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Abstract
In this paper we discuss the existence of solutions of the fully fourth-order boundary
value problem

{
u(4) = f (t,u,u′,u′′,u′′′), t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

which models the deformations of an elastic cantilever beam in equilibrium state,
where f : [0, 1]×R

4 →R is continuous. Using the method of lower and upper
solutions and the monotone iterative technique, we obtain some existence results
under monotonicity assumptions on nonlinearity.
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1 Introduction
In this paper, we are concerned with the existence of the fully fourth-order boundary value
problem

⎧⎨
⎩u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(1.1)

where f : [0, 1] × R
4 → R is continuous. This equation models the deformations of an

elastic beam in equilibrium state, whose one end-point is fixed and the other is free, and
in mechanics it is called cantilever beam equation. In the equation, the physical meaning
of the derivatives of the deformation function u(t) is as follows: u(4) is the load density
stiffness, u′′′ is the shear force stiffness, u′′ is the bending moment stiffness, and u′ is the
slope [1–4].
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For the special case of BVP (1.1) that f does not contain any derivative terms, namely
the simply fourth-order boundary value problem

⎧⎨
⎩u(4)(t) = f (t, u(t)), t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(1.2)

and f only contains first-order derivative term u′, namely the fourth-order boundary value
problem

⎧⎨
⎩u(4)(t) = f (t, u(t), u′(t)), t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(1.3)

the existence of positive solutions has been discussed by some authors, see [5–9]. The
methods applied in these works are not applicable to BVP (1.1) since they cannot deal
with the derivative terms u′′ and u′′′.

For the cantilever beam equation with a nonlinear boundary condition of third-order
derivative⎧⎨

⎩u(4)(t) = f (t, u(t), u′(t)), t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = 0, u′′′(1) = g(u(1)),
(1.4)

the existence of solution has also been discussed by some authors, see [10–13]. The bound-
ary condition in (1.4) means that the left end of the beam is fixed and the right end of the
beam is attached to an elastic bearing device, see [10].

The purpose of this paper is to obtain existence results of solutions to the fully fourth-
order nonlinear boundary value problem (1.1). For fully fourth-order nonlinear BVPs with
the boundary condition in BVP (1.1) or other boundary conditions, the existence of so-
lution has discussed by several authors, see [14–20]. In [14], Kaufmann and Kosmatov
considered a symmetric fully fourth-order nonlinear boundary value problem. They used
a triple fixed point theorem of cone mapping to obtain existence results of triple posi-
tive symmetric solutions when f satisfies some range conditions dependent upon three
positive parameters a, b and d. Since they did not give the method to determine these pa-
rameters, the range conditions are difficult to verify. The authors of [15] used the method
of lower and upper solutions to discuss the existence of solution of the fully fourth-order
nonlinear boundary value problem

⎧⎨
⎩u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), 0 ≤ t ≤ 1,

u(0) = u′(1) = u′′(0) = u′′′(1) = 0,
(1.5)

where the discussed problem has a pair of ordered lower and upper solutions. But they did
not discuss how they found a pair of ordered lower and upper solutions. Under the case
that f (t, x0, x1, x2, x3) is sublinear growth on x0, x1, x2, x3, the existence of the following
fully fourth-order boundary value problem:

⎧⎨
⎩u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), 0 ≤ t ≤ 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0
(1.6)
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is discussed in [16]. In this case, using the method in [16], we can obtain existence results
for BVP (1.1). Usually the superlinear problems are more difficult to treat than the sublin-
ear problems. In [17], the present author discussed the case that f (t, x0, x1, x2, x3) may be
superlinear growth on x0, x1, x2, x3 when nonlinearity f is nonnegative by using the fixed
point index theory in cones. In recent paper [18], Dang and Ngo dealt with the solvability
of BVP (1.1) by using the contraction mapping principle. They showed that if there exists
a region

DM =
{

(t, x0, x1, x2, x3)
∣∣∣ t ∈ [0, 1], |x0| ≤ M

8
, |x1| ≤ M

6
, |x2| ≤ M

2
, |x3| ≤ M

}
(1.7)

determined by a positive number M such that nonlinearity f satisfies

∣∣f (t, x0, x1, x2, x3)
∣∣ ≤ M, (1.8)

∣∣f (t, x0, x1, x2, x3) – f (t, y0, y1, y2, y3)
∣∣ ≤

3∑
i=0

ci|xi – yi| (1.9)

for any (t, x0, x1, x2, x3), (t, y0, y1, y2, y3) ∈DM , where c0, c1, c2, c3 are positive constants and
satisfy

q :=
c0

8
+

c1

6
+

c0

2
+ c3 < 1, (1.10)

then BVP (1.1) has a unique solution u satisfying

(
t, u(t), u′(t), u′′(t), u′′′(t)

) ∈DM, t ∈ [0, 1]. (1.11)

See [18, Theorem 2.2]. A similar result is built for BVP (1.6) in [19] and for a fourth-order
BVP of Kirchhoff type equation in [20]. Dang and Ngo’s result can be applied to the super-
linear equations, and it ensures the uniqueness of solution on DM . However, the key to the
application of this result is how to determine the constant M. For the general nonlinearity
f , M is not easy to determine and the Lipschitz coefficients condition (1.10) is not easy to
satisfy. In this paper we shall discuss the general case that f may be superlinear growth
and have negative value.

We will use the method of lower and upper solutions to discuss BVP (1.1). For BVP (1.1),
since the boundary conditions are different from BVP (1.5), the definitions of lower and
upper solutions are different from those in [16] and the argument methods in [16] are
not applicable to BVP (1.1). In Sect. 2, under f (t, x0, x1, x2, x3) increasing on x0, x1, x2 and
decreasing on x3 in the domain surrounded by lower and upper solutions, we use a mono-
tone iterative technique to obtain the existence of a solution between lower and upper
solutions. In Sect. 3, under f (t, x0, x1, x2, x3) without monotonicity on x3, we use a trun-
cating technique to prove the existence of a solution between lower and upper solutions.
In Sect. 4, we use the lower and upper theorem built in Sect. 3 to obtain a new existence
result of positive solution.

2 Monotone iterative method
The monotone iterative method is an important method for solving nonlinear BVPs. For
the special BVP (1.3), a monotone iterative method has been built, see [8]. In this section,
we will develop the monotone iterative method of lower and upper solutions for BVP (1.1).
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Let I = [0, 1] and C(I) denote the Banach space of all continuous functions u(t) on I
with norm ‖u‖C = maxt∈I |u(t)|. Generally, for n ∈ N, we use Cn(I) to denote the Banach
space of all nth-order continuous differentiable functions on I with the norm ‖u‖Cn =
max{‖u‖C ,‖u′‖C , . . . ,‖u(n)‖C}. Let C+(I) denote the cone of all nonnegative functions in
C(I).

Let f : I ×R
4 →R be continuous and consider BVP (1.1). If a function v ∈ C4(I) satisfies

⎧⎨
⎩v(4)(t) ≤ f (t, v(t), v′(t), v′′(t), v′′′(t)), t ∈ I,

v(0) ≤ 0, v′(0) ≤ 0, v′′(1) ≤ 0, v′′′(1) ≥ 0,
(2.1)

we call it a lower solution of BVP (1.1), and if a function w ∈ C4(I) satisfies

⎧⎨
⎩w(4)(t) ≥ f (t, w(t), w′(t), w′′(t), w′′′(t)), t ∈ I,

w(0) ≥ 0, w′(0) ≥ 0, w′′(1) ≥ 0, w′′′(1) ≤ 0,
(2.2)

we call it an upper solution of BVP (1.1).

Lemma 2.1 Let v0 ∈ C4(I) be a lower solution of BVP (1.1) and w0 be an upper solution,
and v0

′′′ ≥ w0
′′′. Then

v0 ≤ w0, v0
′ ≤ w0

′, v0
′′ ≤ w0

′′. (2.3)

Proof Let u = w0 – v0, then u′′′(t) ≤ 0 for every t ∈ I . By the definitions of lower and upper
solutions, we have

u′′(t) = u′′(1) –
∫ 1

t
u′′′(s) ds ≥ 0, t ∈ I,

u′(t) = u′(0) +
∫ t

0
u′′(s) ds ≥ 0, t ∈ I,

u(t) = u(0) +
∫ t

0
u′(s) ds ≥ 0, t ∈ I.

Hence, (2.3) holds. �

Given h ∈ C(I), consider the linear boundary value problem (LBVP)

⎧⎨
⎩u(4)(t) = h(t), t ∈ I,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.
(2.4)

Lemma 2.2 For every h ∈ C(I), LBVP (2.4) has a unique solution u := Sh ∈ C4(I). Moreover,
the solution operator S : C(I) → C3(I) is a completely continuous linear operator.

Proof For given any h ∈ C(I), it is easy to verify that

u(t) =
∫ t

0
(t – τ )

∫ 1

τ

(s – τ )h(s) ds dτ := Sh(t), t ∈ I, (2.5)
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is a unique solution of LBVP (2.4). From expression (2.5), we easily see that S : C(I) → C3(I)
is a completely continuous linear operator. �

Lemma 2.3 If u ∈ C4(I) and satisfies
⎧⎨
⎩u(4)(t) ≥ 0, t ∈ I,

u(0) ≥ 0, u′(0) ≥ 0, u′′(1) ≥ 0, u′′′(1) ≤ 0,
(2.6)

then u ≥ 0, u′ ≥ 0, u′′ ≥ 0, and u′′′ ≤ 0.

Proof Similar to the proof of Lemma 2.1, we have

u′′′(t) = u′′′(1) –
∫ 1

t
u(4)(s) ds ≤ 0, t ∈ I,

u′′(t) = u′′(1) –
∫ 1

t
u′′(s) ds ≥ 0, t ∈ I,

u′(t) = u′(0) +
∫ t

0
u′′(s) ds ≥ 0, t ∈ I,

u(t) = u(0) +
∫ t

0
u′(s) ds ≥ 0, t ∈ I.

Hence, the conclusion of Lemma 2.3 holds. �

We introduce a semi-ordering � in C3(I) by

v � w ⇐⇒ v ≤ w, v′ ≤ w′, v′′ ≤ w′′, and v′′′ ≥ w′′′. (2.7)

Then C3(I) is an ordered Banach space by this semi-ordering. We also use w � v to denote
v � w. Letting v, w ∈ C3(I) and v � w, we denote the order-interval in C3(I) by

[v, w]C3 =
{

u ∈ C3(I) : v � u � w
}

. (2.8)

Theorem 2.1 Assume that f : I × R
4 → R is continuous, BVP (1.1) has a lower solution

v0 and an upper solution w0 with v0
′′′ ≥ w0

′′′, and f satisfies the following monotone condi-
tions:

(F1) for every t ∈ I and x3 ∈ [w′′′
0 (t), v′′′

0 (t)], f (t, x0, x1, x2, x3) is increasing on x0, x1, and x2

in [v0(t), w0(t)] × [v′
0(t), w′

0(t)] × [v′′
0(t), w′′

0(t)];
(F2) for every t ∈ I and (x0, x1, x2) ∈ [v0(t), w0(t)]× [v′

0(t), w′
0(t)]× [v′′

0(t), w′′
0(t)], f (t, x0, x1,

x2, x3) is decreasing on x3 in [w′′′
0 (t), v′′′

0 (t)].
Make iterative sequences {vn} and {wn} starting from v0 and w0 respectively by using the
iterative equation

⎧⎨
⎩un

(4)(t) = f (t, un–1(t), u′
n–1(t), u′′

n–1(t), u′′′
n–1(t)), t ∈ I,

un(0) = u′
n(0) = u′′

n(1) = u′′′
n (1) = 0,

n = 1, 2, . . . . (2.9)

Then {vn} and {wn} satisfy the monotone condition

v0 � vn � vn+1 � wn+1 � wn � w0, n = 1, 2, . . . , (2.10)
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and converge in C3(I). Moreover, u = limn→∞ vn and u = limn→∞ wn are minimal and max-
imal solutions of BVP (1.1) in [v0, w0]C3 .

Proof By Lemma 2.1, v0 � w0. Define a mapping F : C3(I) → C(I) by

F(u)(t) := f
(
t, u(t), u′(t), u′′(t), u′′′(t)

)
, t ∈ I, u ∈ C3(I). (2.11)

Then F : C3(I) → C(I) is continuous and by Assumptions (F1) and (F2) we can verify that

v0 � u1 � u2 � w0 ⇒ F(u1) ≤ F(u2). (2.12)

By Lemma 2.2, A = S ◦ F : C3(I) → C3(I) is completely continuous and the solution of
BVP(1) is equivalent to the fixed point of A. By the definition of S, the iterative sequences
{vn} and {wn} satisfy

vn = Avn–1, wn = Awn–1, n = 1, 2, . . . . (2.13)

We show that

v0 � v1, w1 � w0. (2.14)

Let u = v1 – v0. Then by the definition of the lower solution v0, u satisfies (2.6). By
Lemma 2.3, u � 0, and hence v0 � v1. Similarly, w1 � w0 can be showed. By Lemma 2.3
and (2.12), we can prove that

v0 � u1 � u2 � w0 ⇒ Au1 � Au2. (2.15)

By (2.14) and (2.15), we see that (2.10) holds. Note that {vn} = {S(F(vn–1))} and {wn} =
{S(F(wn–1))} are relatively compact in C3(I) by the complete continuity of S. Combining
this fact with (2.10), we conclude that

vn → u, wn → u in C3(I). (2.16)

By (2.13) and (2.15) we can prove that u and u are minimal and maximal fixed points of A
in [v0, w0]C3 . Hence, they are minimal and maximal solutions of BVP (1.1) in [v0, w0]C3 . �

Example 2.1 Consider the following fourth-order boundary value problem with superlin-
ear terms:

⎧⎨
⎩u(4)(t) = 1

3
3√u + (u′)2 + (u′′)3 – 1

2 (u′′′)3 + t2(1 – t)2, t ∈ I,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.
(2.17)

Corresponding to BVP (1.1), the nonlinearity is

f (t, x0, x1, x2, x3) =
1
3

3√x0 + x2
1 + x3

2 –
1
2

x3
3 + t2(1 – t)2, (2.18)
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which is cubic growth on x2 and x3. We use Theorem 2.1 to show that BVP (2.17) has a
positive solution. Clearly, v0(t) ≡ 0 is a lower solution of BVP (2.17). We verify that

w0(t) =
1

24
t4 +

1
12

t3 +
1
4

t2(1 – t), t ∈ I

is an upper solution of BVP (2.17). Since

w′
0(t) =

1
6

t3 +
1
2

t(1 – t) ≥ 0, t ∈ I,

w′′
0(t) =

1
2

(1 – t)2 ≥ 0, t ∈ I,

w′′′
0 (t) = t – 1 ≤ 0, t ∈ I,

we obtain that

‖w0‖C =
1
8

,
∥∥w′

0
∥∥

C =
1
6

,
∥∥w′′

0
∥∥

C =
1
2

,
∥∥w′′′

0
∥∥

C = 1. (2.19)

By (2.18) and (2.19), we have

f
(
t, w0, w′

0, w′′
0, w′′′

0
)

=
1
3

3
√

w0(t) +
(
w′

0(t)
)2 +

(
w′′

0(t)
)3 –

1
2
(
w′′′

0 (t)
)3 + t2(1 – t)2

≤ 1
3

3
√‖w0‖C +

∥∥w′
0
∥∥2

C +
∥∥w′′

0
∥∥3

C +
1
2
∥∥w′′′

0
∥∥3

C + t2(1 – t)2

≤ 1
6

+
1

36
+

1
8

+
1
2

+
1

16

< 1 = w(4)
0 (t), t ∈ I.

Hence, w0 is an upper solution of BVP (2.17). By (2.18), f (t, x0, x1, x2, x3) is increasing on
x0, x1, x2 in [0, +∞)3 and decreasing on x3 in all R. Hence f satisfies Assumptions (F1)
and (F2). By Theorem 2.1, BVP (2.17) has at least one solution u0 ∈ [v0, w0]C3 , which is
a positive solution. Since f does not satisfy the Nagumo condition on x2 and x3 in [17],
this result cannot be obtained from [17]. This result also cannot be obtained from [18].
In fact, for any M > 0, the first term 1

3
3√x0 of expression (2.18) of f does not satisfy the

Lipschitz condition on DM . Hence the Lipschitz condition (1.9) does not hold on DM . So
[18, Theorem 2.2] is not applicable for BVP (2.17), and our existence result for BVP (2.17)
cannot be obtained from [18].

3 A theorem of lower and upper solutions
In this section, we discuss the existence of a solution between a lower solution and an up-
per solution for BVP (1.1) under the case of nonlinearity f (t, x0, x1, x2, x3) without mono-
tonicity on x3. In [15], an existence result between a lower solution and an upper solution
was established for BVP (1.5), in which the authors requested nonlinearity f (t, x0, x1, x2, x3)
to satisfy a Nagumo-type condition on x3, see [15, Theorem 3.1]. Since the boundary con-
ditions and the definitions of lower and upper solutions of BVP (1.5) are different from
those of BVP (1.1), the results presented in [15] are not applicable to BVP (1.1). We will
use a directly truncating function technique to establish a similar existence result. A re-
markable difference is that our existence result does not need the Nagumo-type condition.
Our result is as follows:
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Theorem 3.1 Let f : I × R
4 → R be continuous and BVP (1.1) have a lower solution v0

and an upper solution w0 with v0
′′′ ≥ w0

′′′. If f satisfies the following condition:
(F3) for any t ∈ I and (x0, x1, x2) ∈ [v0(t), w0(t)] × [v′

0(t), w′
0(t)] × [v′′

0(t), w′′
0(t)],

f
(
t, x0, x1, x2, v′′′

0 (t)
) ≥ f

(
t, v0(t), v′

0(t), v′′
0(t), v′′′

0 (t)
)
,

f
(
t, x0, x1, x2, w′′′

0 (t)
) ≤ f

(
t, w0(t), w′

0(t), w′′
0(t), w′′′

0 (t)
)
;

then BVP (1.1) has at least one solution in [v0, w0]C3 .

In Theorem 3.1, condition (F3) is weaker than condition (F1) of Theorem 2.1, and The-
orem 3.1 does not need the monotonicity of f (t, x0, x1, x2, x3) on x3. For the existence, The-
orem 3.1 is more applicable than Theorem 2.1, but it has no monotone iterative procedure
of seeking solutions. The proof of Theorem 3.1 needs the following lemma.

Lemma 3.1 Let f : I × R
4 → R be continuous and bounded. Then BVP (1.1) has at least

one solution u ∈ C4(I).

Proof Let F : C3(I) → C(I) be the mapping defined by (2.10). Then, by Lemma 2.2, A =
S◦F : C3(I) → C3(I) is completely continuous and the solutions of BVP (1.1) are equivalent
to the fixed points of A. We show that A has a fixed point in C3(I). By the boundedness of
f , there exists a positive constant M > 0 such that

∣∣f (t, x0, x1, x2, x3)
∣∣ ≤ M, (t, x0, x1, x2, x3) ∈ I ×R

4. (3.1)

By (2.10) and (3.1), F : C3(I) → C(I) satisfies

∥∥F(u)
∥∥

C ≤ M, u ∈ C3(I). (3.2)

Choose R ≥ M‖S‖ and set Ω = {u ∈ C3(I) : ‖u‖C3 ≤ R}, where ‖S‖ denotes the norm of
linear bounded operator S : C(I) → C3(I). Then Ω is a bounded and convex closed set in
C3(I). For every u ∈ Ω , by (3.2), we have

‖Au‖C3 =
∥∥S

(
F(u)

)∥∥
C3 ≤ ‖S‖ · ∥∥F(u)

∥∥
C ≤ M‖S‖ ≤ R.

Hence Au ∈ Ω . This means that A(Ω) ⊂ Ω . By the Schauder fixed point theorem, A has a
fixed point in Ω , which is a solution of BVP (1.1). �

Proof of Theorem 3.1 By Lemma 2.3, v0 ≤ w0, v′
0 ≤ w′

0, v′′
0 ≤ w′′

0 . Define functions
η0,η1,η2,η3 : T ×R→ R by

η0(t, y) = min
{
max

{
v0(t), y

}
, w0(t)

}
,

η1(t, y) = min
{
max

{
v′

0(t), y
}

, w′
0(t)

}
,

η2(t, y) = min
{
max

{
v′′

0(t), y
}

, w′′
0(t)

}
,

η3(t, y) = min
{
max

{
w′′′

0 (t), y
}

, v′′′
0 (t)

}
.

(3.3)
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Then η0,η1,η2,η3 : T ×R→ R are continuous and satisfy

v0(t) ≤ η0(t, y) ≤ w0(t), (t, y) ∈ I ×R,

v′
0(t) ≤ η1(t, y) ≤ w′

0(t), (t, y) ∈ I ×R,

v′′
0(t) ≤ η2(t, y) ≤ w′′

0(t), (t, y) ∈ I ×R,

w′′′
0 (t) ≤ η3(t, y) ≤ v′′′

0 (t), (t, y) ∈ I ×R.

(3.4)

Make a truncating function f ∗ of f by

f ∗(t, x0, x1, x2, x3) = f
(
t,η0(t, x0),η1(t, x1),η2(t, x2),η3(t, x2)

)
+

x3 – η3(t, x3)
x32 + 1

, (t, x0, x1, x2, x3) ∈ I ×R
4. (3.5)

Then by (3.3) and (3.4), f ∗ : I × R
4 → R is continuous and bounded. By Lemma 3.1, the

boundary value problem

⎧⎨
⎩u(4)(t) = f ∗(t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ I,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0
(3.6)

has a solution u0 ∈ C4(I). We show that

w′′′
0 ≤ u′′′

0 ≤ v′′′
0 . (3.7)

In fact, if w′′′
0 �≤ u′′′

0 , then for the function

φ(t) = u′′′
0 (t) – w′′′

0 (t), t ∈ I, (3.8)

mint∈I φ(t) < 0. Since φ(1) ≥ 0, there exists t0 ∈ [0, 1) such that

φ(t0) = min
t∈I

φ(t) < 0, φ′(t0) ≥ 0,

from which and (3.8) it follows that

u′′′
0 (t0) < w′′′

0 (t0), u(4)
0 (t0) ≥ w(4)

0 (t0). (3.9)

Hence from definition (3.3), we see that

η3
(
t0, u′′′

0 (t0)
)

= w′′′
0 (t0). (3.10)

By Eq. (3.6), (3.10), (3.4), condition (F3) and the definition of the upper solution w0, we
have

u(4)
0 (t0) = f ∗(t0, u0(t0), u′

0(t0), u′′
0(t0), u′′′

0 (t0)
)

= f
(
t0,η0

(
t0, u0(t0)

)
,η1

(
t0, u′

0(t0)
)
,η2

(
t0, u′′

0(t0)
)
,η3

(
t0, u′′′

0 (t0)
))
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+
u′′′

0 (t0) – η3(t0, u′′′
0 (t0))

[u′′′
0 (t0)]2 + 1

= f
(
t0,η0

(
t0, u0(t0)

)
,η1

(
t0, u′

0(t0)
)
,η2

(
t0, u′′

0(t0)
)
, w′′′

0 (t0)
)

+
u′′′

0 (t0) – w′′′
0 (t0)

[u′′′
0 (t0)]2 + 1

≤ f
(
t0, w0(t0), w′

0(t0), w′′
0(t0), w′′′

0 (t0)
)

+
u′′′

0 (t0) – w′′′
0 (t0))

[u′′′
0 (t0)]2 + 1

< f
(
t0, w0(t0), w′

0(t0), w′′
0(t0), w′′′

0 (t0)
)

≤ w(4)
0 (t0),

that is, u(4)
0 (t0) < w(4)

0 (t0), which contradicts (3.9). Hence, w′′′
0 ≤ u′′′

0 .
With a similar argument, we can show that u′′′

0 ≤ v′′′
0 , so (3.7) holds. Now by Lemma 2.1,

v0 ≤ u0 ≤ w0, v0
′ ≤ u0

′ ≤ w0
′, v0

′′ ≤ u0
′′ ≤ w0

′′. (3.11)

From (3.7), (3.11), and the definition (3.3) of ηi (i = 0, 1, 2, 3), it follows that

ηi
(
t, u(i)(t)

)
= u(i)(t), t ∈ I, i = 0, 1, 2, 3.

Hence by Eq. (3.6) we have

u(4)
0 (t) = f ∗(t, u0(t), u′

0(t), u′′
0(t), u′′′

0 (t)
)

= f
(
t,η0

(
t, u0(t)

)
,η1

(
t, u′

0(t)
)
,η2

(
t, u′′

0(t)
)
,η3

(
t, u′′′

0 (t)
))

+
u′′′

0 (t) – η3(t, u′′′
0 (t))

[u′′′
0 (t)]2 + 1

= f
(
t, u0(t), u′

0(t), u′′
0(t), u′′′

0 (t)
)
, t ∈ I.

That is, u0 is a solution of BVP (1.1) in [v0, w0]C3 . �

Example 3.1 Consider the fourth-order boundary value problem

⎧⎨
⎩u(4)(t) = 1

8
3√u + (u′)3 + (u′′)3 + 1

2 (u′′′)3 + t(1 – t), t ∈ I,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.
(3.12)

Similar to Example 2.1, one can verify that v0 = 0 is a lower solution and w0 given by

w0(t) =
1

24
t4 +

1
12

t3 +
1
4

t2(1 – t), t ∈ I, (3.13)

is an upper solution of BVP (3.12). Since w′′′
0 (t) = t – 1 ≤ 0 = v′′′

0 (t) and the corresponding
nonlinearity

f (t, x0, x1, x2, x3) =
1
8

3√x0 + x3
1 + x3

2 +
1
2

x3
3 + t(1 – t) (3.14)
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is increasing on x0, x1, x2, all the conditions of Theorem 3.1 are satisfied. By Theorem 3.1,
BVP (3.12) has at least one solution u0 ∈ [v0, w0]C3 ; clearly this solution is a positive solu-
tion. Since f is increasing on x3 and it does not satisfy condition (F2), this result cannot be
obtained by Theorem 2.1. For any M > 0, by expression (3.14) of f, the Lipschitz condition
(1.9) does not hold on DM , and hence the result of [18] is not applicable for BVP (3.12).

4 Existence of positive solutions
In [17], the present first author have discussed the existence of positive solution of BVP
(1.1) by using fixed point theory in cones. In this section we present a different existence
result of positive for BVP (1.1) by Theorem 3.1.

Theorem 4.1 Let f : I ×R
4 →R be continuous and satisfy the following conditions:

(F4) for every t ∈ I and x3 ∈ (–∞, 0], f (t, x0, x1, x2, x3) is increasing on x0, x1, and x2 in
[0, +∞);

(F5) there exists a positive constant δ > 0 such that

f (t, x0, x1, x2, x3) ≥ 21x0 for all (t, x0, x1, x2, x3) ∈ I × [0, δ]3 × [–δ, 0];

(F6) there exist nonnegative constants a0, a1, a2, a3 satisfying a0 + a1 + a2 + a3 < 1 and a
positive constant C0 > 0 such that

f (t, x0, x1, x2, x3) ≤ a0x0 + a1x1 + a2x2 + a3|x3| + C0

for all (t, x0, x1, x2, x3) ∈ I × [0, +∞)3 × (–∞, 0].
Then BVP (1.1) has at least one positive solution.

The proof of Theorem 4.1 needs the following existence and uniqueness result of a gen-
eral fourth-order linear boundary value problem.

Lemma 4.1 Let a0, a1, a2, a3 be nonnegative constants and satisfy a0 + a1 + a2 + a3 < 1.
Then, for every h ∈ C(I), the fourth-order linear boundary value problem

⎧⎨
⎩u(4)(t) = a0u(t) + a1u′(t) + a2u′′(t) – a3u′′′(t) + h(t), t ∈ I,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0
(4.1)

has a unique solution u ∈ C4(I), and when h ∈ C+(I), the solution u satisfies

u ≥ 0, u′ ≥ 0, u′′ ≥ 0, u′′′ ≤ 0. (4.2)

Proof Choose a closed subset space of C3(I) by

E =
{

u ∈ C3(I) : u(0) = u′(0) = u′′(1) = u′′′(1) = 0
}

. (4.3)

For every u ∈ E, we show that

‖u‖C ≤ ∥∥u′∥∥
C ≤ ∥∥u′′∥∥

C ≤ ∥∥u′′′∥∥
C . (4.4)
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For every t ∈ I , by the boundary condition of E, we have

∣∣u(t)
∣∣ =

∣∣∣∣
∫ t

0
u′(s) ds

∣∣∣∣ ≤
∫ t

0

∣∣u′(s)
∣∣ds ≤ t

∥∥u′∥∥
C ≤ ∥∥u′∥∥

C ,

∣∣u′(t)
∣∣ =

∣∣∣∣
∫ t

0
u′′(s) ds

∣∣∣∣ ≤
∫ t

0

∣∣u′′(s)
∣∣ds ≤ t

∥∥u′′∥∥
C ≤ ∥∥u′′∥∥

C ,

∣∣u′′(t)
∣∣ =

∣∣∣∣–
∫ 1

t
u′′(s) ds

∣∣∣∣ ≤
∫ 1

t

∣∣u′′′(s)
∣∣ds ≤ (1 – t)

∥∥u′′′∥∥
C ≤ ∥∥u′′′∥∥

C .

From these inequalities we conclude that

‖u‖C ≤ ∥∥u′∥∥
C ,

∥∥u′∥∥
C ≤ ∥∥u′′∥∥

C ,
∥∥u′′∥∥

C ≤ ∥∥u′′′∥∥
C .

Hence, (4.4) holds. By (4.4), we have

‖u‖C3 =
∥∥u′′′∥∥

C , u ∈ E. (4.5)

By Lemma 2.2, the solution operator of LBVP (2.3) S : C(I) → E is a completely linear
operator. For every h ∈ C(I) and t ∈ I , setting u = Sh, by Eq. (2.4), we have

∣∣u′′′(t)
∣∣ =

∣∣∣∣–
∫ 1

t
u(4)(s) ds

∣∣∣∣ =
∣∣∣∣
∫ 1

t
h(s) ds

∣∣∣∣ ≤ ‖h‖C .

Hence

‖Sh‖C3 = ‖u‖C3 =
∥∥u′′′∥∥

C ≤ ‖h‖C .

This means that the norm of the linear bounded operator S : C(I) → E satisfies

‖S‖B(C(I),E) ≤ 1. (4.6)

Define a linear operator B : E → C(I) by

Bu(t) := a0u(t) + a1u′(t) + a2u′′(t) – a3u′′′(t), u ∈ E, t ∈ I. (4.7)

Then, by the definition of the operator S : C(I) → E, LBVP (4.1) is rewritten to the form
of the operator equation in Banach space E:

(I – SB)u = Sh, (4.8)

where I is the identity operator in E. We prove that the norm of the composite operator
SB in B(E, E) satisfies ‖TB‖B(E,E) < 1.

For every u ∈ E, by the definition of B and (4.4), we have

‖Bu‖C ≤ a0‖u‖C + a1
∥∥u′∥∥

C + a2
∥∥u′′∥∥

C + a3
∥∥u′′′∥∥

C

≤ (a0 + a1 + a2 + a3)
∥∥u′′′∥∥

C ,

= (a0 + a1 + a2 + a3)‖u‖C3 . (4.9)
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From (4.6) and (4.9) it follows that

‖SBu‖C3 =
∥∥S(Bu)

∥∥
C3 ≤ ‖S‖B(C(I),E) · ‖Bu‖C

≤ (a0 + a1 + a2 + a3)‖u‖C3 .

This means that ‖SB‖B(E,E) ≤ a0 + a1 + a2 + a3 < 1.
Since ‖SB‖B(E,E) < 1, it follows that I – SB has a bounded inverse operator given by the

series

(I – SB)–1 =
∞∑

n=0

(SB)n.

Hence, Eq. (4.8), equivalently, LBVP (4.1), has the unique solution

u = (I – SB)–1Sh =
∞∑

n=0

(SB)nSh. (4.10)

Set K3 = {u ∈ C3 : u � 0}. Then K3 is a closed convex cone in C3(I). For every v ∈ K3, by
the definition (4.7) of B, Bv ∈ C+(I). By Lemma 2.3, SBv = S(Bv) ∈ K3. Hence, SB(K3) ⊂ K3.
Let h ∈ C+(I). By Lemma 2.3, v = Sh ∈ K3. Hence, for every n ∈ N, (SB)nSh = (SB)nv ∈ K3.
By (4.10) and the completeness of K3, u ∈ K3, that is, u satisfies (4.2). �

Proof of Theorem 4.1 By [17, Lemma 2.3 and Lemma 2.4], the fourth-order linear eigen-
value problem(EVP)⎧⎨

⎩u(4)(t) = λu(t), t ∈ I,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0
(4.11)

has a minimum positive real eigenvalue λ1 ∈ [8, 21), and λ1 has a positive unit eigenfunc-
tion, namely there exists φ1 ∈ C4(I) ∩ C+(I) with ‖φ1‖C = 1 which satisfies the equation⎧⎨

⎩φ
(4)
1 (t) = λ1φ1(t), t ∈ I,

φ1(0) = φ′
1(0) = φ′′

1 (1) = φ′′′
1 (1) = 0.

(4.12)

By Lemma 2.3, φ1 ∈ K3. Choose a positive constant

ε = min
{
δ/ max

{
1,

∥∥φ′
1
∥∥

C ,
∥∥φ′′

1
∥∥

C ,
∥∥φ′′′

1
∥∥

C

}
, C0/21

}
, (4.13)

and let v0 = εφ1(t). Then, for every t ∈ I ,

0 ≤ v0(t) ≤ ε‖φ1‖C ≤ δ, 0 ≤ v′
0(t) ≤ ε

∥∥φ′
1
∥∥

C ≤ δ

0 ≤ v′′
0(t) ≤ ε

∥∥φ′′
1
∥∥

C ≤ δ, 0 ≥ v′′′
0 (t) ≥ –ε

∥∥φ′′′
1

∥∥
C ≥ –δ.

By Assumption (F5), we have

f
(
t, v0(t), v′

0(t), v′′
0(t), v′′′

0 (t)
) ≥ 21v0(t) ≥ λ1v0(t) = v0

(4)(t), t ∈ I.

Hence v0 is a lower solution of BVP (1.1).
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By Lemma 4.1, the linear boundary value

⎧⎨
⎩u(4)(t) = a0u(t) + a1u′(t) + a2u′′(t) – a3u′′′(t) + C0, t ∈ I,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0
(4.14)

has a unique solution w0 ∈ K3, where a0, a1, a2, a3, and C0 are the constants in Assumption
(F6). By Assumption (F6), w0 is an upper solution of BVP (1.1). We show that v0 � w0. Set
u0 = w0 – v0, since v0, w0 ∈ K3, by the definitions of v0 and w0 and (4.13), we have

u(4)
0 (t) = w(4)

0 (t) – v(4)
0 (t)

= a0w0(t) + a1w′
0(t) + a2w′′

0(t) – a3w′′′
0 (t) + C0 – ελ1φ1(t)

≥ a0w0(t) + a1w′
0(t) + a2w′′

0(t) – a3w′′′
0 (t) ≥ 0, t ∈ I. (4.15)

By this inequality and Lemma 2.3, u0 � 0. Hence v0 � w0. Now by Assumption (F4), con-
dition (F3) of Theorem 3.1 holds. By Theorem 3.1, BVP (1.1) has a solution between v0

and w0, which is a positive solution of BVP (1.1). �

Example 4.1 Consider the following fourth-order nonlinear boundary value problem:

⎧⎨
⎩u(4)(t) = a

√|u| + b 3
√

(u′)2 + c 5
√

(u′′)2 – du′′′ – e(u′′′)4, t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(4.16)

where a, b, c, d, e are positive constants. We verify that the nonlinearity term of BVP
(4.16)

f (t, x0, x1, x2, x3) = a
√|x0| + b 3

√
x2

1 + c 5
√

x2
2 – dx3 – ex4

3 (4.17)

satisfies conditions (F4)–(F6).
By expression (4.17), for every t ∈ I and x3 ∈ (–∞, 0], f (t, x0, x1, x2, x3) is increasing

on x0, x1, and x2 on [0, +∞). Hence (F4) holds. Choose δ = min{ a2

441 , 3
√

d
e }, then for any

(t, x0, x1, x2, x3) ∈ I × [0, δ]3 × [–δ, 0], by (4.17) we have

f (t, x0, x1, x2, x3) ≥ a
√

x0 – x3
(
d + ex3

3
)

=
a√x0

x0 + |x3|
(
d – e|x3|3

)
≥ a√

δ
x0 + |x3|

(
d – eδ3) ≥ a√

δ
x0 ≥ 21x0.

Hence (F5) holds. For any (t, x0, x1, x2, x3) ∈ I × [0, +∞)3 × (–∞, 0], using the Young in-
equality

rs ≤ 1
α

sα +
1
β

sβ , α,β > 0,
1
α

+
1
β

= 1; r, s ≥ 0,
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we have

a
√|x0| = (2a)

(
x1/2

0 /2
) ≤ 2a2 +

1
8

x0 (α = β = 2),

b 3
√

x2
1 =

(
22/3b

)(
x2/3

1 /22/3) ≤ 4
3

b3 +
1
3

x1 (α = 3,β = 3/2), (4.18)

c 5
√

x2
2 =

(
82/5c

)(
x2/5

1 /82/5) ≤ 12
5

c5/3 +
1

20
x2 (α = 5/3,β = 5/2).

By these inequalities and (4.17), we obtain that

f (t, x0, x1, x2, x3) ≤ 1
8

x0 +
1
3

x1 +
1

20
x2 + C0 + |x3|

(
d – e|x3|3

)
≤ 1

8
x0 +

1
3

x1 +
1

20
x2 + C0 + max

x3∈R
|x3|

(
d – e|x3|3

)

=
1
8

x0 +
1
3

x1 +
1

20
x2 + C0 +

3
4

d
(

d
4e

)1/3

, (4.19)

where C0 = 2a2 + 4
3 b3 + 12

5 c5/3. Choose a0 = 1
8 , a1 = 1

3 , a2 = 1
20 , a3 = 0, and C = C0 + 3

4 d( d
4e )1/3,

then a0 + a1 + a2 + a3 = 61
120 < 1. From (4.19) it follows that (F6) holds.

Consequently, the nonlinearity f of BVP (4.16) satisfies conditions (F4)–(F6). By Theo-
rem 4.1, BVP (4.16) has at least one positive solution.
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