
Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148
https://doi.org/10.1186/s13660-019-2084-9

R E S E A R C H Open Access

Split proximal linearized algorithm and
convergence theorems for the split DC
program
Chih-Sheng Chuang1 and Chi-Ming Chen2*

*Correspondence:
ming@mail.nd.nthu.edu.tw
2Institute of Computational and
Modeling Science, National Tsing
Hua University, Hsinchu, Taiwan
Full list of author information is
available at the end of the article

Abstract
In this paper, we study the split DC program by using the split proximal linearized
algorithm. Further, linear convergence theorem for the proposed algorithm is
established under suitable conditions. As applications, we first study the DC program
(DCP). Finally, we give numerical results for the proposed convergence results.

MSC: 49J50; 49J53; 49M30; 49M37; 90C26

Keywords: DC program; Proximal linearized algorithm; Strongly monotonicity

1 Introduction
First, we recall the minimization problem for convex functions:

Find x̄ ∈ arg min
{

f (x) : x ∈ H
}

, (MP1)

where H is a real Hilbert space and f : H → (–∞,∞] is a proper, lower semicontinuous,
and convex function. This is a classical convex minimization problem with many applica-
tions. To study this problem, Martinet [11] introduced the proximal point algorithm

xn+1 = arg min
y∈H

{
f (y) +

1
2βn

‖y – xn‖2
}

, n ∈N, (PPA)

and showed that {xn}n∈N converges weakly to a minimizer of f under suitable conditions.
This algorithm is useful, however, only for convex problems, because the idea for this
algorithm is based on the monotonicity of subdifferential operators of convex functions.
So, it is important to consider the relation between nonconvex problems and a proximal
point algorithm.

The following is a well-known nonconvex problem, known as DC program:

Find x̄ ∈ arg min
x∈Rn

{
f (x) = g(x) – h(x)

}
, (DCP)

where g, h : Rn → R are proper lower semicontinuous and convex functions. Here, the
function f is called a DC function, and functions g and h are called DC components of f .

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-019-2084-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-019-2084-9&domain=pdf
mailto:ming@mail.nd.nthu.edu.tw

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 2 of 16

In the DC program, the convention (+∞) – (+∞) = +∞ has been adopted to avoid the
ambiguity (+∞)–(+∞) that does not present any interest. It is well known that a necessary
condition for x ∈ dom(f) := {x ∈R

n : f (x) < ∞} to be a local minimizer of f is ∂h(x) ⊆ ∂g(x),
where ∂g(x) and ∂h(x) are the subdifferentials of g and h, respectively (see Definition 2.4).
But this condition is hard to be reached. So, many researchers focus their attention on
finding points such that ∂h(x) ∩ ∂g(x) �= ∅, where x is called a critical point of f [8].

It is worth mentioning the richness of the class of DC functions which is a subspace
containing the class of lower-C2 functions. In particular, DC(Rn) contains the space C1,1 of
functions whose gradient is locally Lipschitz continuous. Further, DC(Rn) is closed under
the operations usually considered in optimization. For example, a linear combination, a
finite supremum, or the product of two DC functions remain DC. It is also known that the
set of DC functions defined on a compact convex set ofRn is dense in the set of continuous
functions on this set.

We also observed that the interest in the theory of DC functions has much increased
in the last years. Some interesting optimality conditions and duality theorems related to
the DC program have been given (for example, see [6, 7, 14]). Some algorithms for the DC
program are proposed to analyze and solve a variety of highly structured and practical
problems (for example, see [13]).

In 2003, Sun, Sampaio, and Candido [16] gave the following algorithm to study problem
(DCP).

Algorithm 1.1 (Proximal point algorithm for (DCP) [16]) Let {βn}n∈N be a sequence in
(0,∞), and let g, h : Rk → R be proper lower semicontinuous and convex functions. Let
{xn}n∈N be generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ H1 is chosen arbitrarily,

compute wn ∈ ∂h(xn) and set yn = xn + βnwn,

xn+1 := (I + βn∂g)–1(yn), n ∈N,

stop criteria: xn+1 = xn.

In 2016, Souza, Oliveira, and Soubeyran [15] gave the following algorithm to study the
DC program.

Algorithm 1.2 (Proximal linearized algorithm for (DCP) [15]) Let {βn}n∈N be a sequence
in (0,∞), and let g, h : Rk →R be proper lower semicontinuous and convex functions. Let
{xn}n∈N be generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ H1 is chosen arbitrarily,

compute wn ∈ ∂h(xn),

xn+1 := arg minu∈H1{g(u) + 1
2βn

‖u – xn‖2 – 〈wn, u – xn〉}, n ∈N,

stop criteria: xn+1 = xn.

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 3 of 16

In fact, if h is differentiable, then it is reduced to the following:

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ H1 is chosen arbitrarily,

xn+1 := arg minu∈H1{g(u) + 1
2βn

‖u – xn‖2 – 〈∇h(xn), u – xn〉}, n ∈N.

stop criteria: xn+1 = xn.

Further, Souza, Oliveira, and Soubeyran [15] gave the following convergence theorem
for problem (DCP).

Theorem 1.1 ([15, Theorem 3]) Let g, h : Rk → R ∪ {+∞} be proper, lower semicontinu-
ous, and convex functions, and g – h be bounded from below. Suppose that g is ρ-strongly
convex, h is differentiable, and ∇h(x) is L-Lipschitz continuous. Let {βn}n∈N be a bounded
sequence with lim infn→∞ βn > 0. Let {xn}n∈N be generated by Algorithm 1.2. If ρ > 2L, then
{xn}n∈N converges linearly to a critical point x̄ of problem (DCP).

In this paper, we want to study the split DC program:

Find x̄ ∈ H1 such that x̄ ∈ arg min
x∈H1

f1(x) and Ax̄ ∈ arg min
y∈H2

f2(y), (SDCP)

where H1 and H2 are real Hilbert spaces, A : H1 → H2 is a nonzero linear and bounded
mapping with adjoint operator A∗, g1, h1 : H1 → R are proper lower semicontinuous and
convex functions, and g2, h2 : H2 →R are proper lower semicontinuous and convex func-
tions, and f1(x) = g1(x) – h1(x) for all x ∈ H1, and f2(y) = g2(y) – h2(y) for all y ∈ H2.

Clearly, (SDCP) is a generalization of problem (DCP). Indeed, if H1 = H2 = R
n, A : Rn →

R
n is the identity mapping, g1 = g2, and h1 = h2, then problem (SDCP) is reduced to prob-

lem (DCP).
If h1(x) = 0 and h2(y) = 0 for all x ∈ H1 and y ∈ H2, then (SDCP) is reduced to the split

minimization problems (SMP) for convex functions:

Find x̄ ∈ H1 such that g1(x̄) = min
u∈H1

g1(u) and g2(Ax̄) = min
v∈H2

g2(v), (SMP)

where H1 and H2 are real Hilbert spaces, A : H1 → H2 is a linear and bounded mapping
with adjoint A∗, g1 : H1 → R and g2 : H2 →R are proper, lower semicontinuous, and con-
vex functions. For example, one can see [4] and the related references.

If H1 = H2 = H and A : H → H is the identity mapping, then problem (SMP) is reduced
to the common minimization problem for convex functions:

Find x̄ ∈ H such that g1(x̄) = min
u∈H

g1(u) and g2(x̄) = min
v∈H

g2(v), (CMP)

where H is a real Hilbert space, g1, g2 : H → R are proper, lower semicontinuous, and
convex functions. Further, if the solution set of problem (CMP) is nonempty, then problem
(CMP) is equivalent to the following problem:

Find x̄ ∈ H such that g1(x̄) + g2(x̄) = min
u∈H

g1(u) + g2(u), (MP2)

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 4 of 16

where H is a real Hilbert space, g1, g2 : H → R are proper, lower semicontinuous, and
convex functions. This problem is well known and it has many important applications,
including multiresolution sparse regularization, Fourier regularization, hard-constrained
inconsistent feasibility, and alternating projection signal synthesis problems. For example,
one can refer to [5, 9] and the related references.

On the other hand, Moudafi [12] introduced the split variational inclusion problem,
which is a generalization of problem (SMP):

Find x̄ ∈ H1 such that 0H1 ∈ B1(x̄) and 0H2 ∈ B2(Ax̄), (SVIP)

where H1 and H2 are real Hilbert spaces, B1 : H1 � H1 and B2 : H2 � H2 are set-valued
maximal monotone mappings, A : H1 → H2 is a linear and bounded operator, and A∗ is
the adjoint of A. Here, 0H1 and 0H2 are zero elements of real Hilbert spaces H1 and H2,
respectively. To study problem (SVIP), Byrne et al. [3] gave the following algorithm and
related convergence theorem in infinite dimensional Hilbert space.

Theorem 1.2 ([3]) Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a nonzero linear
and bounded operator, and A∗ denote the adjoint operator of A. Let B1 : H1 � H1 and
B2 : H2 � H2 be set-valued maximal monotone mappings, β > 0, and γ ∈ (0, 2

‖A‖2). Let Ω

be the solution set of (SVIP), and suppose that Ω �= ∅. Let {xn}n∈N be defined by

xn+1 := JB1
β

[
xn – γ A∗(I – JB2

β

)
Axn

]
, n ∈N.

Then {xn} converges weakly to an element x̄ ∈ Ω .

If B1 = ∂g1 and B2 = ∂g2 (the subdifferential of gi, i = 1, 2), then the algorithm given by
Theorem 1.2 is reduced to the following algorithm:

⎧
⎪⎪⎨

⎪⎪⎩

yn = arg minz∈H2{g(z) + 1
2βn

‖z – Axn‖2},
zn = xn – γ A∗(Axn – yn),

xn+1 = arg miny∈H1{g(y) + 1
2βn

‖y – zn‖2}, n ∈N.

In this paper, motivated by the above works on DC programs and related problems, we
want to study problem (SDCP) by using the split proximal linearized algorithm:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ H1 is chosen arbitrarily,

yn := arg minv∈H2{g2(v) + 1
2βn

‖v – Axn‖2 – 〈∇h2(Axn), v – Axn〉},
zn := xn – rnA∗(Axn – yn),

xn+1 := arg minu∈H1{g1(u) + 1
2βn

‖u – zn‖2 – 〈∇h1(zn), u – zn〉}, n ∈N,

where H1 and H2 are real Hilbert spaces, A : H1 → H2 is a linear and bounded mapping
with adjoint A∗, g1, h1 : H1 → R are proper lower semicontinuous and convex functions,
and g2, h2 : H2 → R are proper lower semicontinuous and convex functions, g1 and g2 are
strongly convex, h1 and h2 are Fréchet differentiable, ∇h1 and ∇h2 are L-Lipschitz contin-
uous, and f1(x) = g1(x) – h1(x) for all x ∈ H1, and f2(y) = g2(y) – h2(y) for all y ∈ H2. Further,
linear convergence theorems for the proposed algorithms are established under suitable
conditions. Finally, we give numerical results for the proposed convergence theorems.

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 5 of 16

2 Preliminaries
Let H be a (real) Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖. We denote
the strong and weak convergence of {xn}n∈N to x ∈ H by xn → x and xn ⇀ x, respectively.
For each x, y, u, v ∈ H and λ ∈ R, we have

‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2, (2.1)
∥∥λx + (1 – λ)y

∥∥2 = λ‖x‖2 + (1 – λ)‖y‖2 – λ(1 – λ)‖x – y‖2, (2.2)

2〈x – y, u – v〉 = ‖x – v‖2 + ‖y – u‖2 – ‖x – u‖2 – ‖y – v‖2. (2.3)

Definition 2.1 Let H be a real Hilbert space, B : H → H be a mapping, and ρ > 0. Thus,
(i) B is monotone if 〈x – y, Bx – By〉 ≥ 0 for all x, y ∈ H .

(ii) B is ρ-strongly monotone if 〈x – y, Bx – By〉 ≥ ρ‖x – y‖2 for all x, y ∈ H .

Definition 2.2 Let H be a real Hilbert space and B : H � H be a set-valued mapping with
domain D(B) := {x ∈ H : B(x) �= ∅}. Thus,

(i) B is called monotone if 〈u – v, x – y〉 ≥ 0 for any u ∈ B(x) and v ∈ B(y).
(ii) B is maximal monotone if its graph {(x, y) : x ∈D(B), y ∈ B(x)} is not properly

contained in the graph of any other monotone mapping.
(iii) B is ρ-strongly monotone if 〈x – y, u – v〉 ≥ ρ‖x – y‖2 for all x, y ∈ H and all

u ∈ B(x), and v ∈ B(y).

Definition 2.3 Let H be a real Hilbert space, and f : H →R be a function. Thus,
(i) f is proper if dom(f) := {x ∈ H : f (x) < ∞} �= ∅.

(ii) f is lower semicontinuous if {x ∈ H : f (x) ≤ r} is closed for each r ∈R.
(iii) f is convex if f (tx + (1 – t)y) ≤ tf (x) + (1 – t)f (y) for every x, y ∈ H and t ∈ [0, 1].
(iv) f is ρ-strongly convex (ρ > 0) if

f
(
tx + (1 – t)y

)
+

ρ

2
· t(1 – t)‖x – y‖2 ≤ tf (x) + (1 – t)f (y)

for all x, y ∈ H and t ∈ (0, 1).
(v) f is Gâteaux differentiable at x ∈ H if there is ∇f (x) ∈ H such that

lim
t→0

f (x + ty) – f (x)
t

=
〈
y,∇f (x)

〉

for each y ∈ H .
(vi) f is Fréchet differentiable at x if there is ∇f (x) such that

lim
y→0

f (x + y) – f (x) – 〈∇f (x), y〉
‖y‖ = 0.

Remark 2.1 Let H be a real Hilbert space. Then f (x) := ‖x‖2 is a 2-strongly convex func-
tion. Besides, we know g : H → R is ρ-strongly convex if and only if g – ρ

2 ‖ · ‖2 is convex
[1, Proposition 10.6].

Example 2.1 Let g(x) := 1
2 〈Qx, x〉 – 〈x, b〉, where Q ∈ R

n×n is a real symmetric positive
definite matrix and b ∈ R

n. Then g is a strongly convex function.

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 6 of 16

Definition 2.4 Let f : H → (–∞,∞] be a proper lower semicontinuous and convex func-
tion. Then the subdifferential ∂f of f is defined by

∂f (x) :=
{

x∗ ∈ H : f (x) +
〈
y – x, x∗〉 ≤ f (y) for each y ∈ H

}

for each x ∈ H .

Lemma 2.1 Let f : H → (–∞,∞] be a proper lower semicontinuous and convex function.
Then the following are satisfied:

(i) ∂f is a set-valued maximal monotone mapping.
(ii) f is Gâteaux differentiable at x ∈ int(D) if and only if ∂f (x) consists of a single

element. That is, ∂f (x) = {∇f (x)} [2, Proposition 1.1.10].
(iii) Suppose that f is Fréchet differentiable. Then f is convex if and only if ∇f is a

monotone mapping.

Lemma 2.2 ([1, Example 22.3(iv)]) Let ρ > 0, H be a real Hilbert space and f : H → R be
a proper, lower-semicontinuous, and convex function. If f is ρ-strongly convex, then ∂f is
ρ-strongly monotone.

Lemma 2.3 ([1, Proposition 16.26]) Let H be a real Hilbert space and f : H → (∞,∞] be
a proper, lower semicontinuous, and convex function. If {un}n∈N and {xn}n∈N are sequences
in H with un ∈ ∂f (xn) for all n ∈N, and xn ⇀ x and un → u, then u ∈ ∂f (x).

Lemma 2.4 ([17, p. 114]) Let {an}n∈N and {bn}n∈N be sequences of nonnegative real num-
bers. If

∑∞
n=1 an = ∞ and

∑∞
n=1 anbn < ∞, then lim infn→∞ bn = 0.

Lemma 2.5 ([10]) Let H be a real Hilbert space, B : H � H be a set-valued maximal
monotone mapping, β > 0, and JB

β be defined by JB
β (x) := (I + βB)–1(x) for each x ∈ H . Then

JB
β is a single-valued mapping.

3 Split proximal linearized algorithm
Throughout this section, we use the following notations and assumptions. Let ρ ≥
L > 0. Let H1 and H2 be finite dimensional real Hilbert spaces, A : H1 → H2 be a nonzero
linear and bounded mapping, A∗ be the adjoint of A, g1, h1 : H1 → R be proper lower
semicontinuous and convex functions, g2, h2 : H2 → R be proper lower semicontinuous
and convex functions, f1(x) = g1(x) – h1(x) for all x ∈ H1, and f2(y) = g2(y) – h2(y) for all
y ∈ H2. Further, we assume that f1 and f2 are bounded from below, h1 and h2 are Fréchet
differentiable, ∇h1 and ∇h2 are L-Lipschitz continuous, g1 and g2 are ρ-strongly convex.
Let β ∈ (0,∞), and let {βn}n∈N be a sequence in [a, b] ⊆ (0,∞). Let r ∈ (0, 1

‖A‖2) and {rn}n∈N
be a sequence in (0, 1

‖A‖2). Let ΩSDCP be defined by

ΩSDCP :=
{

x ∈ H1 : ∇h1(x) ∈ ∂g1(x),∇h2(Ax) ∈ ∂g2(Ax)
}

,

and assume that ΩSDCP �= ∅.

Proposition 3.1 If ρ > L and ΩSDCP �= ∅, then the set ΩSDCP is a singleton.

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 7 of 16

Proof If x, y ∈ ΩSDCP, then

∇h1(x) ∈ ∂g1(x), ∇h1(y) ∈ ∂g1(y),

∇h2(Ax) ∈ ∂g2(Ax), ∇h2(Ay) ∈ ∂g2(Ay).

Since g1 is ρ-strongly convex, we know ∂g1 is ρ-strongly monotone. Thus,

ρ‖x – y‖2 ≤ 〈
x – y,∇h1(x) – ∇h1(y)

〉 ≤ ‖x – y‖ · ∥∥∇h1(x) – ∇h1(y)
∥∥.

Since ∇h1 is L-Lipschitz continuous, we have

ρ‖x – y‖2 ≤ ‖x – y‖ · ∥∥∇h1(x) – ∇h1(y)
∥∥ ≤ L‖x – y‖2.

Since ρ > L, we have x = y. The proof is completed. �

In this section, we study the split DC program by the following algorithm.

Algorithm 3.1 (Split proximal linearized algorithm)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ H1 is chosen arbitrarily,

yn := arg minv∈H2{g2(v) + 1
2βn

‖v – Axn‖2 – 〈∇h2(Axn), v – Axn〉},
zn := xn – rnA∗(Axn – yn),

xn+1 := arg minu∈H1{g1(u) + 1
2βn

‖u – zn‖2 – 〈∇h1(zn), u – zn〉}, n ∈N.

Theorem 3.1 Let {rn}n∈N be a sequence in (0, 1
‖A‖2) with 0 < lim infn→∞ rn

≤ lim supn→∞ rn < 1
‖A‖2 . Let {xn}n∈N be generated by Algorithm 3.1. Then {xn}n∈N converges

to an element x̄ ∈ ΩSDCP.

Proof Take any w ∈ ΩSDCP and n ∈N, and let w and n be fixed. First, from the second line
of Algorithm 3.1, we get

0 ∈ ∂g2(yn) +
1
βn

(yn – Axn) – ∇h2(Axn). (3.1)

By (3.1), there exists un ∈ ∂g2(yn) such that

∇h2(Axn) = un +
1
βn

(yn – Axn). (3.2)

Since w ∈ ΩSDCP, we know that ∇h2(Aw) ∈ ∂g2(Aw). By Lemma 2.2, ∂g2 is ρ-strongly
monotone, and then

0 ≤ 〈
yn – Aw, un – ∇h2(Aw)

〉
– ρ‖yn – Aw‖2. (3.3)

By (3.2) and (3.3),

0 ≤
〈
yn – Aw,∇h2(Axn) +

1
βn

(Axn – yn) – ∇h2(Aw)
〉

– ρ‖yn – Aw‖2. (3.4)

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 8 of 16

Hence, by (3.4), we have

0 ≤ 2βn
〈
yn – Aw,∇h2(Axn) – ∇h2(Aw)

〉
+ 2〈yn – Aw, Axn – yn〉

– 2βnρ‖yn – Aw‖2

≤ 2βnL‖yn – Aw‖ · ‖Axn – Aw‖ – 2βnρ‖yn – Aw‖2

+ ‖Axn – Aw‖2 – ‖yn – Axn‖2 – ‖yn – Aw‖2

≤ βnL‖yn – Aw‖2 + βnL‖Axn – Aw‖2 – 2βnρ‖yn – Aw‖2

+ ‖Axn – Aw‖2 – ‖yn – Axn‖2 – ‖yn – Aw‖2. (3.5)

By (3.5), we obtain

‖yn – Aw‖2 ≤ βnL + 1
1 + 2βnρ – βnL

‖Axn – Aw‖2 –
‖yn – Axn‖2

1 + 2βnρ – βnL

≤ ‖Axn – Aw‖2 –
‖yn – Axn‖2

1 + 2βnρ – βnL
. (3.6)

In the same way, one obtains

‖xn+1 – w‖2 ≤ ‖zn – w‖2 –
1

1 + 2βnρ – βnL
‖xn+1 – zn‖2 ≤ ‖zn – w‖2. (3.7)

Next, we have

2‖zn – w‖2 = 2
〈
zn – w, xn – rnA∗(Axn – yn) – w

〉

= 2〈zn – w, xn – w〉 – 2rn
〈
zn – w, A∗(Axn – yn)

〉

= 2〈zn – w, xn – w〉 – 2rn〈Azn – Aw, Axn – yn〉
= ‖zn – w‖2 + ‖xn – w‖2 – ‖xn – zn‖2 – rn‖Azn – yn‖2

– rn‖Axn – Aw‖2 + rn‖Azn – Axn‖2 + rn‖yn – Aw‖2. (3.8)

By (3.6), (3.7), and (3.8),

‖xn+1 – w‖2

≤ ‖zn – w‖2

= ‖xn – w‖2 – ‖xn – zn‖2 – rn‖Azn – yn‖2

– rn‖Axn – Aw‖2 + rn‖Azn – Axn‖2 + rn‖yn – Aw‖2

≤ ‖xn – w‖2 – ‖xn – zn‖2 – rn‖Azn – yn‖2 – rn‖Axn – Aw‖2

+ rn‖A‖2 · ‖zn – xn‖2 + rn · βnL + 1
1 + 2βnρ – βnL

‖Axn – Aw‖2

= ‖xn – w‖2 –
(
1 – rn‖A‖2)‖xn – zn‖2 – rn‖Azn – yn‖2

– rn

(
1 –

βnL + 1
1 + 2βnρ – βnL

)
‖Axn – Aw‖2

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 9 of 16

= ‖xn – w‖2 –
(
1 – rn‖A‖2)‖xn – zn‖2 – rn‖Azn – yn‖2

– rn

(
2βn(ρ – L)

1 + 2βnρ – βnL

)
‖Axn – Aw‖2

≤ ‖xn – w‖2. (3.9)

By (3.9), limn→∞ ‖xn – w‖ exists and {xn}n∈N is a bounded sequence. Further, {Axn}n∈N,
{yn}n∈N, {zn}n∈N are bounded sequences. By (3.9) again, we know that

lim
n→∞‖xn – w‖ = lim

n→∞‖zn – w‖, (3.10)

and

lim
n→∞

‖xn+1 – zn‖2

1 + 2βnρ – βnL
= lim

n→∞ rn‖Azn – yn‖2 = lim
n→∞

(
1 – rn‖A‖2)‖xn – zn‖2 = 0. (3.11)

It follows from {βn}n∈N ⊆ (a, b), 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 1
‖A‖2 , and (3.11) that

lim
n→∞‖xn+1 – zn‖ = lim

n→∞‖Azn – yn‖ = lim
n→∞‖xn – zn‖ = 0. (3.12)

Since {xn}n∈N is bounded, there exists a subsequence {xnk }k∈N of {xn}n∈N such that xnk →
x̄ ∈ H1. Clearly, Axnk → Ax̄, znk → x̄, Aznk → Ax̄, ynk → Ax̄, and xnk +1 → x̄. Further, by
(3.2), we obtain

∇h2(Axnk) ∈ ∂g2(ynk) +
1

βnk

(ynk – Axnk). (3.13)

By (3.12), (3.13), Lemma 2.3, and {βn}n∈N ⊆ (a, b), we determine that

∇h2(Ax̄) ∈ ∂g2(Ax̄). (3.14)

Similarly, we have

∇h1(x̄) ∈ ∂g1(x̄). (3.15)

By (3.14) and (3.15), we know that x̄ ∈ ΩSDCP. Further, limn→∞ ‖xn – x̄‖ = limk→∞ ‖xnk –
x̄‖ = 0. Therefore, the proof is completed. �

Remark 3.1
(i) In Algorithm 3.1, if yn = Axn and xn+1 = zn, then xn = zn, and this implies that

∇h1(xn) ∈ ∂g1(xn) and ∇h2(Axn) ∈ ∂g2(Axn). Thus, xn ∈ ΩSDCP.
(ii) In Algorithm 3.1, if xn+1 �= zn, then f1(xn+1) < f1(zn). Indeed, it follows from

∂h1(zn) = {∇h1(zn)} and the definition of xn+1 that

g1(xn+1) – h1(xn+1) +
1

2βn
‖xn+1 – zn‖2 ≤ g1(zn) – h1(zn).

So, if xn+1 �= zn, then f1(xn+1) < f1(zn).

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 10 of 16

(iii) In Algorithm 3.1, if yn �= Axn, then f2(yn) < f2(Axn). Indeed, it follows from
∂h2(Axn) = {∇h2(Axn)} and the definition of yn that

g2(yn) – h2(yn) +
1

2βn
‖yn – Axn‖2 ≤ g2(Axn) – h2(Axn).

So, if yn �= Axn, then f2(yn) < f2(Axn).
(iv) If ρ > L, then it follows from (3.7) that (3.9) can be rewritten as

‖xn+1 – w‖2 ≤ kn‖zn – w‖2 ≤ kn‖xn – w‖2,

where

kn :=
1 + βnL

1 + 2βnρ – βnL
∈ (0, 1).

Hence, {xn}n∈N converges linearly to x̄, where ΩSDCP = {x̄}.

Remark 3.2 From the proof of Theorem 3.1, we know that

∇h2(Axn) +
1
βn

(Axn – yn) ∈ ∂g2(yn), (3.16)

and this implies that

Axn + βn∇h2(Axn) ∈ yn + βn∂g2(yn) = (IH2 + βn∂g2)(yn), (3.17)

where IH2 is the identity mapping on H2. Since g2 is proper, lower semicontinuous,
and convex, we know that ∂g2 is maximal monotone. So, by Lemma 2.5, we determine
that

yn = (IH2 + βn∂g2)–1(Axn + βn∇h2(Axn)
)
. (3.18)

Similarly, we have

xn+1 = (IH1 + βn∂g1)–1(zn + βn∇h1(zn)
)
, (3.19)

where IH1 is the identity mapping on H1. Therefore, Algorithm 3.1 can be rewritten as the
following algorithm:

⎧
⎪⎪⎨

⎪⎪⎩

yn := (IH2 + βn∂g2)–1(Axn + βn∇h2(Axn)),

zn := xn – rnA∗(Axn – yn),

xn+1 := (IH1 + βn∂g1)–1(zn + βn∇h1(zn)), n ∈N.

(Algorithm 3.2)

In fact, we observe that the idea of Algorithm 3.2 is the same as the proposed algo-
rithm by Sun, Sampaio, and Candido [16, Algorithm 2.3]. Hence, a modified algorithm

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 11 of 16

and related convergence theorems could be presented by using the idea of [16, Algo-
rithm 5.3].

Remark 3.3 Under the assumptions in this section, consider the following:

⎧
⎪⎪⎨

⎪⎪⎩

y := arg minv∈H2{g2(v) + 1
2β

‖v – Ax‖2 – 〈∇h2(Ax), v – Ax〉},
z := x – rA∗(Ax – y),

w := arg minu∈H1{g1(u) + 1
2β

‖u – z‖2 – 〈∇h1(z), u – z〉},
(3.20)

that is,

⎧
⎪⎪⎨

⎪⎪⎩

y := (IH2 + β∂g2)–1(Ax + β∇h2(Ax)),

z := x – rA∗(Ax – y),

w := (IH1 + β∂g1)–1(z + β∇h1(z)),

(3.21)

we know that

Ax = y and z = w ⇔ x = z ∈ ΩSDCP. (3.22)

Proof For this equivalence relation, we only need to show that x = z ∈ ΩSDCP implies that
Ax = y and z = w. Indeed, since x = z ∈ ΩSDCP, we know that ∇h1(z) ∈ ∂g1(z) and ∇h2(Ax) ∈
∂g2(Ax). By Lemma 2.5,

⎧
⎨

⎩
(IH2 + β∂g2)–1(Ax + β∇h2(Ax)) = Ax,

(IH1 + β∂g1)–1(z + β∇h1(z)) = z.
(3.23)

By (3.21) and (3.23), we know that Ax = y and z = w. �

Remark 3.4 In Algorithm 3.1, if βn = β and rn = r for each n ∈ N, and xN+1 = xN for some
N ∈ N, then xn = xN , yn = yN , and zn = zN for each n ∈ N with n ≥ N . By Theorem 3.1,
we know that limn→∞ xn = xN ∈ ΩSDCP. So, xn+1 = xn could be set as a stop criterion in
Algorithm 3.1. Further, from (3.21), we have

x = w ⇒ x ∈ ΩSDCP

⇒ x ∈ ΩSDCP and y = Ax

⇒ x = z ∈ ΩSDCP and y = Ax

⇒ x = z = w ∈ ΩSDCP and y = Ax

⇒ x = w.

This equivalence relation is important for the split DC program.

By Remark 3.4, we give the following result.

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 12 of 16

Proposition 3.2 Under the assumptions in this section, and

⎧
⎪⎪⎨

⎪⎪⎩

y := arg minv∈H2{g2(v) + 1
2β

‖v – Ax‖2 – 〈∇h2(Ax), v – Ax〉},
z := x – rA∗(Ax – y),

w := arg minu∈H1{g1(u) + 1
2β

‖u – z‖2 – 〈∇h1(z), u – z〉}.
(3.24)

Then x ∈ ΩSDCP if and only if x = w.

Next, we give another convergence theorem for the split proximal linearized algorithm
under different assumptions on {rn}n∈N.

Theorem 3.2 Let {rn}n∈N be a sequence in (0, 1
‖A‖2) with limn→∞ rn = 0 and

∑∞
n=1 rn = ∞.

Let {xn}n∈N be generated by Algorithm 3.1. Then {xn}n∈N converges to an element x̄ ∈ ΩSDCP.

Proof Take any w ∈ ΩSDCP and n ∈ N, and let w and n be fixed. From the proof of Theo-
rem 3.1, we have

∇h2(Axn) –
1
βn

(yn – Axn) ∈ ∂g2(Axn), (3.25)

∇h1(zn) –
1
βn

(xn+1 – zn) ∈ ∂g1(xn+1), (3.26)

and

‖xn+1 – w‖2 ≤ ‖xn – w‖2 –
(
1 – rn‖A‖2)‖xn – zn‖2 – rn‖Azn – yn‖2

– rn

(
2βn(ρ – L)

1 + 2βnρ – βnL

)
‖Axn – Aw‖2 –

1
1 + 2βnρ – βnL

‖xn+1 – zn‖2

≤ ‖xn – w‖2. (3.27)

Further, the following are satisfied:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

limn→∞ ‖xn – w‖ exists,

{xn}n∈N, {Axn}n∈N, {yn}n∈N, {zn}n∈N are bounded sequences,

limn→∞ ‖xn+1 – zn‖ = 0,

limn→∞(1 – rn‖A‖2)‖xn – zn‖2 = 0.

Since limn→∞ rn = 0, we know that

lim
n→∞‖xn – zn‖ = 0. (3.28)

By (3.27), we have

∞∑

n=1

rn‖Azn – yn‖2 ≤
∞∑

n=1

(‖xn – w‖2 – ‖xn+1 – w‖2) < ∞. (3.29)

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 13 of 16

By (3.29) and Lemma 2.4, we determine that

lim inf
n→∞ ‖Azn – yn‖2 = 0. (3.30)

Then there exist a subsequence {ynk }k∈N of {yn}n∈N, a subsequence {znk }k∈N of {zn}n∈N, and
x̄ ∈ H1 such that znk → x̄, ynk → Ax̄, and

lim inf
n→∞ ‖Azn – yn‖2 = lim

k→∞
‖Aznk – ynk ‖2 = 0. (3.31)

Clearly, xnk → x̄, xnk +1 → x̄, and Axnk → Ax̄. By (3.25) and (3.26), we know that x̄ ∈ ΩSDCP.
Thus, x̄ = x̂. Since limn→∞ ‖xn – x̄‖ exists, we know limn→∞ ‖xn – x̄‖ = limk→∞ ‖xnk – x̄‖ = 0.
Therefore, the proof is completed. �

4 Application to the DC program and numerical results
Let ρ > L ≥ 0. Let H be a finite dimensional Hilbert space, g, h : H → R be proper, lower
semicontinuous, and convex functions. Besides, we also assume that h is Fréchet dif-
ferentiable, ∇h is L-Lipschitz continuous, g is ρ-strongly convex. Let {βn}n∈N be a se-
quence in (a, b) ⊆ (0,∞). Let {rn}n∈N be a sequence in (0, 1) with 0 < lim infn→∞ rn ≤
lim supn→∞ rn < 1.

Now, we recall the DC program:

Find x̄ ∈ arg min
x∈H

{
f (x) = g(x) – h(x)

}
. (DCP)

Let ΩDCP be defined by

ΩDCP :=
{

x ∈ H : ∇h(x) ∈ ∂g(x)
}

,

and assume that ΩDCP �= ∅. If H1 = H2 = H , g1 = g2 = g , and h1 = h2 = h, then we get the
following algorithm and convergence theorem from Algorithm 3.1 and Theorem 3.1, re-
spectively.

Algorithm 4.1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ H is chosen arbitrarily,

yn := arg minv∈H{g(v) + 1
2βn

‖v – xn‖2 – 〈∇h(xn), v – xn〉},
zn := (1 – rn)xn + rnyn,

xn+1 := arg minu∈H{g(u) + 1
2βn

‖u – zn‖2 – 〈∇h(zn), u – zn〉}, n ∈N.

Theorem 4.1 Let {xn}n∈N be generated by Algorithm 4.1. Then {xn}n∈N converges to an
element x̄ ∈ ΩDCP.

In fact, we can get the following algorithm and convergence theorem by Algorithm 4.1
and Theorem 4.1, respectively.

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 14 of 16

Algorithm 4.2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ H is given,

zn := arg minu∈H{g(u) + 1
2βn

‖u – xn‖2 – 〈∇h(xn), u – xn〉},
yn := arg minv∈H{g(v) + 1

2βn
‖v – zn‖2 – 〈∇h(zn), v – zn〉},

xn+1 := (1 – rn)zn + rnyn, n ∈N.

Theorem 4.2 Let {xn}n∈N be generated by Algorithm 4.2. Then {xn}n∈N converges to an
element x̄ ∈ ΩDCP.

Example 4.1 Let g, h : R3 → R be defined by g(x1, x2, x3) := 2x2
1 + 2x2

2 + 2x2
3 and

h(x1, x2, x3) := 4x1 + 8x2 + 12x3 for all (x1, x2, x3) ∈ R
3. Then ΩDCP := {x ∈ H : ∇h(x) ∈

∂g(x)} = {(1, 2, 3)}.

Example 4.2 Let g1, h1 : R3 → R be defined by g1(x1, x2, x3) := 2x2
1 + 2x2

2 + 2x2
3 and

h1(x1, x2, x3) := 4x1 + 8x2 + 12x3 for all (x1, x2, x3) ∈ R
3. Let g2, h2 : R2 → R be defined

by g2(y1, y2) := y2
1 + y2

2 and h2(y1, y2) := 28y1 + 64y2 for all (y1, y2) ∈ R
2. Let A : R3 → R

2

be defined by A(x1, x2, x3) = (x1 + 2x2 + 3x3, 4x1 + 5x2 + 6x3) for all (x1, x2, x3) ∈ R
3. Here,

‖A‖ ≈ 0.10517 and ΩSDCP = {(1, 2, 3)}.

From Table 1, we see that Algorithm 4.2 reaches the required errors only need six it-
erations if βn = 500 for all n ∈ N, but Algorithm 4.2 reaches the required errors need 73
iterations if βn = 0.1 for all n ∈N.

From Table 2, we see that Algorithm 4.2 reaches the required errors only need seven
iterations if βn = 100 for all n ∈ N, but Algorithm 4.2 reaches the required errors need 72
iterations if βn = 0.1 for all n ∈N.

From Table 3, we see that Algorithm 3.1 reaches the required errors only need seven
iterations if βn = 700 for all n ∈ N, but Algorithm 3.1 reaches the required errors need 99
iterations if βn = 0.1 for all n ∈N.

From Table 3 and Table 4, we see that Algorithm 3.1 reaches the required errors need
283 iterations if βn = 1 and rn = 0.05 for all n ∈ N, but Algorithm 3.1 reaches the required
errors need 39 iterations if βn = 1 and rn = 0.09 for all n ∈ N. On the other hand, for other
settings of βn, we know the numerical results in Table 3 and Table 4 show that there are
no significant differences in the setting of {rn}n∈N.

Table 1 Numerical results for Example 4.1.

Algorithm 4.2 x1 = (88, 2000, 500), and rn = 0.5 for all n ∈ N

ε = 10–12 Iteration Approximate solution

βn = 0.1 73 (1.00000000000004, 2.00000000000091, 3.00000000000023)
βn = 1 18 (1.00000000000002, 2.00000000000044, 3.00000000000011)
βn = 10 10 (1.00000000000000, 2.00000000000002, 3.00000000000000)
βn = 20 8 (1.00000000000003, 2.00000000000074, 3.00000000000018)
βn = 30 8 (1.00000000000000, 2.00000000000004, 3.00000000000001)
βn = 40 8 (1.00000000000000, 2.00000000000001, 3.00000000000000)
βn = 50 7 (1.00000000000002, 2.00000000000049, 3.00000000000012)
βn = 100 7 (1.00000000000000, 2.00000000000001, 3.00000000000030)
βn = 500 6 (1, 2, 3)

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 15 of 16

Table 2 Numerical results for Example 4.1.

Algorithm 4.2 x1 = (123, 456, 789), and rn = 0.5 for all n ∈ N

ε = 10–12 Iteration Approximate solution

βn = 0.1 72 (1.00000000000009, 2.00000000000034, 3.00000000000059)
βn = 1 18 (1.00000000000003, 2.00000000000010, 3.00000000000017)
βn = 10 9 (1.00000000000007, 2.00000000000027, 3.00000000000047)
βn = 20 8 (1.00000000000005, 2.00000000000017, 3.00000000000029)
βn = 30 8 (1.00000000000000, 2.00000000000001, 3.00000000000002)
βn = 40 7 (1.00000000000011, 2.00000000000042, 3.00000000000073)
βn = 50 7 (1.00000000000003, 2.00000000000011, 3.00000000000019)
βn = 100 7 (1, 2, 3)

Table 3 Numerical results for Example 4.2.

Algorithm 3.1 x1 = (123, 456, 789), and rn = 0.05 for all n ∈ N

ε = 10–12 Iteration Approximate solution

βn = 0.1 99 (0.99999999999927, 1.99999999999990, 3.00000000000052)
βn = 1 39 (1.00000000000036, 2.00000000000048, 3.00000000000059)
βn = 10 15 (1.00000000000018, 2.00000000000024, 3.00000000000030)
βn = 20 12 (0.99999999999973, 1.99999999999964, 2.99999999999955)
βn = 30 11 (1.00000000000013, 2.00000000000017, 3.00000000000021)
βn = 40 10 (0.99999999999963, 1.99999999999952, 2.99999999999940)
βn = 50 10 (0.99999999999995, 1.99999999999993, 2.99999999999992)
βn = 100 9 (1.00000000000001, 2.00000000000002, 3.00000000000002)
βn = 700 7 (1, 2, 3)

Table 4 Numerical results for Example 4.2.

Algorithm 3.1 x1 = (123, 456, 789), and rn = 0.09 for all n ∈ N

ε = 10–12 Iteration Approximate solution

βn = 0.1 98 (0.99999999999931, 1.99999999999990, 3.00000000000050)
βn = 1 283 (1.00000000000038, 2.00000000000051, 3.00000000000063)
βn = 10 21 (1.00000000000008, 2.00000000000010, 3.00000000000013)
βn = 20 15 (1.00000000000042, 2.00000000000056, 3.00000000000069)
βn = 30 14 (0.99999999999997, 1.99999999999996, 2.99999999999995)
βn = 40 12 (0.99999999999959, 1.99999999999946, 2.99999999999933)
βn = 50 12 (0.99999999999996, 1.99999999999995, 2.99999999999994)
βn = 100 10 (0.99999999999994, 1.99999999999992, 2.99999999999990)
βn = 1300 7 (1, 2, 3)

Table 5 Numerical results for Example 4.2.

Algorithm 3.1 x1 = (123, 456, 789), and βn = 1 for all n ∈ N

ε = 10–12 Iteration Approximate solution

rn = 0.05 39 (1.00000000000036, 2.00000000000048, 3.00000000000059)
rn = 0.09 283 (1.00000000000038, 2.00000000000051, 3.00000000000063)
rn = 0.095 611 (1.00000000000041, 2.00000000000054, 3.00000000000067)
rn = 0.099 5129 (1.00000000000043, 2.00000000000056, 3.00000000000070)
rn = 0.0994 18,434 (0.99999999999957, 1.99999999999943, 2.99999999999930)

However, in Table 5, if βn = 1 for all n ∈N, then we know the numerical results have big
differences in the setting of {rn}n∈N.

Chuang and Chen Journal of Inequalities and Applications (2019) 2019:148 Page 16 of 16

Acknowledgements
The authors would like to thank referee(s) for many useful comments and suggestions for the improvement of the article.
Prof. Chi-Ming Chen was supported by Grant No. MOST 107-2115-M-007-008 of the Ministry of Science and Technology
of the Republic of China.

Funding
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors contributed equally and significantly in writing this paper. The authors read and approved the final
manuscript.

Author details
1Department of Applied Mathematics, National Chiayi University, Chiayi, Taiwan. 2Institute of Computational and
Modeling Science, National Tsing Hua University, Hsinchu, Taiwan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 October 2018 Accepted: 29 April 2019

References
1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin

(2011)
2. Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional

Optimization. Kluwer Academic, Norwell (2000)
3. Byrne, C., Censor, Y., Gibali, A., Reich, S.: Weak and strong convergence of algorithms for the split common null point

problem. J. Nonlinear Convex Anal. 13, 759–775 (2011)
4. Chuang, C.S.: Strong convergence theorems for the split variational inclusion problem in Hilbert spaces. Fixed Point

Theory Appl. 2013, 350 (2013)
5. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4,

1168–1200 (2005)
6. Fujikara, Y., Kuroiwa, D.: Lagrange duality in canonical DC programming. J. Math. Anal. Appl. 408, 476–483 (2013)
7. Harada, R., Kuroiwa, D.: Lagrange-type in DC programming. J. Math. Anal. Appl. 418, 415–424 (2014)
8. Hiriart-Urruty, J.B., Tuy, H.: Essays on Nonconvex Optimization. Mathematical Programming, vol. 41. North-Holland,

Amsterdam (1988)
9. Levy, A.J.: A fast quadratic programming algorithm for positive signal restoration. IEEE Trans. Acoust. Speech Signal

Process. 31, 1337–1341 (1983)
10. Marino, G., Xu, H.K.: Convergence of generalized proximal point algorithm. Commun. Pure Appl. Anal. 3, 791–808

(2004)
11. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Opér.

4(Ser R–3), 154–158 (1970)
12. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275–283 (2011)
13. Pham, D.T., An, L.T.H., Akoa, F.: The DC (difference of convex functions) programming and DCA revisited with DC

models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)
14. Saeki, Y., Kuroiwa, D.: Optimality conditions for DC programming problems with reverse convex constraints.

Nonlinear Anal. 80, 18–27 (2013)
15. Souza, J.C.O., Oliveira, R.P., Soubeyran, A.: Global convergence of a proximal linearized algorithm for difference of

convex functions. Optim. Lett. 10, 1529–1539 (2016)
16. Sun, W., Sampaio, R.J.B., Candido, M.A.B.: Proximal point algorithm for minimization of DC functions. J. Comput. Math.

21, 451–462 (2003)
17. Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohoma Publishers, Yokohoma (2009)

	Split proximal linearized algorithm and convergence theorems for the split DC program
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Split proximal linearized algorithm
	Application to the DC program and numerical results
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References

