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Abstract
Rank-one perturbation of arbitrary matrices has many practical applications. In this
paper, based on the relationship between the singular values and the eigenvalues, we
discuss singular value variations and present two-side bounds of the singular values
for rank-one perturbation of arbitrary matrices. Numerical results confirm that the
proposed perturbation bounds are sharper than some existing bounds.
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1 Introduction
Let Cm×n (Cn) be the set of m×n complex matrices (n dimension vectors). The norm ‖ · ‖2

denotes the two norm and the notation H(A) = 1
2 (A + A∗) stands for the Hermitian parts

of a square matrix A. Let A ∈ Cn×n have the singular value decomposition (SVD)

A = UΣV∗,

where U ∈ Cn×n and V ∈ Cn×n are unitary, Σ = diag(σ1(A), . . . ,σn(A)), σi(A), i = 1, 2, . . . , n,
are the singular values of A with

σmin(A) = σn(A) ≤ σn–1(A) ≤ · · · ≤ σ1(A) = σmax(A), (1)

and the superscript ∗ denotes the conjugate transpose.
Singular value variations for rank-one perturbation of arbitrary matrices have many

applications, e.g., principal component analysis under a spiked covariance model, and
pseudo arc length continuation methods for the solution of systems of nonlinear equa-
tions, see [1–4]. Some classical perturbation bounds for singular values can be found in
[5], and low rank update of singular values has also been investigated in [6].

In the paper, motivated by the ideas in [7], we consider rank-one perturbation bounds for
singular values of arbitrary matrices. Before providing the new bounds, we first introduce
the associated results about eigenvalues of Hermitian matrices in [7].

Let A ∈ Cn×n be Hermitian and have spectral decomposition

A = VΛV ∗,
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where V = (v1, . . . , vn) ∈ Cn×n is unitary, Λ = diag(λ1(A), . . . ,λn(A)) with the order of its
eigenvalues

λmin(A) = λn(A) ≤ · · · ≤ λ1(A) = λmax(A). (2)

Define the projection of a vector x ∈ Cn onto the eigenvectors of a Hermitian matrix A:

xi:j ≡ (vi, . . . , vj)∗x, i ≤ j.

Let

l1(x) =
1
2

(
‖x1:2‖2

2 – gap2 +
√(

gap2 + ‖x1:2‖2
2
)2 – 4gap2|x2|2

)
,

li(x) =
1
2

(
gapi + ‖x1:i‖2

2 –
√(

gapi + ‖x1:i‖2
2
)2 – 4gapi|xi|2

)
, i = 2, 3, . . . , n,

and for i = 1, 2, . . . , n – 1,

ui(x) =
1
2

(
‖xi:n‖2

2 – gapi+1 +
√(

gapi+1 + ‖xi:n‖2
2
)2 – 4gapi+1‖xi+1:n‖2

2

)
,

un(x) =
1
2

(
gapn + ‖xn–1:n‖2

2 –
√(

gapn + ‖xn–1:n‖2
2
)2 – 4gapn|xn|2

)
,

where gapi is the distance of an eigenvalue λi(A) to its right neighbor, i.e.,

gapi = λi–1(A) – λi(A), i = 2, 3, . . . , n.

Note that 0 ≤ l1(x) ≤ ‖x1:2‖2
2, 0 ≤ li(x) ≤ ‖xi:n‖2

2, i = 2, . . . , n, 0 ≤ ui(x) ≤ ‖xi:n‖2
2, i =

1, 2, . . . , n – 1, and 0 ≤ un(x) ≤ gapn.
With the above notations, the results in [7] are given as follows.

Theorem 1.1 ([7]) Let A ∈ Cn×n be Hermitian and x ∈ Cn. Then

λi(A) + li(x) ≤ λi
(
A + xx∗) ≤ λi(A) + ui(x), i = 1, n,

and

λi(A) + li(x) ≤ λi
(
A + xx∗) ≤ min

{
λi(A) + ui(x),λi–1(A)

}
, 2 ≤ i ≤ n – 1.

Notice that the above results improve Weyl’s theorem, i.e.,

λi(A) ≤ λi
(
A + xx∗) ≤ λi–1(A), i = 2, . . . , n,

λ1(A) ≤ λ1
(
A + xx∗) ≤ λ1(A) + ‖x‖2

2.

In this paper we investigate a singular value case and obtain some singular value varia-
tions for rank-one perturbation of arbitrary matrices. The main proof technique is based
on Theorem 1.1 and the following relationship:

σ 2
k
(
A + yx∗) = λk

(
A∗A + ‖y‖2

2xx∗ + A∗yx∗ + xy∗A
)
, (3)
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where A ∈ Cn×n and x, y ∈ Cn. In addition, some existing results on singular values are also
used to deduce the new bounds.

2 Singular value variations
In this section we present bounds of singular values for rank-one perturbation of arbitrary
matrices. We always assume that the singular values and eigenvalues have the decreasing
orders given by (1) and (2), respectively.

We first give some notations. Setting δk+1 = σ 2
k (A) – σ 2

k+1(A). Let

ζ1 =
1
2

(
‖y‖2

2‖x1:2‖2
2 – δ2 +

√(
δ2 + ‖y‖2

2‖x1:2‖2
2
)2 – 4δ2‖y‖2

2|x2|2
)

, (4)

ζk =
1
2

(
δk + ‖y‖2

2‖x1:k‖2
2 –

√(
δk + ‖y‖2

2‖x1:k‖2
2
)2 – 4δk‖y‖2

2|xk|2
)

(5)

with 2 ≤ k ≤ n,

φk =
1
2

(
‖y‖2

2‖xk:n‖2
2 – δk+1 +

√(
δk+1 + ‖y‖2

2‖xk:n‖2
2
)2 – 4δk+1‖y‖2

2‖xk+1:n‖2
2

)
(6)

with 1 ≤ k ≤ n – 1,

φn =
1
2

(
δn + ‖y‖2

2‖xn–1:n‖2
2 –

√(
δn + ‖y‖2

2‖xn–1:n‖2
2
)2 – 4δn‖y‖2

2|xn|2
)

. (7)

Note that the expressions of ζ1, ζk , φk , φn are similar to the ones of l1(x), lk(x), uk(x), un(x),
respectively. For simplicity, in the rest of this paper, we also use the notations

S1 = A∗A + ‖y‖2
2xx∗, S2 = A∗yx∗ + xy∗A. (8)

In order to deduce our results, we give the following lemmas.

Lemma 2.1 ([5]) Let A, B ∈ Cn×n be given. Then

σi+j–1(A + B) ≤ σi(A) + σj(B)

for 1 ≤ i, j ≤ n and i + j ≤ n + 1.

Lemma 2.2 Let A ∈ Cn×n and x, y ∈ Cn. Then

σi
(
yx∗) = 0, i = 2, . . . , n.

Proof The result follows from the fact that rank(yx∗) ≤ 1. �

Lemma 2.3 Let A ∈ Cn×n and x, y ∈ Cn. Then

λ1
(
A∗yx∗ + xy∗A

) ≤ 2
∥∥A∗yx∗∥∥

2,

λn
(
A∗yx∗ + xy∗A

) ≥ –2
∥∥A∗yx∗∥∥

2.
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Proof It is easy to obtain

λ1
(
A∗yx∗ + xy∗A

) ≤ σ1
(
A∗yx∗ + xy∗A

) ≤ 2
∥∥A∗yx∗∥∥

2.

The lower bound for λn(∗) can be obtained by an analogical way. �

Lemma 2.4 ([5]) Let A, B ∈ Cn×n be Hermitian. Then, for i = 1, 2, . . . , n, it holds that

λk(A) + λn(B) ≤ λk(A + B) ≤ λk(A) + λ1(B). (9)

From Lemmas 2.1–2.4 and Theorem 1.1, we can obtain the following bounds of singular
values.

Theorem 2.1 Let A ∈ Cn×n and x, y ∈ Cn be given. Then, for i = 1, 2, . . . , n, it holds that

max
{
σk+1(A), Lb1, Lb2

} ≤ σk
(
A + yx∗) ≤ min

{
σk–1(A), Ub1, Ub2

}
, (10)

where the two lower bounds Lb1 and Lb2 are defined by

Lb1 = σk(A) – ‖x‖2‖y‖2, Lb2 =
√

max
{

0,σ 2
k (A) + ζk – 2

∥∥A∗yx∗∥∥
2

}
(11)

and the two upper bounds Ub1 and Ub2 are defined by

Ub1 = σk(A) + ‖x‖2‖y‖2, Ub2 =
√

σ 2
k (A) + φk + 2

∥∥A∗yx∗∥∥
2. (12)

Here we define σ0(A) = +∞, σn+1(A) = 0; ζk , φk are given by (4)–(5) and (6)–(7), respectively.

Proof We will complete the proof according to the following three different strategies.
Strategy 1: We use Theorem 1.1 and Lemma 2.3 to deduce the new bounds of σk(A+yx∗).

In fact, from (3) and (9), it follows that

λk(S1) + λn(S2) ≤ σ 2
k
(
A + yx∗) ≤ λk(S1) + λ1(S2), (13)

where S1 and S2 are defined by (8). Applying Theorem 1.1 to S1 gives

σ 2
k (A) + ζk ≤ λk(S1) ≤ σ 2

k (A) + φk ,

which, together with (13) and Lemma 2.3, yields

σ 2
k (A) + ζk – 2

∥∥A∗yx∗∥∥
2 ≤ σ 2

k
(
A + yx∗) ≤ σ 2

k (A) + φk + 2
∥∥A∗yx∗∥∥

2. (14)

Strategy 2: We use Lemmas 2.1–2.2 to obtain the new bounds of σk(A + yx∗). In fact, by
Lemma 2.2, we have

σk1

(
yx∗) = 0, k1 = 2, 3, . . . , n.
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It follows from Lemma 2.1 that

σk+1(A) ≤ σk
(
A + yx∗) + σ2

(
–yx∗) = σk

(
A + yx∗), 1 ≤ k ≤ n – 1, (15)

and

σk
(
A + yx∗) ≤ min

2≤k1≤k

[
σk+1–k1 (A) + σk1

(
yx∗)] = σk–1(A), 2 ≤ k ≤ n. (16)

Note that inequalities (15) and (16) also hold for the cases k = n and k = 1, respectively,
based on the definitions σn+1(A) = 0 and σ0(A) = +∞. Combining (15) and (16) gives

σk+1(A) ≤ σk
(
A + yx∗) ≤ σk–1(A). (17)

Strategy 3: We use Lemma 2.1 and the definition of the two norm to give the new bounds
of σk(A + yx∗). Actually, from Lemma 2.1 and the fact that

σ1
(
yx∗) = σ1

(
–yx∗) = ‖x‖2‖y‖2,

we have

σk(A) ≤ σk
(
A + yx∗) + σ1

(
–yx∗) = σk

(
A + yx∗) + ‖x‖2‖y‖2,

σk
(
A + yx∗) ≤ σk(A) + σ1

(
yx∗) = σk(A) + ‖x‖2‖y‖2,

which implies

σk(A) – ‖x‖2‖y‖2 ≤ σk
(
A + yx∗) ≤ σk(A) + ‖x‖2‖y‖2. (18)

Now combining bounds (14), (17), (18) and σk(A + yx∗) ≥ 0, we obtain bounds (10). �

Remark 2.1 By Theorem 2.1, the classical bound

‖A + B‖2 ≤ ‖A‖2 + ‖B‖2

can be improved provided B is of rank one. In fact, from the upper bound of (10), it follows
that

‖A + B‖2 ≤
√

‖A‖2
2 + φ1 + 2

∥∥A∗B
∥∥

2,

which is always sharper than the existing bound ‖A‖2 + ‖B‖2 because φ1 ≤ ‖B‖2
2.

If we do a restriction on A∗yx∗, then the lower or upper bound of (10) can be further
simplified.

Corollary 2.1 Let A ∈ Cn×n and x, y ∈ Cn.
(I) If H(A∗yx∗) is positive semidefinite, then the lower bound of (10) is simplified as

√
σ 2

k (A) + ζk ≤ σk
(
A + yx∗). (19)
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(II) If H(A∗yx∗) is negative semidefinite, then the upper bound of (10) is given by

σk
(
A + yx∗) ≤ min

{
σk–1(A),σk(A) + ‖x‖2‖y‖2,

√
σ 2

k (A) + φk

}
. (20)

In particular, for the case that 1 ≤ k ≤ n – 1, the above bound can further be
simplified as

σk
(
A + yx∗) ≤ min

{
σk–1(A),

√
σ 2

k (A) + φk

}
. (21)

Proof If H(A∗yx∗) is positive semidefinite, then

λn(S2) = λmin
(
A∗yx∗ + xy∗A

) ≥ 0.

It follows that the lower bound of (13) is simplified as

σ 2
k
(
A + yx∗) ≥ λk(S1).

Hence

Lb2 =
√

σ 2
k (A) + ζk .

Obviously, for the case, it is easy to check that

max
{
σk+1(A), Lb1, Lb2

}
= Lb2,

from which one may deduce bound (19).
If H(A∗yx∗) is negative semidefinite, then

λ1(S2) = λmax
(
A∗yx∗ + xy∗A

) ≤ 0.

It follows that the upper bound of (13) is simplified as

σ 2
k
(
A + yx∗) ≤ λk(S1).

Hence

Ub2 =
√

σ 2
k (A) + φk ,

which, together with the bounds of (10), gives bound (20). It is noted that 0 ≤ φk ≤
‖y‖2

2‖xk:n‖2
2 (k = 1, 2, . . . , n – 1). For this case, it is easy to check that

√
σ 2

k (A) + φk ≤ σk(A) + ‖x‖2‖y‖2. (22)

Therefore, we obtain (21) instead of the upper bound of (10) in Theorem 2.1. This com-
pletes the proof. �
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3 Numerical examples
In this section we give some numerical examples to test the proposed bounds (10) in The-
orem 2.1. Numerical examples are carried out in MATLAB R2014b, with machine epsilon
ε ≈ 2.2 × 10–10.

The first example is randomly generated by MATLAB.

Example 1 Let A be a random matrix of order n and x, y be random vectors of dimension
n, which can be generated by MATLAB command “A = randn(n, n) + 1i ∗ randn(n, n), x, y =
randn(n, 1) + 1i ∗ randn(n, 1)”. Test bounds (10) in Theorem 2.1 according to the three cases
2 ≤ k ≤ n – 1, k = n, and k = 1.

The second example comes from the aero engine fault diagnosis. It is significant to de-
duce two-side bounds of the singular values for rank-one update of A, where A is an avail-
able inter-segment attractor reconstruction matrix.

Example 2 Assume that the test signal of the mechanical system is the following numeri-
cal sequence: si (i = 1, 2, . . . , 2n – 1), then available inter-segment attractor reconstruction
matrix A is

A =

⎛
⎜⎜⎜⎜⎝

s1 s2 · · · sn

s2 s3 · · · sn+1
...

...
...

sn sn+1 · · · s2n–1

⎞
⎟⎟⎟⎟⎠

;

see [8, 9] for more details. The following simulation signals are frequently used in aero
engine fault diagnosis. At initial time t0 the test signals are described as

s(t0) = s1 + σ e(t0).

After t time, the test signals with engine fault are described as

s(t) = s1 + s2 + σ e(t),

where s1, s2 are random signals and si (i = 3, 4, . . . , 2n – 1) are generated in terms of the ex-
pression of s(t) at random times; σ e(t) is Gaussian white noise with a mean 0 and variance
of 1 with σ = 1. Let x, y be random vectors of dimension n and yx∗ be rank-one update
of A. Test bounds (10) in Theorem 2.1 according to the three cases 2 ≤ k ≤ n – 1, k = n,
and k = 1.

In Tables 1–6, we give the lower and upper bounds determined by (10) for the above
three cases, which are emphasized by the black text. Note that σn+1(A) = 0 and σ0(A) = +∞.
Thus we have omitted the lower bound σn+1(A) in Tables 2 and 5 and the upper bound
σ0(A) in Tables 3 and 6. For comparison, we also list the exact values of σk(A + yx∗). In
addition, for the case of the largest singular values, the existing bounds σ1(A) + σ1(yx∗) are
given. The notations Lbi and Ubi (i = 1, 2) are defined by (11) and (12), respectively.

From Tables 1–6 we have the following observations and remarks:
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Table 1 Comparison of the bounds in (10) for Example 1 (2≤ k ≤ n – 1): the bold face numbers
confirm our sharp perturbation bounds

n = 40

k = 8 k = 18 k = 28

Lower bounds σk+1(A) 27.46 16.34 8.41
Lb1 28.52 16.97 8.85
Lb2 25.60 17.64 7.98

Upper bounds σk–1(A) 66.30 45.10 21.46
Ub1 55.24 40.65 17.46
Ub2 46.32 39.14 19.45

Exact values σk (A + yx∗) 35.23 27.35 11.46

n = 80

k = 38 k = 52 k = 66

Lower bounds σk+1(A) 29.38 26.19 14.57
Lb1 36.48 24.58 13.90
Lb2 38.20 27.30 15.04

Upper bounds σk–1(A) 82.47 70.06 43.35
Ub1 81.69 71.59 42.53
Ub2 82.41 68.33 45.63

Exact values σk(A + yx∗) 51.24 43.45 28.24

n = 100

k = 16 k = 44 k = 72

Lower bounds σk+1(A) 54.26 35.34 15.85
Lb1 56.17 31.95 10.24
Lb2 52.46 36.35 16.32

Upper bounds σk–1(A) 93.14 75.35 44.52
Ub1 86.20 70.28 43.13
Ub2 89.35 78.01 48.76

Exact values σk(A + yx∗) 70.56 45.15 30.42

Table 2 Comparison of the bounds in (10) for smallest singular values of Example 1: the bold face
numbers confirm our sharp perturbation bounds

n

60 90 120

Lower bounds Lb1 11.63 20.14 18.90
Lb2 12.76 20.62 14.23

Upper bounds σn–1(A) 21.05 41.64 38.60
Ub1 20.83 39.83 34.53
Ub2 24.47 43.08 33.64

Exact values σn(A + yx∗) 18.92 29.27 21.92

Table 3 Comparison results of the bounds for largest singular values of Example 1: the bold face
numbers confirm our sharp perturbation bounds

n

20 40 60

Lower bounds σ2(A) 18.46 45.26 37.64
Lb1 19.68 23.89 32.70
Lb2 21.84 46.90 40.02

Upper bounds Ub1 50.68 72.39 81.06
Ub2 42.04 65.79 73.80
σ1(A) + σ1(yx∗) 58.53 86.48 96.46

Exact values σ1(A + yx∗) 30.58 69.57 48.19



Zhu et al. Journal of Inequalities and Applications        (2019) 2019:138 Page 9 of 10

Table 4 Comparison of the bounds in (10) for Example 2 (2≤ k ≤ n – 1): the bold face numbers
confirm our sharp perturbation bounds

n = 30

k = 8 k = 16 k = 24

Lower bounds σk+1(A) 16.25 12.75 26.81
Lb1 13.96 12.91 28.54
Lb2 17.14 10.27 19.72

Upper bounds σk–1(A) 53.45 36.08 51.08
Ub1 45.26 34.77 48.76
Ub2 40.18 34.82 50.73

Exact values σk (A + yx∗) 34.03 27.59 48.50

n = 60

k = 22 k = 40 k = 58

Lower bounds σk+1(A) 30.13 23.26 10.26
Lb1 32.53 25.11 14.96
Lb2 36.18 10.04 15.60

Upper bounds σk–1(A) 68.26 60.29 49.07
Ub1 70.24 58.65 47.43
Ub2 68.01 54.71 45.48

Exact values σk(A + yx∗) 56.02 41.59 28.56

Table 5 Comparison of the bounds in (10) for smallest singular values of Example 2: the bold face
numbers confirm our sharp perturbation bounds

n

28 62 96

Lower bounds Lb1 24.14 16.84 11.48
Lb2 22.03 17.06 10.05

Upper bounds σn–1(A) 38.14 39.23 34.29
Ub1 32.80 38.10 30.40
Ub2 34.28 37.95 37.22

Exact values σn(A + yx∗) 28.55 27.83 17.74

Table 6 Comparison results of the bounds for largest singular values of Example 2: the bold face
numbers confirm our sharp perturbation bounds

n

20 40 60

Lower bounds σ2(A) 16.18 40.04 32.54
Lb1 17.05 28.60 30.11
Lb2 20.53 40.08 36.29

Upper bounds Ub1 46.13 68.25 70.57
Ub2 40.16 60.27 76.90
σ1(A) + σ1(yx∗) 48.79 69.47 84.18

Exact values σ1(A + yx∗) 27.57 53.13 49.27

(1) From comparison results with the exact values, the proposed bounds (10) are
feasible and effective.

(2) For Examples 1–2, the lower and the upper bounds given by (10) are chosen from
Lb1, Lb2 and Ub1, Ub2 instead of σk+1(A) and σk–1(A), respectively. In other words,
the bounds Lbi (i = 1, 2) and Ubi (i = 1, 2) are sharper than σk+1(A) and σk–1(A),
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respectively. Note that σk+1(A) and σk–1(A) are essentially the existing bounds given
by Lemma 2.1. This further verifies the advantage of the proposed bounds.

(3) In particular, from Tables 3 and 6, the proposed upper bounds of (10) are always
tighter than the existing upper bounds σ1(A) + σ1(yx∗), which agrees with
Remark 2.1.

4 Conclusions
In this paper, by making use of different strategies, we present the two-side bounds of
singular values for rank-one perturbation of arbitrary matrices. In particular, the proposed
upper bounds are proved to be always sharper than the classical bound ‖A + B‖2 ≤ ‖A‖2 +
‖B‖2. Numerical examples further demonstrate the feasibility and effectiveness of the new
perturbation bounds, which are tighter than some existing perturbation bounds.

Acknowledgements
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which greatly
improved the paper.

Funding
The work was supported by the National Natural Science Foundation of China under Grants Nos. U1533202, U1811464,
11571124, 11671158, 11801097, the Jiangsu Provincial Natural Science Foundation of Jiangsu Province of China under
Grant No. BK20181405, and Civil Aviation Science and Technology Project under Grant No. 20150218.

Availability of data and materials
The datasets generated during and/or analysed during the current study are available from the corresponding author on
reasonable request.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.

Author details
1College of Engineering, Nanjing Agricultural University, Nanjing, P.R. China. 2School of Mathematical Sciences, South
China Normal University, Guangzhou, P.R. China. 3College of Science, Nanjing University of Aeronautics and Astronautics,
Nanjing, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 February 2019 Accepted: 2 May 2019

References
1. Dickson, K.I., Kelley, C.T., Ipsen, I.C.F., Kevrekidis, I.G.: Condition estimation for pseudo-arclength continuation. SIAM J.

Numer. Anal. 45(1), 263–276 (2007)
2. Xu, W.W., Ma, L.J., Zhu, L., Liu, H.: On interval estimates of perturbations of generalized eigenvalues for diagonalizable

pairs. Linear Algebra Appl. 562, 15–43 (2019)
3. Xu, W.W., Pang, H.K., Li, W., Huang, X.P., Guo, W.-J.: On the explicit expression of chordal metric between generalized

singular values of Grassmann matrix pairs with applications. SIAM J. Matrix Anal. Appl. 39(4), 1547–1563 (2018)
4. Xu, W.W., Li, W., Zhu, L., Huang, X.P.: The analytic solutions of constrained matrix minimization and maximization

problems and its applications. SIAM J. Optim. (2019, accepted)
5. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, London (1991)
6. Chu, D.L., Chu, M.: Low rank update of singular values. Math. Comput. 75(255), 1351–1366 (2006)
7. Ipsen, I.C.F., Nadler, B.: Refined perturbation bounds for eigenvalues of Hermitian and non-Hermitian matrices. SIAM J.

Matrix Anal. Appl. 31, 40–53 (2009)
8. Sun, J.Z., Zuo, H.F., Liu, P.P., Zhu, L.: A method of condition monitoring and on-wing life prediction for civil aviation

aircraft engine based on dynamic linear model. IEEE Trans. Reliab. 33(12), 3243–3250 (2013)
9. Zhu, L., Zuo, H.F., Cai, J.: Performance reliability prediction for civil aviation aircraft engine based on Wiener process.

J. Aerosp. Power 28(5), 1006–1012 (2013)


	Rank-one perturbation bounds for singular values of arbitrary matrices
	Abstract
	MSC
	Keywords

	Introduction
	Singular value variations
	Numerical examples
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


