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Abstract
In this paper, we present a new extragradient algorithm for approximating a solution
of the split equilibrium problems and split fixed point problems. The strong
convergence theorems are proved in the framework of Hilbert spaces under some
mild conditions. We apply the obtained main result for the problem of finding a
solution of split variational inequality problems and split fixed point problems and a
numerical example and computational results are also provided.
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1 Introduction
Let C and D be nonempty closed and convex subsets of real Hilbert spaces H1 and H2,
respectively, and let H1 and H2 be endowed with an inner product 〈·, ·〉 and the corre-
sponding norm ‖ · ‖. By → and ⇀, we denote strong convergence and weak convergence,
respectively. Suppose that f : C × C → R be a bifunction. The equilibrium problem (EP)
is to find z ∈ C such that

f (z, x) ≥ 0, ∀x ∈ C. (1.1)

The solution set of the equilibrium problem is denoted by EP(f ). The equilibrium prob-
lem is a generalization of many mathematical models such as variational inequalities, fixed
point problems, and optimization problems; see [6, 14, 17, 18, 20, 35]. In 2013, Anh [2] in-
troduced an extragradient algorithm for finding a common element of fixed point set of a
nonexpansive mapping and solution set of an equilibrium problem on pseudomonotone
and Lipschitz-type continuous bifunction in real Hilbert space. The author proved the
strong convergence of the generated sequence under some condition on it. Since then,
many authors considered the EP and related problems and proved weak and strong con-
vergence. See, for example [1–4, 11, 21, 26, 41].

Moudafi [32] (see also He [25]) introduced the split equilibrium problem (SEP) which is
to find z ∈ C such that

z ∈ EP(f ) ∩ L–1(EP(g)
)
, (1.2)
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where L : H1 → H2 is a bounded linear operator and g : D×D → R be another bifunction.
It is well known that SEP is a generalization of equilibrium problem by considering g = 0
and D = H2.

He [25] used the proximal method and introduced an iterative method and showed that
the generated sequence converges weakly to a solution of SEP under suitable conditions
on parameters provided that f , g are monotone bifunctions on C and D, respectively.

Problem SEP is an extension of many mathematical models which have been considered
and studied intensively by several authors recently: split variational inequality problems
[12], split common fixed point problems [7, 13, 16, 19, 28, 31, 36, 38–40], and the split fea-
sibility problems which have been used for studying medical image reconstruction, sensor
networks, intensity modulated radiation therapy, and data compression; see [5, 8–10] and
the references quoted therein.

In this paper, motivated and inspired by the above literature, we consider a new extra-
gradient algorithm for finding a common solution of split equilibrium problem of pseu-
domonotone and Lipschitz-type continuous bifunctions and split fixed point problem of
nonexpansive mappings in real Hilbert space. That is, we are interested in considering the
following problem: let H1 and H2 be real Hilbert spaces and C and D be nonempty closed
and convex subsets of H1 and H2, respectively. Let f : C × C → R and g : D × D → R be
pseudomonotone and Lipschitz-type continuous bifunctions, T : C → C and S : D → D
be nonexpansive mappings and L : H1 → H2 be a bounded linear operator, we consider
the problem of finding a solution p ∈ C such that

p ∈ (
EP(f ) ∩ F(T)

) ∩ L–1(EP(g) ∩ F(S)
)

=: Ω , (1.3)

where F(T) is the fixed points set of T and Ω 
= ∅. Under some mild conditions, the strong
convergence theorem will be provided.

The paper is organized as follows. Section 2 gathers some definitions and lemmas of
geometry of real Hilbert spaces and monotone bifunctions, which will be needed in the
remaining sections. In Sect. 3, we prepare a new extragradient algorithm and prove the
strong convergence theorem. In Sect. 4, the results of Sect. 3 are applied to solve split
variational inequality problems and split fixed point problem of nonexpansive mappings.
Finally, in Sect. 5, the numerical experiments are showed and discussed.

2 Preliminaries
We now provide some basic concepts, definitions and lemmas which will be used in the
sequel. Let C be a closed and convex subset of a real Hilbert space H . The operator PC is
called a metric projection operator if it assigns to each x ∈ H its nearest point y ∈ C such
that

‖x – y‖ = min
{‖x – z‖ : z ∈ C

}
.

An element y is called the metric projection of x onto C and denoted by PCx. It exists and
is unique at any point of the real Hilbert space. It is well known that the metric projection
operator PC is continuous.
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Lemma 2.1 Let H is a real Hilbert space and C is a nonempty, closed and convex subset
of H . Then, for all x ∈ H , the element z = PCx if and only if

〈x – z, z – y〉 ≥ 0, ∀y ∈ C.

The metric projection satisfies in the following inequality:

‖PCx – PCy‖2 ≤ 〈PCx – PCy, x – y〉, ∀x, y ∈ H , (2.1)

therefore the metric projection is firmly nonexpansive operator in H . For more informa-
tion concerning the metric projection, please see Sect. 3 of [24].

Lemma 2.2 ([23]) Let H be a real Hilbert space and T : H → H be a nonexpansive map-
ping with F(T) 
= ∅. Then the mapping I –T is demiclosed at zero, that is, if {xn} is a sequence
in H such that xn ⇀ x and ‖xn – Txn‖ → 0, then x ∈ F(T).

Lemma 2.3 ([42]) Assume that {an} is a sequence of nonnegative numbers such that

an+1 ≤ (1 – γn)an + γnδn, ∀n ∈N,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(i) limn→∞ γn = 0,

∑∞
n=1 γn = ∞,

(ii) lim supn→∞ δn ≤ 0.
Then limn→∞ an = 0.

Lemma 2.4 ([30]) Let {an} be a sequence of real numbers such that there exists a sub-
sequence {ni} of {n} such that ani < ani+1 for all i ∈ N. Then there exists a nondecreasing
sequence {mk} ⊂N such that mk → ∞ as k → ∞ and the following properties are satisfied
by all (sufficiently large) numbers k ∈N:

amk ≤ amk +1 and ak ≤ amk +1.

In fact, mk = max{j ≤ k : aj < aj+1}.

Definition 2.5 A bifunction f : C × C → R is said to be
• monotone on C if

f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ C;

• pseudomonotone on C if

f (x, y) ≥ 0 �⇒ f (y, x) ≤ 0, ∀x, y ∈ C;

• Lipschitz-type continuous on C if there exist two positive constants c1 and c2 such
that

f (x, y) + f (y, z) ≥ f (x, z) – c1‖x – y‖2 – c2‖y – z‖2, ∀x, y, z ∈ C.
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Let C be a nonempty closed and convex subset of a real Hilbert space H and f : C ×C →
R be a bifunction, we will assume the following conditions:

(A1) f is pseudomonotone on C and f (x, x) = 0 for all x ∈ C;
(A2) f is weakly continuous on C × C in the sense that if x, y ∈ C and {xn}, {yn} ⊂ C

converge weakly to x and y, respectively, then f (xn, yn) → f (x, y) as n → ∞;
(A3) f (x, ·) is convex and subdifferentiable on C for every fixed x ∈ C;
(A4) f is Lipschitz-type continuous on C with two positive constants c1 and c2.
It is easy to show that under assumptions (A1)–(A3), the solution set EP(f ) is closed and

convex (see, for instance [34]).
We need the following lemma to prove our main results.

Lemma 2.6 ([2]) Assume that f satisfies (A1), (A3), (A4) such that EP(f ) is nonempty and
0 < ρ0 < min{ 1

2c1
, 1

2c2
}. If x0 ∈ C, and y0, z0 are defined by

⎧
⎨

⎩
y0 = arg min{ρ0f (x0, y) + 1

2‖y – x0‖2 : y ∈ C},
z0 = arg min{ρ0f (y0, y) + 1

2‖y – x0‖2 : y ∈ C},

then
(i) ρ0 [f (x0, y) – f (x0, y0)] ≥ 〈y0 – x0, y0 – y〉, ∀y ∈ C;

(ii) ‖z0 – p‖2 ≤ ‖x0 – p‖2 – (1 – 2ρ0c1)‖x0 – y0‖2 – (1 – 2ρ0c2)‖y0 – z0‖2, ∀p ∈ EP(f ).

3 Main results
In this section, we present our main algorithm and show the strong convergence theo-
rem for finding a common solution of split equilibrium problem of pseudomonotone and
Lipschitz-type continuous bifunctions and split fixed point problem of nonexpansive map-
pings in real Hilbert space.

Let H1 and H2 be two real Hilbert spaces and C and D be nonempty closed and convex
subsets of H1 and H2, respectively. Suppose that f : C × C → R and g : D × D → R be
bifunctions. Let L : H1 → H2 be a bounded linear operator with its adjoint L∗, T : C → C
and S : D → D be nonexpansive mappings and h : C → C be a ρ-contraction mapping. We
introduce the following extragradient algorithm for solving the split equilibrium problem
and fixed point problem.

Algorithm 3.1 Choose x1 ∈ H1. The control parameters λn, μn, αn, βn, δn satisfy the fol-
lowing conditions:

0 < λ ≤ λn ≤ λ < min

{
1

2c1
,

1
2c2

}
, 0 < μ ≤ μn ≤ μ < min

{
1

2d1
,

1
2d2

}
,

βn ∈ (0, 1), 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1, 0 < δ ≤ δn ≤ δ <

1
‖L‖2 ,

αn ∈
(

0,
1

2 – ρ

)
, lim

n→∞αn = 0,
∞∑

n=1

αn = ∞.
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Let {xn} be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = arg min{μng(PD(Lxn), u) + 1
2‖u – PD(Lxn)‖2 : u ∈ D},

vn = arg min{μng(un, u) + 1
2‖u – PD(Lxn)‖2 : u ∈ D},

yn = PC(xn + δnL∗(Svn – Lxn)),

tn = arg min{λnf (yn, y) + 1
2‖y – yn‖2 : y ∈ C},

zn = arg min{λnf (tn, y) + 1
2‖y – yn‖2 : y ∈ C},

xn+1 = αnh(xn) + (1 – αn)(βnxn + (1 – βn)Tzn).

Theorem 3.2 Let H1 and H2 be two real Hilbert spaces and C and D be nonempty closed
and convex subsets of H1 and H2, respectively. Suppose that f : C ×C →R and g : D×D →
R be bifunctions which satisfy (A1)–(A4) with some positive constants {c1, c2} and {d1, d2},
respectively. Let L : H1 → H2 be a bounded linear operator with its adjoint L∗, T : C → C
and S : D → D be nonexpansive mappings, h : C → C be a ρ-contraction mapping and
Ω 
= ∅. Then the sequence {xn} generated by Algorithm 3.1 converges strongly to q = PΩh(q).

Proof Let p ∈ Ω . So, p ∈ EP(f ) ∩ F(T) ⊂ C and Lp ∈ EP(g) ∩ F(S) ⊂ D. Since PD is firmly
nonexpansive, we get

∥
∥PD(Lxn) – Lp

∥
∥2 =

∥
∥PD(Lxn) – PD(Lp)

∥
∥2

≤ 〈
PD(Lxn) – PD(Lp), Lxn – Lp

〉

=
〈
PD(Lxn) – Lp, Lxn – Lp

〉

=
1
2
[∥∥PD(Lxn) – Lp

∥
∥2 + ‖Lxn – Lp‖2 –

∥
∥PD(Lxn) – Lxn

∥
∥2],

and hence

∥∥PD(Lxn) – Lp
∥∥2 ≤ ‖Lxn – Lp‖2 –

∥∥PD(Lxn) – Lxn
∥∥2. (3.1)

Since S is nonexpansive, Lp ∈ F(S) and using Lemma 2.6 and the definition of un and vn,
we have

‖Svn – Lp‖2 =
∥∥Svn – S(Lp)

∥∥2

≤ ‖vn – Lp‖2

≤ ∥∥PD(Lxn) – Lp
∥∥2 – (1 – 2μnd1)

∥∥PD(Lxn) – un
∥∥2

– (1 – 2μnd2)‖un – vn‖2, (3.2)

for each n ∈ N. From (3.1), (3.2) and the assumptions, we obtain

‖Svn – Lp‖2 ≤ ‖Lxn – Lp‖2 –
∥∥PD(Lxn) – Lxn

∥∥2. (3.3)
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By (3.3), we get

〈
L(xn – p), Svn – Lxn

〉
= 〈Svn – Lp, Svn – Lxn〉 – ‖Svn – Lxn‖2

=
1
2
[‖Svn – Lp‖2 – ‖Lxn – Lp‖2 – ‖Svn – Lxn‖2]

≤ –
1
2
∥∥PD(Lxn) – Lxn

∥∥2 –
1
2
‖Svn – Lxn‖2.

This implies that

2δn
〈
L(xn – p), Svn – Lxn

〉 ≤ –δn
∥∥PD(Lxn) – Lxn

∥∥2

– δn‖Svn – Lxn‖2. (3.4)

Since PC is nonexpansive and by (3.4), we obtain

‖yn – p‖2 =
∥∥PC

(
xn + δnL∗(Svn – Lxn)

)
– PC(p)

∥∥2

≤ ∥
∥(xn – p) + δnL∗(Svn – Lxn)

∥
∥2

= ‖xn – p‖2 + δ2
n
∥∥L∗(Svn – Lxn)

∥∥2 + 2δn
〈
xn – p, L∗(Svn – Lxn)

〉

≤ ‖xn – p‖2 + δ2
n‖L‖2‖Svn – Lxn‖2 – δn

∥∥PD(Lxn) – Lxn
∥∥2 – δn‖Svn – Lxn‖2

= ‖xn – p‖2 – δn
(
1 – δn‖L‖2)‖Svn – Lxn‖2 – δn

∥
∥PD(Lxn) – Lxn

∥
∥2, (3.5)

then we obtain

‖yn – p‖ ≤ ‖xn – p‖. (3.6)

By Lemma 2.6, the definition of tn and zn and the assumptions we have

‖zn – p‖ ≤ ‖yn – p‖, (3.7)

for each n ∈ N. From (3.6) and (3.7), we get

‖zn – p‖ ≤ ‖xn – p‖. (3.8)

Set qn = βnxn + (1 – βn)Tzn. It follows from (3.8) that

‖qn – p‖ ≤ βn‖xn – p‖ + (1 – βn)‖Tzn – p‖
≤ βn‖xn – p‖ + (1 – βn)‖zn – p‖
≤ ‖xn – p‖. (3.9)

By the definition of xn+1 and (3.9), we obtain

‖xn+1 – p‖ ≤ αn
∥
∥h(xn) – p

∥
∥ + (1 – αn)‖qn – p‖

≤ αn
∥∥h(xn) – h(p)

∥∥ + αn
∥∥h(p) – p

∥∥ + (1 – αn)‖xn – p‖
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≤ αnρ‖xn – p‖ + αn
∥∥h(p) – p

∥∥ + (1 – αn)‖xn – p‖

≤ (
1 – αn(1 – ρ)

)‖xn – p‖ + αn(1 – ρ)
‖h(p) – p‖

1 – ρ

≤ max

{
‖xn – p‖,

‖h(p) – p‖
1 – ρ

}

...

≤ max

{
‖x1 – p‖,

‖h(p) – p‖
1 – ρ

}
.

This implies that the sequence {xn} is bounded. By (3.6) and (3.8), the sequences {yn} and
{zn} are bounded too.

By Lemma 2.6, (3.6), the definition of qn and assumptions on βn and δn, we get

‖qn – p‖2 ≤ βn‖xn – p‖2 + (1 – βn)‖Tzn – p‖2

≤ βn‖xn – p‖2 + (1 – βn)‖zn – p‖2

≤ βn‖xn – p‖2 + (1 – βn)

× [‖yn – p‖2 – (1 – 2λnc1)‖yn – tn‖2 – (1 – 2λnc2)‖tn – zn‖2]

≤ βn‖xn – p‖2 + (1 – βn)

× [‖xn – p‖2 – (1 – 2λnc1)‖yn – tn‖2 – (1 – 2λnc2)‖tn – zn‖2]

= ‖xn – p‖2 – (1 – βn)
[
(1 – 2λnc1)‖yn – tn‖2 + (1 – 2λnc2)‖tn – zn‖2].

Therefore,

‖xn+1 – p‖2 ≤ αn
∥∥h(xn) – p

∥∥2 + (1 – αn)‖qn – p‖2

≤ αn
∥
∥h(xn) – p

∥
∥2 + (1 – αn)

{‖xn – p‖2 – (1 – βn)
[
(1 – 2λnc1)‖yn – tn‖2

+ (1 – 2λnc2)‖tn – zn‖2]},

and hence

(1 – βn)
[
(1 – 2λnc1)‖yn – tn‖2 + (1 – 2λnc2)‖tn – zn‖2]

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + αnM, (3.10)

where

M = sup
{∣∣∥∥h(xn) – p

∥∥2 – ‖xn – p‖2∣∣ + (1 – βn)
[
(1 – 2λnc1)‖yn – tn‖2

+ (1 – 2λnc2)‖tn – zn‖2], n ∈N
}

.

By (3.9), we have

‖xn+1 – p‖2 =
∥
∥αn

(
h(xn) – p

)
+ (1 – αn)(qn – p)

∥
∥2

≤ (1 – αn)2‖qn – p‖2 + 2αn
〈
h(xn) – p, xn+1 – p

〉
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≤ (1 – αn)2‖xn – p‖2 + 2αn
〈
h(xn) – h(p), xn+1 – p

〉
+ 2αn

〈
h(p) – p, xn+1 – p

〉

≤ (1 – αn)2‖xn – p‖2 + 2αnρ‖xn – p‖‖xn+1 – p‖ + 2αn
〈
h(p) – p, xn+1 – p

〉

≤ (1 – αn)2‖xn – p‖2 + αnρ
(‖xn – p‖2 + ‖xn+1 – p‖2)

+ 2αn
〈
h(p) – p, xn+1 – p

〉

=
(
(1 – αn)2 + αnρ

)‖xn – p‖2 + αnρ‖xn+1 – p‖2

+ 2αn
〈
h(p) – p, xn+1 – p

〉
. (3.11)

So, we get

‖xn+1 – p‖2 ≤
(

1 –
2(1 – ρ)αn

1 – αnρ

)
‖xn – p‖2

+
2(1 – ρ)αn

1 – αnρ

(
αnM0

2(1 – ρ)
+

1
(1 – ρ)

〈
h(p) – p, xn+1 – p

〉)

= (1 – γn)‖xn – p‖2

+ γn

(
αnM0

2(1 – ρ)
+

1
(1 – ρ)

〈
h(p) – p, xn+1 – p

〉)
, (3.12)

where M0 = sup{‖xn – p‖2, n ∈N}, put γn = 2(1–ρ)αn
1–αnρ

for each n ∈N. By the assumptions on
αn, we have

lim
n→∞γn = 0,

∞∑

n=1

γn = ∞. (3.13)

Since PΩh is a contraction on C, there exists q ∈ Ω such that q = PΩh(q). We prove that
the sequence {xn} converges strongly to q = PΩh(q). In order to prove it, let us consider
two cases.

Case 1. Suppose that there exists n0 ∈ N such that {‖xn – q‖}∞n=n0 is nonincreasing. In
this case, the limit of {‖xn – q‖} exists. This together with the assumptions on {αn}, {βn},
{λn} and (3.10) implies that

lim
n→∞‖yn – tn‖ = lim

n→∞‖tn – zn‖ = 0. (3.14)

On the other hands, from the definition of xn+1 and (3.8), we get

‖xn+1 – q‖2 ≤ αn
∥
∥h(xn) – q

∥
∥2 + (1 – αn)

∥
∥βnxn + (1 – βn)Tzn – q

∥
∥2

= αn
∥
∥h(xn) – q

∥
∥2 + (1 – αn)

× [
βn‖xn – q‖2 + (1 – βn)‖Tzn – q‖2 – βn(1 – βn)‖xn – Tzn‖2]

≤ αn
∥∥h(xn) – q

∥∥2 + (1 – αn)

× [
βn‖xn – q‖2 + (1 – βn)‖xn – q‖2 – βn(1 – βn)‖xn – Tzn‖2]

= αn
∥∥h(xn) – q

∥∥2 + (1 – αn)
[‖xn – q‖2 – βn(1 – βn)‖xn – Tzn‖2],
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and hence

βn(1 – βn)(1 – αn)‖xn – Tzn‖2 ≤ αn
∥∥h(xn) – q

∥∥2 + ‖xn – q‖2

– ‖xn+1 – q‖2. (3.15)

Since the limit of {‖xn – q‖} exists and by the assumptions on {αn} and {βn}, we obtain

lim
n→∞‖xn – Tzn‖ = 0. (3.16)

From (3.9) and (3.11), we have

‖xn+1 – q‖2 – ‖xn – q‖2 – 2αn
〈
h(xn) – q, xn+1 – q

〉 ≤ ‖qn – q‖2 – ‖xn – q‖2

≤ 0. (3.17)

Again, since the limit of {‖xn – q‖} exists and αn → 0, it follows that

lim
n→∞

(‖qn – q‖2 – ‖xn – q‖2) = 0

and hence

lim
n→∞‖qn – q‖ = lim

n→∞‖xn – q‖,

and by (3.9), we get

lim
n→∞‖xn – q‖ = lim

n→∞‖zn – q‖. (3.18)

We also get from (3.6), (3.7) and (3.18)

lim
n→∞‖xn – q‖ = lim

n→∞‖yn – q‖. (3.19)

By (3.5) and (3.19),

lim
n→∞‖Svn – Lxn‖ = lim

n→∞
∥∥PD(Lxn) – Lxn

∥∥ = 0, (3.20)

which implies that

lim
n→∞

∥∥Svn – PD(Lxn)
∥∥ = 0. (3.21)

It follows from (3.2) that

(1 – 2μnd1)
∥∥PD(Lxn) – un

∥∥2 + (1 – 2μnd2)‖un – vn‖2

≤ ∥∥PD(Lxn) – Lp
∥∥2 – ‖Svn – Lp‖2

=
(∥∥PD(Lxn) – Lp

∥
∥ + ‖Svn – Lp‖)(∥∥PD(Lxn) – Lp

∥
∥ – ‖Svn – Lp‖)

=
(∥∥PD(Lxn) – Lp

∥
∥ + ‖Svn – Lp‖)∥∥PD(Lxn) – Svn

∥
∥.
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So,

lim
n→∞

∥∥PD(Lxn) – un
∥∥ = lim

n→∞‖un – vn‖ = 0, (3.22)

and hence

lim
n→∞

∥∥PD(Lxn) – vn
∥∥ = 0. (3.23)

From (3.20) and (3.23), we get

lim
n→∞‖Lxn – vn‖ = 0. (3.24)

It follows from xn ∈ C, the definition of yn and (3.20) that

‖yn – xn‖ =
∥∥PC

(
xn + δnL∗(Svn – Lxn)

)
– PC(xn)

∥∥

≤ ∥∥xn + δnL∗(Svn – Lxn) – xn
∥∥

≤ δn‖L‖‖Svn – Lxn‖ → 0. (3.25)

Because {xn} is bounded, there exists a subsequence {xnk } of {xn} such that {xnk } con-
verges weakly to some x̄, as k → ∞ and

lim sup
n→∞

〈
xn – q, h(q) – q

〉
= lim

k→∞
〈
xnk – q, h(q) – q

〉

=
〈
x̄ – q, h(q) – q

〉
. (3.26)

Consequently {Lxnk } converges weakly to Lx̄. By (3.24), {vnk } converges weakly to Lx̄. We
show that x̄ ∈ Ω . We know that xn ∈ C and vn ∈ D, for each n ∈N. Since C and D are closed
and convex sets, so C and D are weakly closed, therefore, x̄ ∈ C and Lx̄ ∈ D. From (3.25)
and (3.14), we see that {ynk }, {tnk } and {znk } converge weakly to x̄. By (3.22) and (3.23), we
also see that {unk } and {PD(Lxnk )} converge weakly to Lx̄. Algorithm 3.1 and assertion (i)
in Lemma 2.6 imply that

λnk

(
f (ynk , y) – f (ynk , tnk )

) ≥ 〈tnk – ynk , tnk – y〉
≥ –‖tnk – ynk ‖‖tnk – y‖, ∀y ∈ C,

and

μnk

(
g
(
PD(Lxnk ), u

)
– g

(
PD(Lxnk ), unk

)) ≥ 〈
unk – PD(Lxnk ), unk – u

〉

≥ –
∥∥unk – PD(Lxnk )

∥∥‖unk – u‖, ∀u ∈ D.

Hence, it follows that

f (ynk , y) – f (ynk , tnk ) +
1

λnk

‖tnk – ynk ‖‖tnk – y‖ ≥ 0, ∀y ∈ C,
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and

g
(
PD(Lxnk ), u

)
– g

(
PD(Lxnk ), unk

)
+

1
μnk

∥
∥unk – PD(Lxnk )

∥
∥‖unk – u‖ ≥ 0, ∀u ∈ D.

Letting k → ∞, by the hypothesis on {λn}, {μn}, (3.14), (3.22) and the weak continuity of
f and g (condition (A2)), we obtain

f (x̄, y) ≥ 0, ∀y ∈ C and g(Lx̄, u) ≥ 0, ∀u ∈ D.

This means that x̄ ∈ EP(f ) and Lx̄ ∈ EP(g). It follows from (3.14), (3.16) and (3.25) that

‖zn – Tzn‖ ≤ ‖zn – tn‖ + ‖tn – yn‖ + ‖yn – xn‖ + ‖xn – Tzn‖ → 0.

This together with Lemma 2.2 implies that x̄ ∈ F(T). On the other hand, from (3.21) and
(3.23), we get

‖vn – Svn‖ ≤ ∥
∥vn – PD(Lxn)

∥
∥ +

∥
∥PD(Lxn) – Svn

∥
∥ → 0,

and using again Lemma 2.2, we obtain Lx̄ ∈ F(S). Then we proved that x̄ ∈ EP(f ) ∩ F(T)
and Lx̄ ∈ EP(g) ∩ F(S), that is, x̄ ∈ Ω . By Lemma 2.1, x̄ ∈ Ω and (3.26), we get

lim sup
n→∞

〈
xn – q, h(q) – q

〉
=

〈
x̄ – q, h(q) – q

〉 ≤ 0. (3.27)

Finally, from (3.12), (3.13), (3.27) and Lemma 2.3, we find that the sequence {xn} converges
strongly to q.

Case 2. Suppose that there exists a subsequence {ni} of {n} such that

‖xni – q‖ < ‖xni+1 – q‖, ∀i ∈N.

According to Lemma 2.4, there exists a nondecreasing sequence {mk} ⊂N such that mk →
∞,

‖xmk – q‖ ≤ ‖xmk +1 – q‖ and ‖xk – q‖ ≤ ‖xmk +1 – q‖, ∀k ∈ N. (3.28)

From this and (3.10), we get

(1 – βmk )
[
(1 – 2λmk c1)‖ymk – tmk ‖2 + (1 – 2λmk c2)‖tmk – zmk ‖2]

≤ αmk M + ‖xmk – q‖2 – ‖xmk +1 – q‖2

≤ αmk M.

This together with the assumptions on {αn}, {βn} and {λn} implies that

lim
k→∞

‖ymk – tmk ‖ = 0, lim
k→∞

‖tmk – zmk ‖ = 0 and lim
k→∞

‖ymk – zmk ‖ = 0.
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From (3.15), we have

βmk (1 – βmk )(1 – αmk )‖xmk – Tzmk ‖2 ≤ αmk

∥∥h(xmk ) – q
∥∥2 + ‖xmk – q‖2 – ‖xmk +1 – q‖2

≤ αmk

∥∥h(xmk ) – q
∥∥2.

By the hypothesis on {αn} and {βn}, we have

lim
k→∞

‖xmk – Tzmk ‖ = 0.

By (3.17), we get

–2αmk

〈
h(xmk ) – q, xmk +1 – q

〉 ≤ ‖xmk +1 – q‖2 – ‖xmk – q‖2

– 2αmk

〈
h(xmk ) – q, xmk +1 – q

〉

≤ ‖qmk – q‖2 – ‖xmk – q‖2 ≤ 0.

Since the sequence {xn} is bounded and αn → 0, we obtain

lim
k→∞

‖qmk – q‖ = lim
k→∞

‖xmk – q‖.

By the same argument as Case 1, we have

lim sup
k→∞

〈
xmk – q, h(q) – q

〉 ≤ 0.

It follows from (3.12) and (3.28) that

‖xmk +1 – q‖2 ≤ (1 – γmk )‖xmk – q‖2 + γmk

(
αmk M0

2(1 – ρ)
+

1
(1 – ρ)

〈
h(q) – q, xmk +1 – q

〉
)

≤ (1 – γmk )‖xmk +1 – q‖2 + γmk

(
αmk M0

2(1 – ρ)
+

1
(1 – ρ)

〈
h(q) – q, xmk +1 – q

〉
)

,

and hence

γmk ‖xmk +1 – q‖2 ≤ γmk

(
αmk M0

2(1 – ρ)
+

1
(1 – ρ)

〈
h(q) – q, xmk +1 – q

〉
)

.

Since γmk > 0 and using (3.28) we get

‖xk – q‖2 ≤ ‖xmk +1 – q‖2 ≤
(

αmk M0

2(1 – ρ)
+

1
(1 – ρ)

〈
h(q) – q, xmk +1 – q

〉)
.

Taking the limit in the above inequality as k → ∞, we conclude that xk converges strongly
to q = PΩh(q). �

4 Application to variational inequality problems
In this section, we apply Theorem 3.2 for finding a solution of a variational inequality
problems for a monotone and Lipschitz-type continuous mapping. Let H be a real Hilbert
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space, C be a nonempty and convex subset of H and A : C → C be a nonlinear operator.
The mapping A is said to be

• monotone on C if

〈Ax – Ay, x – y〉 ≥ 0, ∀x, y ∈ C;

• pseudomonotone on C if

〈Ax, y – x〉 ≥ 0 �⇒ 〈Ay, x – y〉 ≤ 0, ∀x, y ∈ C;

• L-Lipschitz continuous on C if there exists a positive constant L such that

‖Ax – Ay‖ ≤ L‖x – y‖, ∀x, y ∈ C.

The variational inequality problem is to find x∗ ∈ C such that

〈
Ax∗, x – x∗〉 ≥ 0, ∀x ∈ C. (4.1)

For each x, y ∈ C, we define f (x, y) = 〈Ax, y – x〉, then the equilibrium problem (1.1) be-
come the variational inequality problem (4.1). We denote the set of solutions of the prob-
lem (4.1) by VI(C, A). We assume that A satisfies the following conditions:

(B1) A is pseudomonotone on C;
(B2) A is weak to strong continuous on C that is, Axn → Ax for each sequence {xn} ⊂ C

converging weakly to x;
(B3) A is L1-Lipschitz continuous on C for some positive constant L1 > 0.
Let H1 and H2 be two real Hilbert spaces and C and D be nonempty closed and convex

subsets of H1 and H2, respectively. Suppose that A : C → C and B : D → D are L1 and
L2-Lipschitz continuous on C and D, respectively. Let L : H1 → H2 be a bounded linear
operator with its adjoint L∗, T : C → C and S : D → D be nonexpansive mappings and
h : C → C be a ρ-contraction mapping. We consider the following extragradient algorithm
for solving the split variational inequality problems and fixed point problems.

Algorithm 4.1 Choose x1 ∈ H1. The control parameters λn, μn, αn, βn, δn satisfy the fol-
lowing conditions:

0 < λ ≤ λn ≤ λ < L1, 0 < μ ≤ μn ≤ μ < L2, βn ∈ (0, 1),

0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1, 0 < δ ≤ δn ≤ δ <

1
‖L‖2 ,

αn ∈
(

0,
1

2 – ρ

)
, lim

n→∞αn = 0,
∞∑

n=1

αn = ∞.
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Let {xn} be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = PD(PD(Lxn) – μnB(PD(Lxn))),

vn = PD(PD(Lxn) – μnB(un))),

yn = PC(xn + δnL∗(Svn – Lxn)),

tn = PC(yn – λnAyn),

zn = PC(yn – λnAtn),

xn+1 = αnh(xn) + (1 – αn)(βnxn + (1 – βn)Tzn).

Theorem 4.2 Let A : C → C and B : D → D be mappings such that assumptions (B1)–
(B3) hold with some positive constants L1 > 0 and L2 > 0, respectively and Ω := {p ∈
VI(C, A) ∩ F(T), Lp ∈ VI(D, B) ∩ F(S)} 
= ∅. Then the sequence {xn} generated by Algo-
rithm 4.1 converges strongly to q = PΩh(q).

Proof Since the mapping A is satisfied the assumptions (B1)–(B3), it is easy to check that
the bifunction f (x, y) = 〈Ax, y – x〉 satisfies conditions (A1)–(A3). Moreover, since A is L1-
Lipschitz continuous on C, it follows that

f (x, y) + f (y, z) – f (x, z) = 〈Ax – Ay, y – z〉
≥ –‖Ax – Ay‖‖y – z‖
≥ –L1‖x – y‖‖y – z‖
≥ –

L1

2
‖x – y‖2 –

L1

2
‖y – z‖2, ∀x, y, z ∈ C.

Then f is Lipschitz-type continuous on C with c1 = c2 = L1
2 , and hence f satisfies condition

(A4).
It follows from the definitions of f and yn that

tn = arg min

{
λn〈Ayn, y – yn〉 +

1
2
‖y – yn‖2 : y ∈ C

}

= arg min

{
1
2
∥∥y – (yn – λnAyn)

∥∥2 : y ∈ C
}

= PC(yn – λnAyn),

and similarly, we can get un = PD(PD(Lxn) – μnB(PD(Lxn))), vn = PD(PD(Lxn) – μnB(un)),
and zn = PC(yn – λnAtn). Then the extragradient Algorithm 3.1 reduces to the Algo-
rithm 4.1 and we get the conclusion from and Theorem 3.2. �

5 Numerical experiments
In this section, we give examples and numerical results to support Theorem 3.2. In ad-
dition, we compare the introduced algorithm with the parallel extragradient algorithm,
which was presented in [27].

We consider the bifunctions f and g which are given in the form of Nash–Cournot
oligopolistic equilibrium models of electricity markets [15, 34],

f (x, y) = (Px + Qy)T (y – x), ∀x, y ∈R
k , (5.1)
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g(u, v) = (Uu + Vv)T (v – u), ∀u, v ∈R
m, (5.2)

where P, Q ∈ R
k×k and U , V ∈ R

m×m are symmetric positive semidefinite matrices such
that P–Q and U –V are positive semidefinite matrices. The bifunctions f and g satisfy con-
ditions (A1)–(A4) (see [37]). Indeed, f and g are Lipshitz-type continuous with constants
c1 = c2 = 1

2‖P – Q‖ and d1 = d2 = 1
2‖U – V‖, respectively. Notice that, if b1 = max{c1, d1}

and b2 = max{c2, d2}, then both bifunctions f and g are Lipshitz-type continuous with con-
stants b1 and b2.

The following numerical experiments are written in Matlab R2015b and performed on a
Desktop with Intel(R) Core(TM) i3 CPU M 390 @ 2.67 GHz 2.67 GHz and RAM 4.00 GB.

Example 5.1 Let the bifunctions f and g be given as (5.1) and (5.2), respectively. We will
be concerned with the following boxes: C =

∏k
i=1[–5, 5], D =

∏m
j=1[–20, 20], C =

∏k
i=1[–3, 3]

and D =
∏m

j=1[–10, 10]. The nonexpansive mappings T : C → C and S : D → D are given
by T = PC and S = PD, respectively. The contraction mapping h : C → C is a k × k matrix
such that ‖h‖ < 1, while the linear operator L : Rk →R

m is a m × k matrix.
In this numerical experiment, the matrices P, Q, U , and V are randomly generated in

the interval [–5, 5] such that they satisfy above required properties. Besides, the matrices
h and L are randomly generated in the interval (0, 1

k ) and [–2, 2], respectively. We ran-
domly generated starting point x1 ∈R

k in the interval [–20, 20] with the following control
parameters: δn = 1

2‖L‖2 , αn = 1
n+2 and μn = λn = 1

4 max{b1,b2} . The following three cases of the
control parameter βn are considered:

Case 1. βn = 10–10 + 1
n+1 .

Case 2. βn = 0.5.
Case 3. βn = 0.99 – 1

n+1 .
Note that to obtain the vector un, in the Algorithm 3.1, we need to solve the optimization

problem

arg min

{
μng

(
PD(Lxn), u

)
+

1
2
∥
∥u – PD(Lxn)

∥
∥2 : u ∈ D

}
,

which is equivalent to the following convex quadratic problem:

arg min

{
1
2

uT Ju + KT u : u ∈ D
}

, (5.3)

where J = 2μnV + Im and K = μnUPD(Lxn) – μnVPD(Lxn) – PD(Lxn) (see [27]).
On the other hand, in order to obtain the vector vn, we need to solve the following convex

quadratic problem:

arg min

{
1
2

uT Ju + KT u : u ∈ D
}

, (5.4)

where J = J and K = μnUun – μnVun – PD(Lxn). Similarly, to obtain the vectors tn and zn,
we have to consider the convex quadratic problems in the same way as in (5.3) and (5.4),
respectively. We use the Matlab Optimization Toolbox to solve vectors un, vn, tn and zn.
The Algorithm 3.1 is tested by using the stopping criterion ‖xn+1 – xn‖ < 10–3. In Table 1,
we randomly take 10 starting points and the presented results are in average.
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Table 1 The numerical results for different parameter βn of Example 5.1

Size Average times (sec) Average iterations

k m Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

5 10 1.399695 1.957304 6.356185 37 54 171
10 5 2.168317 2.916557 6.551182 56 75 179
20 50 2.834138 3.785376 8.711813 58 80 186
50 20 5.292192 6.570650 10.418191 111 138 220

Table 2 The numerical results for the split equilibrium problem of Example 5.2

Size Average times (sec) Average iterations

k m Algorithm 3.1 PEA Algorithm 3.1 PEA

5 10 0.862125 0.983111 31 44
10 5 1.037650 1.991282 36 83
20 50 1.607701 2.618173 44 85
50 20 2.937581 7.926821 80 258

From Table 1, we may suggest that a smallest size of parameter βn, as βn = 10–10 + 1
n+1 ,

provides less computational times and iterations than other cases.

Example 5.2 We consider the problem (1.3) when T = I
Rk and S = IRm are identity map-

pings on R
k and R

m, respectively. It follows that the problem (1.3) becomes the split equi-
librium problem which was considered in [27]. In this case, we compare the Algorithm 3.1
with the parallel extragradient algorithm (PEA), which was in [27, Corollary 3.1]. For this
numerical experiment, we consider the problem setting and the control parameters as in
Example 5.1, but only for the case of parameter βn is 10–10 + 1

n+1 . The starting point x1 ∈R
k

is randomly generated in the interval [–5, 5]. We compare Algorithm 3.1 with PEA by us-
ing the stopping criterion ‖xn+1 – xn‖ < 10–3. In Table 2, we randomly take 10 starting
points and the presented results are in average.

From Table 2, we see that both computational times and iterations of Algorithm 3.1 are
less than those of PEA.

6 Conclusions
We introduce a new extragradient algorithm and its convergence theorem for the split
equilibrium problems and split fixed point problems. We also apply the main result to the
problem of split variational inequality problems and split fixed point problems. Some nu-
merical example and computational results are provided for discussing the possible use-
fulness of the results which are presented in this paper. We would like to note that this
paper convinces us to consider the future research directions, for example, to consider
the convergence analysis and the more general cases of the problem (like the non-convex
case) directions; one may see [22, 29, 33] for more inspiration.
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