{(m+1)}q^{-(m+1)})$ was arbitrary. This completes the proof.

Next we demonstrate that, outside of the interval, operators diverge everywhere except a finite number of points.

Theorem 3.2 If $m \in \mathbb{N}$, then $\lim_{n\to\infty} B_{p,q}^n(f_m; x) = \infty$ for $|x| > p^{(m+1)}q^{-(m+1)}$, $x \neq p^{(m+1)} \times q^{-(m+1)}$, $x \neq p^{(m-1)}q^{-(m-1)}$, $x \neq p^{(m-2)}q^{-(m-2)}$,..., 1.

Proof For exceptional points $p^{(m-1)}q^{-(m-1)}$, $p^{(m-2)}q^{-(m-2)}$,..., 1, the situation has been analyzed in Lemma 2.1(a). We take *x* satisfying $|x| > p^{(m-1)}q^{-(m-1)}$ different from these values. Let *n* > *m* be sufficiently large such that (2.3) holds. By Lemma 2.4, we obtain

$$\left|\sum_{k=0}^{\infty} C_{k,n}^{p,q} x^{k}\right| \leq C_{m,p,q} \sum_{k=0}^{n-m-1} p^{-mk} q^{mk} x^{k} = C_{m,p,q} \frac{(p^{-m}q^{m}x)^{n-m} - 1}{p^{-m}q^{m}x - 1}$$
$$= o((p^{-(m+1)}q^{(m+1)}x)^{n}), \quad n \to \infty.$$

Hence

$$B_{p,q}^{n}(f_{m};x) = \sum_{k=n-m}^{n} C_{k,n}^{p,q} x^{k} + o\left(\left(p^{-(m+1)}q^{(m+1)}x\right)^{n}\right)$$
$$= C_{n-m}^{p,q} x^{n-m} g_{n}(x) + o\left(\left(p^{-(m+1)}q^{(m+1)}x\right)^{n}\right), \quad n \to \infty.$$

By Lemma 2.5, $|C_{n-m}^{p,q}| \sim C_{p,q,m}(x)(p^{-(m+1)}q^{(m+1)}x)^n$ as $n \to \infty$ whenever $|x| > p^{(m+1)}q^{-(m+1)}$, since $\lim_{n\to\infty} g_n(x) = (x; p, q)_m \neq 0$, when $x \notin \{p^{(m+1)}q^{-(m+1)}, \dots, 1\}$.

Lemma 3.1 Let f_0 be given by putting m = 0 in (1.8). If $B_{p,q}^n(f_0; x) = \sum_{k=0}^n C_{k,n}^{p,q} x^k$ then

$$C_{k,n}^{p,q} = \frac{-1}{(1 - p^{n-k} \frac{[k]_{p,q}}{[n]_{p,q}})}, \quad k = 0, 1, 2, \dots, n-1, \qquad C_{n,n}^{p,q} = a + \sum_{k=0}^{n-1} \frac{1}{(1 - p^{n-k} \frac{[k]_{p,q}}{[n]_{p,q}})}.$$

Proof For k = 0, 1, ..., n - 1, on a specific choice of the contour \mathcal{L} , such that the nodes $0, \frac{[1]_{p,q}}{[n]_{p,q}}, ..., \frac{[k]_{p,q}}{[n]_{p,q}}$ are inside \mathcal{L} while the pole $\alpha = 1$ is outside, formula (2.4) implies

$$C_{k,n}^{p,q} = \frac{-\lambda_{k,n}^{p,q}}{\prod_{j=0}^{k} (1 - p^{n-j} \frac{[j]_{p,q}}{[n]})} = \frac{-1}{(1 - p^{n-k} \frac{[k]_{p,q}}{[n]_{p,q}})},$$

since by (1.3), $B_{p,q}^n(f_0; 1) = f_0(1) = a$ and the statement is proved.

Corollary 3.2 For k = 0, 1, 2, ..., n - 1 with q > p > 1 we have the following result:

$$\left|C_{k,n}^{p,q}\right| \leq \frac{q}{q-p}.$$

• Now, we consider the case when pole $\alpha = 1$.

Here the point of singularity x = 1 is one of the nodes $\frac{[k]_{p,q}}{[n]_{p,q}}$. Consider the function f_0

$$f_0(x) = \begin{cases} \frac{1}{x-1}, & x \in \mathbb{R} \setminus \{1\}, \\ a, & x = 1. \end{cases}$$
(3.2)

Theorem 3.3 If f_0 is given by (3.2), then the following holds:

(1) For all $x \in (-1, 1]$,

$$\lim_{n\to\infty} B_{p,q}^n(f_0;x) = f_0(x)$$

and the convergence is uniform on any compact subset of (-1, 1).

(2) *For all* $x \in \mathbb{R} \setminus (-1, 1]$,

$$\lim_{n\to\infty}B_{p,q}^n(f_0;x)=\infty.$$

Proof (1) Since $B_{p,q}^n(f_0; 1) = f_0(1)$, we need to prove only the uniform convergence of the compact subset of (-1, 1). For any $\rho \in (0, 1)$ and $|z| \le \rho$. From Corollary 3.2, we have

$$\left|\sum_{k=0}^{n-1} C_{k,n}^{p,q} z^k\right| \leq \frac{\mathcal{C}_{p,q}}{1-\rho}.$$

Apart from that,

$$\left|C_{n,n}^{p,q}z^{k}\right| \leq |a| + \sum_{k=0}^{n-1} \frac{1}{1 - p^{n-k} \frac{[k]_{p,q}}{[n]_{p,q}}} \leq |a| + n\left|C_{k,n}^{p,q}\right| \leq |a| + \frac{nq}{q-p},$$

whence

$$\left|C_{n,n}^{p,q}z^{n}\right|\leq |a|\rho^{n}+\rho^{n}\frac{nq}{q-p}\leq \mathcal{C}_{p,q,\rho}.$$

Therefore, we conclude that the operators $B_{p,q}^n(f;z)$ are uniformly bounded in any disk $\{z : |z| \le \rho\}$ where $\rho \in (0,1)$. From Lemma 2.1(b) and Vitali's convergence theorem we arrive at our result.

(2) Given that *x* satisfies |x| > 1, by Able's inequality, we have

$$\left|\sum_{k=0}^{n-1} C_{k,n}^{p,q} x^k\right| \leq \frac{|x|^n - 1}{|x| - 1} \left(\left| C_{0,n}^{p,q} \right| + 2 \left| C_{n-1,n}^{p,q} \right| \right) \leq \frac{|x|^n}{|x| - 1} \left(1 + \frac{2p}{p-q} \right) = \mathcal{C}_{p,q,x} |x|^n.$$

Meanwhile,

$$\left|C_{n,n}^{p,q}x^{n}\right| \geq \left(\sum_{k=0}^{n-1} \frac{1}{1-p^{n-k}\frac{[k]_{p,q}}{[n]_{p,q}}}\right)|x|^{n}-|a|\cdot|x|^{n}\geq (n-|a|)|x|^{n}.$$

Thus, $|B_{p,q}^n(f_0;x)| \ge n|x|^n - (\mathcal{C}_{p,q,x} + |a|)|x|^n \to \infty$ as $n \to \infty$. At x = -1, we have

$$B_{p,q}^{n}(f_{0};-1) = \sum_{k=0}^{n-1} C_{k,n}^{p,q}(-1)^{k} + \left(a + \sum_{k=0}^{n-1} \frac{1}{1 - p^{n-k} \frac{[k]_{p,q}}{[n]_{p,q}}}\right) (-1)^{n},$$

and again applying Able's inequality,

$$\left|\sum_{k=0}^{p-1} C_{k,n,}^{p,q} (-1)^k\right| \le |C_{0,n}| + 2|C_{n-1,n}| \le 1 + \frac{2p}{p-q}.$$

On the other hand

$$\left| \left(a + \sum_{k=0}^{n-1} \frac{1}{1 - p^{n-k} \frac{[k]_{p,q}}{[n]_{p,q}}} \right) (-1)^n \right| \ge n - |a|,$$

which implies that

$$\left|B_{p,q}^{n}(f_{0};-1)\right| \geq n - |a| - \left(1 + \frac{2p}{p-q}\right) \to \infty, \quad n \to \infty.$$

Remark For justification of the statement that the extra parameter p provides flexibility for approximation, one can see Remark 1 of [23].

Moreover, since for q > p = 1 we recapture the *q*-Bernstein operators studied in [30], it is clear that the interval of uniform convergence for $B_{p,q}^n$ in Theorem 3.1, i.e. $(-p^{m+1}q^{m+1}, p^{m+1}q^{m+1})$, is larger than the interval of uniform convergence $(-q^{m+1}, q^{m+1})$, obtained by Theorem 2.1 in [30].

Funding

The third author would like to thank "Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM)" group number RG-DES-2017-01-17.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All the authors contributed equally and significantly in writing this paper. All of them read and approved the final manuscript.

Author details

¹Department of Mathematics, Aligarh Muslim University, Aligarh, India. ²Department of Applied Mathematics, Aligarh Muslim University, Aligarh, India. ³Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 February 2019 Accepted: 3 May 2019 Published online: 14 May 2019

References

- 1. Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of (*p*, *q*)-Baskakov operators. J. Inequal. Appl. **2016**, 98 (2016)
- Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate (p, q)-Bernstein–Kantorovich operators. Iran. J. Sci. Technol., Trans. A, Sci. 42(2), 655–662 (2018)
- Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of (p, q)-Bernstein operators. Iran. J. Sci. Technol., Trans. Sci. 42, 1459–1464 (2018)
- Acar, T., Aral, A., Mursaleen, M.: Approximation by Baskakov–Durrmeyer operators based on (p, q)-integers. Math. Slovaca 68(4), 897–906 (2018)
- Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by (p,q)-Baskakov–Durrmeyer–Stancu operators. Complex Anal. Oper. Theory 12(6), 1453–1468 (2018)
- 6. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)
- Bernstein, S.N.: Démonstration du théoréme de Weierstrass fondeé sue la calcul des probabilités. Commun. Soc. Math. Charkaw 213, 1–2 (1992)
- Bin Jebreen, H., Mursaleen, M., Naaz, A.: Approximation by quaternion (p, q)-Bernstein polynomials and Voronovskaja type result on compact disk. Adv. Differ. Equ. 2018, 448 (2018)
- 9. Bohman, H.: On approximation of continuous and of analytic functions. Ark. Mat. 2(1), 43-56 (1995)
- 10. Gal, S.G.: Approximation by complex q-Lorentz polynomial, q > 1. Mathematica 54(77), 53–63 (2012)
- 11. Kadak, U.: On weighted statistical convergence based on (*p*, *q*)-integers and related approximation theorems for functions of two variables. J. Math. Anal. Appl. **443**(2), 752–764 (2016)
- 12. Kadak, U.: Weighted statistical convergence based on generalized difference operator involving (*p*, *q*)-Gamma function and its applications to approximation theorems. J. Math. Anal. Appl. **448**(2), 1633–1650 (2017)
- Kadak, U., Mishra, V.N., Pandey, S.: Chlodowsky type generalization of (p, q)-Szász operators involving Brenke type polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112(4), 1443–1462 (2018)
- Kadak, U., Mohiuddine, S.A.: Generalized statistically almost convergence based on the difference operator which includes the (p,q)-gamma function and related approximation theorems. Results Math. 73, Article ID 9 (2018)
- Khan, A., Sharma, V.: Statistical approximation by (p, q)-analogue of Bernstein–Stancu operators. Azerb. J. Math. 8(2), 100–121 (2018)
- Korovkin, P.P.: Convergence of linear positive operator in the space of continuous function. Dokl. Akad. Nauk SSSR 90, 961–964 (1953)
- 17. Lorentz, G.G.: Bernstein Polynomials, 2nd edn. Chelsea, New York (1986)
- Lupaş, A.: A q-analogue of the Bernstein operators. In: Seminar on Numerical and Statistical Calculus, pp. 85–92 (1987)
- 19. Mishra, V.N., Mursaleen, M., Pandey, S., Alotaibi, A.: Approximation properties of Chlodowsky variant of (*p*, *q*)-Bernstein–Stancu–Schurer operators. J. Inequal. Appl. **2017**, 176 (2017)
- Mishra, V.N., Pandey, S.: On (p, q)-Baskakov–Durrmeyer–Stancu operators. Adv. Appl. Clifford Algebras 27(2), 1633–1646 (2017)
- Mohiuddine, S.A., Acar, T., Alotaibi, A.: Durrmeyer type (p, q)-Baskakov operators preserving linear functions. J. Math. Inequal. 12, 961–973 (2018)
- Mursaleen, M., Ansari, K.J., Khan, A.: On (p, q)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015) [Erratum: Appl. Math. Comput., 278 (2016) 70–71]
- Mursaleen, M., Khan, F., Khan, A.: Approximation by (p,q)-Lorentz polynomial on a compact disk. Complex Anal. Oper. Theory 10(8), 1725–1740 (2016)
- 24. Mursaleen, M., Naaz, A., Khan, A.: Improved approximation and error estimations by King type
- (p,q)-Szasz–Mirakjan–Kantorovich operators. Appl. Math. Comput. 348, 175–185 (2019)
 Mursaleen, M., Nasiruzzaman, Md., Khan, F., Khan, A.: (p,q)-analogue of divided difference and Bernstein operators. J. Nonlinear Funct. Anal. 2017, Article ID 25 (2017)
- 26. Mursaleen, M., Rahman, S., Alkhaldi, A.H.: Convergence of iterates of *q*-Bernstein and (*p*, *q*)-Bernstein operators and the Kelisky–Rivlin type theorem. Filomat **32**(12), 4351–4364 (2018)
- 27. Ostrovska, S.: q-Bernstein polynomial and their iterates. J. Approx. Theory 123, 232–255 (2003)
- 28. Ostrovska, S.: q-Bernstein polynomial of the Cauchy kernel. Appl. Math. Comput. 198(1), 261–270 (2008)
- Ostrovska, S., Özban, A.Y.: On the *q*-Bernstein polynomial of unbounded function with *q* > 1. Abstr. Appl. Anal. 2013, Article ID 349156 (2013)
- 30. Ostrovska, S., Özban, A.Y.: The *q*-Bernstein polynomials of the Cauchy kernel with a pole on [0, 1] in the case *q* > 1. Appl. Math. Comput. **220**, 735–747 (2013)
- 31. Phillips, G.M.: Bernstein polynomials based on the *q*-integers. Ann. Numer. Math. 4, 511–518 (1997)
- Srivastava, H.M., Ozer, F., Mohiuddine, S.A.: Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ. Symmetry 11(3), Article ID 316 (2019)