Split proximal linearized algorithm and convergence theorems for the split DC program

Chih-Sheng Chuang ${ }^{1}$ and Chi-Ming Chen ${ }^{2 *}$

"Correspondence:
ming@mail.nd.nthu.edu.tw ${ }^{2}$ Institute of Computational and Modeling Science, National Tsing Hua University, Hsinchu, Taiwan Full list of author information is available at the end of the article

Abstract

In this paper, we study the split DC program by using the split proximal linearized algorithm. Further, linear convergence theorem for the proposed algorithm is established under suitable conditions. As applications, we first study the DC program (DCP). Finally, we give numerical results for the proposed convergence results.

MSC: 49J50; 49J53; 49M30; 49M37; 90C26 Keywords: DC program; Proximal linearized algorithm; Strongly monotonicity

1 Introduction

First, we recall the minimization problem for convex functions:

$$
\begin{equation*}
\text { Find } \bar{x} \in \arg \min \{f(x): x \in H\}, \tag{MP1}
\end{equation*}
$$

where H is a real Hilbert space and $f: H \rightarrow(-\infty, \infty]$ is a proper, lower semicontinuous, and convex function. This is a classical convex minimization problem with many applications. To study this problem, Martinet [11] introduced the proximal point algorithm

$$
\begin{equation*}
x_{n+1}=\arg \min _{y \in H}\left\{f(y)+\frac{1}{2 \beta_{n}}\left\|y-x_{n}\right\|^{2}\right\}, \quad n \in \mathbb{N}, \tag{PPA}
\end{equation*}
$$

and showed that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges weakly to a minimizer of f under suitable conditions. This algorithm is useful, however, only for convex problems, because the idea for this algorithm is based on the monotonicity of subdifferential operators of convex functions. So, it is important to consider the relation between nonconvex problems and a proximal point algorithm.

The following is a well-known nonconvex problem, known as DC program:

$$
\begin{equation*}
\text { Find } \bar{x} \in \arg \min _{x \in \mathbb{R}^{n}}\{f(x)=g(x)-h(x)\}, \tag{DCP}
\end{equation*}
$$

where $g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are proper lower semicontinuous and convex functions. Here, the function f is called a DC function, and functions g and h are called DC components of f.

In the DC program, the convention $(+\infty)-(+\infty)=+\infty$ has been adopted to avoid the ambiguity $(+\infty)-(+\infty)$ that does not present any interest. It is well known that a necessary condition for $x \in \operatorname{dom}(f):=\left\{x \in \mathbb{R}^{n}: f(x)<\infty\right\}$ to be a local minimizer of f is $\partial h(x) \subseteq \partial g(x)$, where $\partial g(x)$ and $\partial h(x)$ are the subdifferentials of g and h, respectively (see Definition 2.4). But this condition is hard to be reached. So, many researchers focus their attention on finding points such that $\partial h(x) \cap \partial g(x) \neq \emptyset$, where x is called a critical point of f [8].
It is worth mentioning the richness of the class of $D C$ functions which is a subspace containing the class of lower- \mathcal{C}^{2} functions. In particular, $\mathcal{D C}\left(\mathbb{R}^{n}\right)$ contains the space $\mathcal{C}^{1,1}$ of functions whose gradient is locally Lipschitz continuous. Further, $\mathcal{D C}\left(\mathbb{R}^{n}\right)$ is closed under the operations usually considered in optimization. For example, a linear combination, a finite supremum, or the product of two DC functions remain DC . It is also known that the set of $D C$ functions defined on a compact convex set of \mathbb{R}^{n} is dense in the set of continuous functions on this set.

We also observed that the interest in the theory of DC functions has much increased in the last years. Some interesting optimality conditions and duality theorems related to the DC program have been given (for example, see [6, 7, 14]). Some algorithms for the DC program are proposed to analyze and solve a variety of highly structured and practical problems (for example, see [13]).

In 2003, Sun, Sampaio, and Candido [16] gave the following algorithm to study problem (DCP).

Algorithm 1.1 (Proximal point algorithm for (DCP) [16]) Let $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in $(0, \infty)$, and let $g, h: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be proper lower semicontinuous and convex functions. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be generated by

$$
\left\{\begin{array}{l}
x_{1} \in H_{1} \quad \text { is chosen arbitrarily } \\
\text { compute } w_{n} \in \partial h\left(x_{n}\right) \text { and set } y_{n}=x_{n}+\beta_{n} w_{n} \\
x_{n+1}:=\left(I+\beta_{n} \partial g\right)^{-1}\left(y_{n}\right), \quad n \in \mathbb{N}, \\
\text { stop criteria: } x_{n+1}=x_{n}
\end{array}\right.
$$

In 2016, Souza, Oliveira, and Soubeyran [15] gave the following algorithm to study the DC program.

Algorithm 1.2 (Proximal linearized algorithm for (DCP) [15]) Let $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in $(0, \infty)$, and let $g, h: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be proper lower semicontinuous and convex functions. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be generated by

$$
\left\{\begin{array}{l}
x_{1} \in H_{1} \quad \text { is chosen arbitrarily, } \\
\text { compute } w_{n} \in \partial h\left(x_{n}\right), \\
x_{n+1}:=\arg \min _{u \in H_{1}}\left\{g(u)+\frac{1}{2 \beta_{n}}\left\|u-x_{n}\right\|^{2}-\left\langle w_{n}, u-x_{n}\right\rangle\right\}, \quad n \in \mathbb{N}, \\
\text { stop criteria: } x_{n+1}=x_{n} .
\end{array}\right.
$$

In fact, if h is differentiable, then it is reduced to the following:

$$
\left\{\begin{array}{l}
x_{1} \in H_{1} \quad \text { is chosen arbitrarily, } \\
x_{n+1}:=\arg \min _{u \in H_{1}}\left\{g(u)+\frac{1}{2 \beta_{n}}\left\|u-x_{n}\right\|^{2}-\left\langle\nabla h\left(x_{n}\right), u-x_{n}\right\rangle\right\}, \quad n \in \mathbb{N} . \\
\text { stop criteria: } x_{n+1}=x_{n} .
\end{array}\right.
$$

Further, Souza, Oliveira, and Soubeyran [15] gave the following convergence theorem for problem (DCP).

Theorem 1.1 ([15, Theorem 3]) Let $g, h: \mathbb{R}^{k} \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper, lower semicontinuous, and convex functions, and $g-h$ be bounded from below. Suppose that g is ρ-strongly convex, h is differentiable, and $\nabla h(x)$ is L-Lipschitz continuous. Let $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ be a bounded sequence with $\liminf _{n \rightarrow \infty} \beta_{n}>0$. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be generated by Algorithm 1.2. If $\rho>2 L$, then $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges linearly to a critical point \bar{x} of problem (DCP).

In this paper, we want to study the split DC program:

$$
\begin{equation*}
\text { Find } \bar{x} \in H_{1} \text { such that } \bar{x} \in \arg \min _{x \in H_{1}} f_{1}(x) \text { and } A \bar{x} \in \arg \min _{y \in H_{2}} f_{2}(y) \text {, } \tag{SDCP}
\end{equation*}
$$

where H_{1} and H_{2} are real Hilbert spaces, $A: H_{1} \rightarrow H_{2}$ is a nonzero linear and bounded mapping with adjoint operator $A^{*}, g_{1}, h_{1}: H_{1} \rightarrow \mathbb{R}$ are proper lower semicontinuous and convex functions, and $g_{2}, h_{2}: H_{2} \rightarrow \mathbb{R}$ are proper lower semicontinuous and convex functions, and $f_{1}(x)=g_{1}(x)-h_{1}(x)$ for all $x \in H_{1}$, and $f_{2}(y)=g_{2}(y)-h_{2}(y)$ for all $y \in H_{2}$.

Clearly, (SDCP) is a generalization of problem (DCP). Indeed, if $H_{1}=H_{2}=\mathbb{R}^{n}, A: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} is the identity mapping, $g_{1}=g_{2}$, and $h_{1}=h_{2}$, then problem (SDCP) is reduced to problem (DCP).
If $h_{1}(x)=0$ and $h_{2}(y)=0$ for all $x \in H_{1}$ and $y \in H_{2}$, then (SDCP) is reduced to the split minimization problems (SMP) for convex functions:

$$
\begin{equation*}
\text { Find } \bar{x} \in H_{1} \text { such that } g_{1}(\bar{x})=\min _{u \in H_{1}} g_{1}(u) \text { and } g_{2}(A \bar{x})=\min _{v \in H_{2}} g_{2}(v) \text {, } \tag{SMP}
\end{equation*}
$$

where H_{1} and H_{2} are real Hilbert spaces, $A: H_{1} \rightarrow H_{2}$ is a linear and bounded mapping with adjoint $A^{*}, g_{1}: H_{1} \rightarrow \mathbb{R}$ and $g_{2}: H_{2} \rightarrow \mathbb{R}$ are proper, lower semicontinuous, and convex functions. For example, one can see [4] and the related references.
If $H_{1}=H_{2}=H$ and $A: H \rightarrow H$ is the identity mapping, then problem (SMP) is reduced to the common minimization problem for convex functions:

$$
\begin{equation*}
\text { Find } \bar{x} \in H \text { such that } g_{1}(\bar{x})=\min _{u \in H} g_{1}(u) \text { and } g_{2}(\bar{x})=\min _{v \in H} g_{2}(v) \text {, } \tag{CMP}
\end{equation*}
$$

where H is a real Hilbert space, $g_{1}, g_{2}: H \rightarrow \mathbb{R}$ are proper, lower semicontinuous, and convex functions. Further, if the solution set of problem (CMP) is nonempty, then problem (CMP) is equivalent to the following problem:

$$
\begin{equation*}
\text { Find } \bar{x} \in H \text { such that } g_{1}(\bar{x})+g_{2}(\bar{x})=\min _{u \in H} g_{1}(u)+g_{2}(u) \text {, } \tag{MP2}
\end{equation*}
$$

where H is a real Hilbert space, $g_{1}, g_{2}: H \rightarrow \mathbb{R}$ are proper, lower semicontinuous, and convex functions. This problem is well known and it has many important applications, including multiresolution sparse regularization, Fourier regularization, hard-constrained inconsistent feasibility, and alternating projection signal synthesis problems. For example, one can refer to $[5,9]$ and the related references.
On the other hand, Moudafi [12] introduced the split variational inclusion problem, which is a generalization of problem (SMP):

$$
\begin{equation*}
\text { Find } \bar{x} \in H_{1} \text { such that } 0_{H_{1}} \in B_{1}(\bar{x}) \text { and } 0_{H_{2}} \in B_{2}(A \bar{x}) \tag{SVIP}
\end{equation*}
$$

where H_{1} and H_{2} are real Hilbert spaces, $B_{1}: H_{1} \multimap H_{1}$ and $B_{2}: H_{2} \multimap H_{2}$ are set-valued maximal monotone mappings, $A: H_{1} \rightarrow H_{2}$ is a linear and bounded operator, and A^{*} is the adjoint of A. Here, $0_{H_{1}}$ and $0_{H_{2}}$ are zero elements of real Hilbert spaces H_{1} and H_{2}, respectively. To study problem (SVIP), Byrne et al. [3] gave the following algorithm and related convergence theorem in infinite dimensional Hilbert space.

Theorem 1.2 ([3]) Let H_{1} and H_{2} be real Hilbert spaces, $A: H_{1} \rightarrow H_{2}$ be a nonzero linear and bounded operator, and A^{*} denote the adjoint operator of A. Let $B_{1}: H_{1} \multimap H_{1}$ and $B_{2}: H_{2} \multimap H_{2}$ be set-valued maximal monotone mappings, $\beta>0$, and $\gamma \in\left(0, \frac{2}{\|A\|^{2}}\right)$. Let Ω be the solution set of (SVIP), and suppose that $\Omega \neq \emptyset$. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be defined by

$$
x_{n+1}:=J_{\beta}^{B_{1}}\left[x_{n}-\gamma A^{*}\left(I-J_{\beta}^{B_{2}}\right) A x_{n}\right], \quad n \in \mathbb{N} .
$$

Then $\left\{x_{n}\right\}$ converges weakly to an element $\bar{x} \in \Omega$.

If $B_{1}=\partial g_{1}$ and $B_{2}=\partial g_{2}$ (the subdifferential of $g_{i}, i=1,2$), then the algorithm given by Theorem 1.2 is reduced to the following algorithm:

$$
\left\{\begin{array}{l}
y_{n}=\arg \min _{z \in H_{2}}\left\{g(z)+\frac{1}{2 \beta_{n}}\left\|z-A x_{n}\right\|^{2}\right\}, \\
z_{n}=x_{n}-\gamma A^{*}\left(A x_{n}-y_{n}\right), \\
x_{n+1}=\arg \min _{y \in H_{1}}\left\{g(y)+\frac{1}{2 \beta_{n}}\left\|y-z_{n}\right\|^{2}\right\}, \quad n \in \mathbb{N} .
\end{array}\right.
$$

In this paper, motivated by the above works on DC programs and related problems, we want to study problem (SDCP) by using the split proximal linearized algorithm:

$$
\left\{\begin{array}{l}
x_{1} \in H_{1} \quad \text { is chosen arbitrarily, } \\
y_{n}:=\arg \min _{v \in H_{2}}\left\{g_{2}(v)+\frac{1}{2 \beta_{n}}\left\|v-A x_{n}\right\|^{2}-\left\langle\nabla h_{2}\left(A x_{n}\right), v-A x_{n}\right\rangle\right\}, \\
z_{n}:=x_{n}-r_{n} A^{*}\left(A x_{n}-y_{n}\right), \\
x_{n+1}:=\arg \min _{u \in H_{1}}\left\{g_{1}(u)+\frac{1}{2 \beta_{n}}\left\|u-z_{n}\right\|^{2}-\left\langle\nabla h_{1}\left(z_{n}\right), u-z_{n}\right\rangle\right\}, \quad n \in \mathbb{N},
\end{array}\right.
$$

where H_{1} and H_{2} are real Hilbert spaces, $A: H_{1} \rightarrow H_{2}$ is a linear and bounded mapping with adjoint $A^{*}, g_{1}, h_{1}: H_{1} \rightarrow \mathbb{R}$ are proper lower semicontinuous and convex functions, and $g_{2}, h_{2}: H_{2} \rightarrow \mathbb{R}$ are proper lower semicontinuous and convex functions, g_{1} and g_{2} are strongly convex, h_{1} and h_{2} are Fréchet differentiable, ∇h_{1} and ∇h_{2} are L-Lipschitz continuous, and $f_{1}(x)=g_{1}(x)-h_{1}(x)$ for all $x \in H_{1}$, and $f_{2}(y)=g_{2}(y)-h_{2}(y)$ for all $y \in H_{2}$. Further, linear convergence theorems for the proposed algorithms are established under suitable conditions. Finally, we give numerical results for the proposed convergence theorems.

2 Preliminaries

Let H be a (real) Hilbert space with the inner product $\langle\cdot, \cdot\rangle$ and the norm $\|\cdot\|$. We denote the strong and weak convergence of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ to $x \in H$ by $x_{n} \rightarrow x$ and $x_{n} \rightharpoonup x$, respectively. For each $x, y, u, v \in H$ and $\lambda \in \mathbb{R}$, we have

$$
\begin{align*}
& \|x+y\|^{2}=\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2}, \tag{2.1}\\
& \|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}, \tag{2.2}\\
& 2\langle x-y, u-v\rangle=\|x-v\|^{2}+\|y-u\|^{2}-\|x-u\|^{2}-\|y-v\|^{2} . \tag{2.3}
\end{align*}
$$

Definition 2.1 Let H be a real Hilbert space, $B: H \rightarrow H$ be a mapping, and $\rho>0$. Thus,
(i) B is monotone if $\langle x-y, B x-B y\rangle \geq 0$ for all $x, y \in H$.
(ii) B is ρ-strongly monotone if $\langle x-y, B x-B y\rangle \geq \rho\|x-y\|^{2}$ for all $x, y \in H$.

Definition 2.2 Let H be a real Hilbert space and $B: H \multimap H$ be a set-valued mapping with domain $\mathcal{D}(B):=\{x \in H: B(x) \neq \emptyset\}$. Thus,
(i) B is called monotone if $\langle u-v, x-y\rangle \geq 0$ for any $u \in B(x)$ and $v \in B(y)$.
(ii) B is maximal monotone if its graph $\{(x, y): x \in \mathcal{D}(B), y \in B(x)\}$ is not properly contained in the graph of any other monotone mapping.
(iii) B is ρ-strongly monotone if $\langle x-y, u-v\rangle \geq \rho\|x-y\|^{2}$ for all $x, y \in H$ and all $u \in B(x)$, and $v \in B(y)$.

Definition 2.3 Let H be a real Hilbert space, and $f: H \rightarrow \mathbb{R}$ be a function. Thus,
(i) f is proper if $\operatorname{dom}(f):=\{x \in H: f(x)<\infty\} \neq \emptyset$.
(ii) f is lower semicontinuous if $\{x \in H: f(x) \leq r\}$ is closed for each $r \in \mathbb{R}$.
(iii) f is convex if $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$ for every $x, y \in H$ and $t \in[0,1]$.
(iv) f is ρ-strongly convex $(\rho>0)$ if

$$
f(t x+(1-t) y)+\frac{\rho}{2} \cdot t(1-t)\|x-y\|^{2} \leq t f(x)+(1-t) f(y)
$$

for all $x, y \in H$ and $t \in(0,1)$.
(v) f is Gâteaux differentiable at $x \in H$ if there is $\nabla f(x) \in H$ such that

$$
\lim _{t \rightarrow 0} \frac{f(x+t y)-f(x)}{t}=\langle y, \nabla f(x)\rangle
$$

for each $y \in H$.
(vi) f is Fréchet differentiable at x if there is $\nabla f(x)$ such that

$$
\lim _{y \rightarrow 0} \frac{f(x+y)-f(x)-\langle\nabla f(x), y\rangle}{\|y\|}=0
$$

Remark 2.1 Let H be a real Hilbert space. Then $f(x):=\|x\|^{2}$ is a 2-strongly convex function. Besides, we know $g: H \rightarrow \mathbb{R}$ is ρ-strongly convex if and only if $g-\frac{\rho}{2}\|\cdot\|^{2}$ is convex [1, Proposition 10.6].

Example 2.1 Let $g(x):=\frac{1}{2}\langle Q x, x\rangle-\langle x, b\rangle$, where $Q \in \mathbb{R}^{n \times n}$ is a real symmetric positive definite matrix and $b \in \mathbb{R}^{n}$. Then g is a strongly convex function.

Definition 2.4 Let $f: H \rightarrow(-\infty, \infty$] be a proper lower semicontinuous and convex function. Then the subdifferential ∂f of f is defined by

$$
\partial f(x):=\left\{x^{*} \in H: f(x)+\left\langle y-x, x^{*}\right\rangle \leq f(y) \text { for each } y \in H\right\}
$$

for each $x \in H$.

Lemma 2.1 Letf :H $(-\infty, \infty$] be a proper lower semicontinuous and convex function. Then the following are satisfied:
(i) ∂f is a set-valued maximal monotone mapping.
(ii) f is Gâteaux differentiable at $x \in \operatorname{int}(\mathcal{D})$ if and only if $\partial f(x)$ consists of a single element. That is, $\partial f(x)=\{\nabla f(x)\}[2$, Proposition 1.1.10].
(iii) Suppose that f is Fréchet differentiable. Thenf is convex if and only if ∇f is a monotone mapping.

Lemma 2.2 ([1, Example 22.3(iv)]) Let $\rho>0, H$ be a real Hilbert space and $f: H \rightarrow \mathbb{R}$ be a proper, lower-semicontinuous, and convex function. Iff is ρ-strongly convex, then ∂f is ρ-strongly monotone.

Lemma 2.3 ([1, Proposition 16.26]) Let H be a real Hilbert space and $f: H \rightarrow(\infty, \infty]$ be a proper, lower semicontinuous, and convex function. If $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ are sequences in H with $u_{n} \in \partial f\left(x_{n}\right)$ for all $n \in \mathbb{N}$, and $x_{n} \rightharpoonup x$ and $u_{n} \rightarrow u$, then $u \in \partial f(x)$.

Lemma 2.4 ([17, p. 114]) Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ be sequences of nonnegative real numbers. If $\sum_{n=1}^{\infty} a_{n}=\infty$ and $\sum_{n=1}^{\infty} a_{n} b_{n}<\infty$, then $\liminf _{n \rightarrow \infty} b_{n}=0$.

Lemma 2.5 ([10]) Let H be a real Hilbert space, $B: H \multimap H$ be a set-valued maximal monotone mapping, $\beta>0$, and J_{β}^{B} be defined by $J_{\beta}^{B}(x):=(I+\beta B)^{-1}(x)$ for each $x \in H$. Then J_{β}^{B} is a single-valued mapping.

3 Split proximal linearized algorithm

Throughout this section, we use the following notations and assumptions. Let $\rho \geq$ $L>0$. Let H_{1} and H_{2} be finite dimensional real Hilbert spaces, $A: H_{1} \rightarrow H_{2}$ be a nonzero linear and bounded mapping, A^{*} be the adjoint of $A, g_{1}, h_{1}: H_{1} \rightarrow \mathbb{R}$ be proper lower semicontinuous and convex functions, $g_{2}, h_{2}: H_{2} \rightarrow \mathbb{R}$ be proper lower semicontinuous and convex functions, $f_{1}(x)=g_{1}(x)-h_{1}(x)$ for all $x \in H_{1}$, and $f_{2}(y)=g_{2}(y)-h_{2}(y)$ for all $y \in H_{2}$. Further, we assume that f_{1} and f_{2} are bounded from below, h_{1} and h_{2} are Fréchet differentiable, ∇h_{1} and ∇h_{2} are L-Lipschitz continuous, g_{1} and g_{2} are ρ-strongly convex. Let $\beta \in(0, \infty)$, and let $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in $[a, b] \subseteq(0, \infty)$. Let $r \in\left(0, \frac{1}{\|A\|^{2}}\right)$ and $\left\{r_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in $\left(0, \frac{1}{\|A\|^{2}}\right)$. Let $\Omega_{\text {SDCP }}$ be defined by

$$
\Omega_{\mathrm{SDCP}}:=\left\{x \in H_{1}: \nabla h_{1}(x) \in \partial g_{1}(x), \nabla h_{2}(A x) \in \partial g_{2}(A x)\right\}
$$

and assume that $\Omega_{\mathrm{SDCP}} \neq \emptyset$.

Proposition 3.1 If $\rho>L$ and $\Omega_{\mathrm{SDCP}} \neq \emptyset$, then the set Ω_{SDCP} is a singleton.

Proof If $x, y \in \Omega_{\mathrm{SDCP}}$, then

$$
\begin{array}{lr}
\nabla h_{1}(x) \in \partial g_{1}(x), & \nabla h_{1}(y) \in \partial g_{1}(y), \\
\nabla h_{2}(A x) \in \partial g_{2}(A x), & \nabla h_{2}(A y) \in \partial g_{2}(A y) .
\end{array}
$$

Since g_{1} is ρ-strongly convex, we know ∂g_{1} is ρ-strongly monotone. Thus,

$$
\rho\|x-y\|^{2} \leq\left\langle x-y, \nabla h_{1}(x)-\nabla h_{1}(y)\right\rangle \leq\|x-y\| \cdot\left\|\nabla h_{1}(x)-\nabla h_{1}(y)\right\| .
$$

Since ∇h_{1} is L-Lipschitz continuous, we have

$$
\rho\|x-y\|^{2} \leq\|x-y\| \cdot\left\|\nabla h_{1}(x)-\nabla h_{1}(y)\right\| \leq L\|x-y\|^{2} .
$$

Since $\rho>L$, we have $x=y$. The proof is completed.

In this section, we study the split DC program by the following algorithm.

Algorithm 3.1 (Split proximal linearized algorithm)

$$
\left\{\begin{array}{l}
x_{1} \in H_{1} \quad \text { is chosen arbitrarily, } \\
y_{n}:=\arg \min _{v \in H_{2}}\left\{g_{2}(v)+\frac{1}{2 \beta_{n}}\left\|v-A x_{n}\right\|^{2}-\left\langle\nabla h_{2}\left(A x_{n}\right), v-A x_{n}\right\rangle\right\}, \\
z_{n}:=x_{n}-r_{n} A^{*}\left(A x_{n}-y_{n}\right), \\
x_{n+1}:=\arg \min _{u \in H_{1}}\left\{g_{1}(u)+\frac{1}{2 \beta_{n}}\left\|u-z_{n}\right\|^{2}-\left\langle\nabla h_{1}\left(z_{n}\right), u-z_{n}\right\rangle\right\}, \quad n \in \mathbb{N} .
\end{array}\right.
$$

Theorem 3.1 Let $\left\{r_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in $\left(0, \frac{1}{\|A\|^{2}}\right)$ with $0<\liminf _{n \rightarrow \infty} r_{n}$ $\leq \lim \sup _{n \rightarrow \infty} r_{n}<\frac{1}{\|A\|^{2}}$. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be generated by Algorithm 3.1. Then $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges to an element $\bar{x} \in \Omega_{\text {SDCP }}$.

Proof Take any $w \in \Omega_{\mathrm{SDCP}}$ and $n \in \mathbb{N}$, and let w and n be fixed. First, from the second line of Algorithm 3.1, we get

$$
\begin{equation*}
0 \in \partial g_{2}\left(y_{n}\right)+\frac{1}{\beta_{n}}\left(y_{n}-A x_{n}\right)-\nabla h_{2}\left(A x_{n}\right) . \tag{3.1}
\end{equation*}
$$

By (3.1), there exists $u_{n} \in \partial g_{2}\left(y_{n}\right)$ such that

$$
\begin{equation*}
\nabla h_{2}\left(A x_{n}\right)=u_{n}+\frac{1}{\beta_{n}}\left(y_{n}-A x_{n}\right) . \tag{3.2}
\end{equation*}
$$

Since $w \in \Omega_{\text {SDCP }}$, we know that $\nabla h_{2}(A w) \in \partial g_{2}(A w)$. By Lemma 2.2, ∂g_{2} is ρ-strongly monotone, and then

$$
\begin{equation*}
0 \leq\left\langle y_{n}-A w, u_{n}-\nabla h_{2}(A w)\right\rangle-\rho\left\|y_{n}-A w\right\|^{2} . \tag{3.3}
\end{equation*}
$$

By (3.2) and (3.3),

$$
\begin{equation*}
0 \leq\left\langle y_{n}-A w, \nabla h_{2}\left(A x_{n}\right)+\frac{1}{\beta_{n}}\left(A x_{n}-y_{n}\right)-\nabla h_{2}(A w)\right\rangle-\rho\left\|y_{n}-A w\right\|^{2} . \tag{3.4}
\end{equation*}
$$

Hence, by (3.4), we have

$$
\begin{align*}
0 \leq & 2 \beta_{n}\left\langle y_{n}-A w, \nabla h_{2}\left(A x_{n}\right)-\nabla h_{2}(A w)\right\rangle+2\left\langle y_{n}-A w, A x_{n}-y_{n}\right\rangle \\
& -2 \beta_{n} \rho\left\|y_{n}-A w\right\|^{2} \\
\leq & 2 \beta_{n} L\left\|y_{n}-A w\right\| \cdot\left\|A x_{n}-A w\right\|-2 \beta_{n} \rho\left\|y_{n}-A w\right\|^{2} \\
& +\left\|A x_{n}-A w\right\|^{2}-\left\|y_{n}-A x_{n}\right\|^{2}-\left\|y_{n}-A w\right\|^{2} \\
\leq & \beta_{n} L\left\|y_{n}-A w\right\|^{2}+\beta_{n} L\left\|A x_{n}-A w\right\|^{2}-2 \beta_{n} \rho\left\|y_{n}-A w\right\|^{2} \\
& +\left\|A x_{n}-A w\right\|^{2}-\left\|y_{n}-A x_{n}\right\|^{2}-\left\|y_{n}-A w\right\|^{2} . \tag{3.5}
\end{align*}
$$

By (3.5), we obtain

$$
\begin{align*}
\left\|y_{n}-A w\right\|^{2} & \leq \frac{\beta_{n} L+1}{1+2 \beta_{n} \rho-\beta_{n} L}\left\|A x_{n}-A w\right\|^{2}-\frac{\left\|y_{n}-A x_{n}\right\|^{2}}{1+2 \beta_{n} \rho-\beta_{n} L} \\
& \leq\left\|A x_{n}-A w\right\|^{2}-\frac{\left\|y_{n}-A x_{n}\right\|^{2}}{1+2 \beta_{n} \rho-\beta_{n} L} \tag{3.6}
\end{align*}
$$

In the same way, one obtains

$$
\begin{equation*}
\left\|x_{n+1}-w\right\|^{2} \leq\left\|z_{n}-w\right\|^{2}-\frac{1}{1+2 \beta_{n} \rho-\beta_{n} L}\left\|x_{n+1}-z_{n}\right\|^{2} \leq\left\|z_{n}-w\right\|^{2} \tag{3.7}
\end{equation*}
$$

Next, we have

$$
\begin{align*}
2\left\|z_{n}-w\right\|^{2}= & 2\left\langle z_{n}-w, x_{n}-r_{n} A^{*}\left(A x_{n}-y_{n}\right)-w\right\rangle \\
= & 2\left\langle z_{n}-w, x_{n}-w\right\rangle-2 r_{n}\left\langle z_{n}-w, A^{*}\left(A x_{n}-y_{n}\right)\right\rangle \\
= & 2\left\langle z_{n}-w, x_{n}-w\right\rangle-2 r_{n}\left\langle A z_{n}-A w, A x_{n}-y_{n}\right\rangle \\
= & \left\|z_{n}-w\right\|^{2}+\left\|x_{n}-w\right\|^{2}-\left\|x_{n}-z_{n}\right\|^{2}-r_{n}\left\|A z_{n}-y_{n}\right\|^{2} \\
& -r_{n}\left\|A x_{n}-A w\right\|^{2}+r_{n}\left\|A z_{n}-A x_{n}\right\|^{2}+r_{n}\left\|y_{n}-A w\right\|^{2} . \tag{3.8}
\end{align*}
$$

By (3.6), (3.7), and (3.8),

$$
\begin{aligned}
&\left\|x_{n+1}-w\right\|^{2} \\
& \leq\left\|z_{n}-w\right\|^{2} \\
&=\left\|x_{n}-w\right\|^{2}-\left\|x_{n}-z_{n}\right\|^{2}-r_{n}\left\|A z_{n}-y_{n}\right\|^{2} \\
& \quad r_{n}\left\|A x_{n}-A w\right\|^{2}+r_{n}\left\|A z_{n}-A x_{n}\right\|^{2}+r_{n}\left\|y_{n}-A w\right\|^{2} \\
& \leq\left\|x_{n}-w\right\|^{2}-\left\|x_{n}-z_{n}\right\|^{2}-r_{n}\left\|A z_{n}-y_{n}\right\|^{2}-r_{n}\left\|A x_{n}-A w\right\|^{2} \\
& \quad r_{n}\|A\|^{2} \cdot\left\|z_{n}-x_{n}\right\|^{2}+r_{n} \cdot \frac{\beta_{n} L+1}{1+2 \beta_{n} \rho-\beta_{n} L}\left\|A x_{n}-A w\right\|^{2} \\
&=\left\|x_{n}-w\right\|^{2}-\left(1-r_{n}\|A\|^{2}\right)\left\|x_{n}-z_{n}\right\|^{2}-r_{n}\left\|A z_{n}-y_{n}\right\|^{2} \\
& \quad r_{n}\left(1-\frac{\beta_{n} L+1}{1+2 \beta_{n} \rho-\beta_{n} L}\right)\left\|A x_{n}-A w\right\|^{2}
\end{aligned}
$$

$$
\begin{align*}
= & \left\|x_{n}-w\right\|^{2}-\left(1-r_{n}\|A\|^{2}\right)\left\|x_{n}-z_{n}\right\|^{2}-r_{n}\left\|A z_{n}-y_{n}\right\|^{2} \\
& -r_{n}\left(\frac{2 \beta_{n}(\rho-L)}{1+2 \beta_{n} \rho-\beta_{n} L}\right)\left\|A x_{n}-A w\right\|^{2} \\
\leq & \left\|x_{n}-w\right\|^{2} . \tag{3.9}
\end{align*}
$$

By (3.9), $\lim _{n \rightarrow \infty}\left\|x_{n}-w\right\|$ exists and $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a bounded sequence. Further, $\left\{A x_{n}\right\}_{n \in \mathbb{N}}$, $\left\{y_{n}\right\}_{n \in \mathbb{N}},\left\{z_{n}\right\}_{n \in \mathbb{N}}$ are bounded sequences. By (3.9) again, we know that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-w\right\|=\lim _{n \rightarrow \infty}\left\|z_{n}-w\right\| \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left\|x_{n+1}-z_{n}\right\|^{2}}{1+2 \beta_{n} \rho-\beta_{n} L}=\lim _{n \rightarrow \infty} r_{n}\left\|A z_{n}-y_{n}\right\|^{2}=\lim _{n \rightarrow \infty}\left(1-r_{n}\|A\|^{2}\right)\left\|x_{n}-z_{n}\right\|^{2}=0 \tag{3.11}
\end{equation*}
$$

It follows from $\left\{\beta_{n}\right\}_{n \in \mathbb{N}} \subseteq(a, b), 0<\liminf _{n \rightarrow \infty} r_{n} \leq \lim \sup _{n \rightarrow \infty} r_{n}<\frac{1}{\|A\|^{2}}$, and (3.11) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-z_{n}\right\|=\lim _{n \rightarrow \infty}\left\|A z_{n}-y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0 \tag{3.12}
\end{equation*}
$$

Since $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is bounded, there exists a subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ such that $x_{n_{k}} \rightarrow$ $\bar{x} \in H_{1}$. Clearly, $A x_{n_{k}} \rightarrow A \bar{x}, z_{n_{k}} \rightarrow \bar{x}, A z_{n_{k}} \rightarrow A \bar{x}, y_{n_{k}} \rightarrow A \bar{x}$, and $x_{n_{k}+1} \rightarrow \bar{x}$. Further, by (3.2), we obtain

$$
\begin{equation*}
\nabla h_{2}\left(A x_{n_{k}}\right) \in \partial g_{2}\left(y_{n_{k}}\right)+\frac{1}{\beta_{n_{k}}}\left(y_{n_{k}}-A x_{n_{k}}\right) . \tag{3.13}
\end{equation*}
$$

By (3.12), (3.13), Lemma 2.3, and $\left\{\beta_{n}\right\}_{n \in \mathbb{N}} \subseteq(a, b)$, we determine that

$$
\begin{equation*}
\nabla h_{2}(A \bar{x}) \in \partial g_{2}(A \bar{x}) \tag{3.14}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\nabla h_{1}(\bar{x}) \in \partial g_{1}(\bar{x}) . \tag{3.15}
\end{equation*}
$$

By (3.14) and (3.15), we know that $\bar{x} \in \Omega_{\mathrm{SDCP}}$. Further, $\lim _{n \rightarrow \infty}\left\|x_{n}-\bar{x}\right\|=\lim _{k \rightarrow \infty} \| x_{n_{k}}-$ $\bar{x} \|=0$. Therefore, the proof is completed.

Remark 3.1

(i) In Algorithm 3.1, if $y_{n}=A x_{n}$ and $x_{n+1}=z_{n}$, then $x_{n}=z_{n}$, and this implies that $\nabla h_{1}\left(x_{n}\right) \in \partial g_{1}\left(x_{n}\right)$ and $\nabla h_{2}\left(A x_{n}\right) \in \partial g_{2}\left(A x_{n}\right)$. Thus, $x_{n} \in \Omega_{\text {SDCP }}$.
(ii) In Algorithm 3.1, if $x_{n+1} \neq z_{n}$, then $f_{1}\left(x_{n+1}\right)<f_{1}\left(z_{n}\right)$. Indeed, it follows from $\partial h_{1}\left(z_{n}\right)=\left\{\nabla h_{1}\left(z_{n}\right)\right\}$ and the definition of x_{n+1} that

$$
g_{1}\left(x_{n+1}\right)-h_{1}\left(x_{n+1}\right)+\frac{1}{2 \beta_{n}}\left\|x_{n+1}-z_{n}\right\|^{2} \leq g_{1}\left(z_{n}\right)-h_{1}\left(z_{n}\right) .
$$

So, if $x_{n+1} \neq z_{n}$, then $f_{1}\left(x_{n+1}\right)<f_{1}\left(z_{n}\right)$.
(iii) In Algorithm 3.1, if $y_{n} \neq A x_{n}$, then $f_{2}\left(y_{n}\right)<f_{2}\left(A x_{n}\right)$. Indeed, it follows from $\partial h_{2}\left(A x_{n}\right)=\left\{\nabla h_{2}\left(A x_{n}\right)\right\}$ and the definition of y_{n} that

$$
g_{2}\left(y_{n}\right)-h_{2}\left(y_{n}\right)+\frac{1}{2 \beta_{n}}\left\|y_{n}-A x_{n}\right\|^{2} \leq g_{2}\left(A x_{n}\right)-h_{2}\left(A x_{n}\right) .
$$

So, if $y_{n} \neq A x_{n}$, then $f_{2}\left(y_{n}\right)<f_{2}\left(A x_{n}\right)$.
(iv) If $\rho>L$, then it follows from (3.7) that (3.9) can be rewritten as

$$
\left\|x_{n+1}-w\right\|^{2} \leq k_{n}\left\|z_{n}-w\right\|^{2} \leq k_{n}\left\|x_{n}-w\right\|^{2}
$$

where

$$
k_{n}:=\frac{1+\beta_{n} L}{1+2 \beta_{n} \rho-\beta_{n} L} \in(0,1)
$$

Hence, $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges linearly to \bar{x}, where $\Omega_{\mathrm{SDCP}}=\{\bar{x}\}$.

Remark 3.2 From the proof of Theorem 3.1, we know that

$$
\begin{equation*}
\nabla h_{2}\left(A x_{n}\right)+\frac{1}{\beta_{n}}\left(A x_{n}-y_{n}\right) \in \partial g_{2}\left(y_{n}\right) \tag{3.16}
\end{equation*}
$$

and this implies that

$$
\begin{equation*}
A x_{n}+\beta_{n} \nabla h_{2}\left(A x_{n}\right) \in y_{n}+\beta_{n} \partial g_{2}\left(y_{n}\right)=\left(I_{H_{2}}+\beta_{n} \partial g_{2}\right)\left(y_{n}\right), \tag{3.17}
\end{equation*}
$$

where $I_{H_{2}}$ is the identity mapping on H_{2}. Since g_{2} is proper, lower semicontinuous, and convex, we know that ∂g_{2} is maximal monotone. So, by Lemma 2.5, we determine that

$$
\begin{equation*}
y_{n}=\left(I_{H_{2}}+\beta_{n} \partial g_{2}\right)^{-1}\left(A x_{n}+\beta_{n} \nabla h_{2}\left(A x_{n}\right)\right) . \tag{3.18}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
x_{n+1}=\left(I_{H_{1}}+\beta_{n} \partial g_{1}\right)^{-1}\left(z_{n}+\beta_{n} \nabla h_{1}\left(z_{n}\right)\right) \tag{3.19}
\end{equation*}
$$

where $I_{H_{1}}$ is the identity mapping on H_{1}. Therefore, Algorithm 3.1 can be rewritten as the following algorithm:

$$
\left\{\begin{array}{l}
y_{n}:=\left(I_{H_{2}}+\beta_{n} \partial g_{2}\right)^{-1}\left(A x_{n}+\beta_{n} \nabla h_{2}\left(A x_{n}\right)\right), \tag{Algorithm3.2}\\
z_{n}:=x_{n}-r_{n} A^{*}\left(A x_{n}-y_{n}\right) \\
x_{n+1}:=\left(I_{H_{1}}+\beta_{n} \partial g_{1}\right)^{-1}\left(z_{n}+\beta_{n} \nabla h_{1}\left(z_{n}\right)\right), \quad n \in \mathbb{N}
\end{array}\right.
$$

In fact, we observe that the idea of Algorithm 3.2 is the same as the proposed algorithm by Sun, Sampaio, and Candido [16, Algorithm 2.3]. Hence, a modified algorithm
and related convergence theorems could be presented by using the idea of [16, Algorithm 5.3].

Remark 3.3 Under the assumptions in this section, consider the following:

$$
\left\{\begin{array}{l}
y:=\arg \min _{v \in H_{2}}\left\{g_{2}(v)+\frac{1}{2 \beta}\|v-A x\|^{2}-\left\langle\nabla h_{2}(A x), v-A x\right\rangle\right\} \tag{3.20}\\
z:=x-r A^{*}(A x-y) \\
w:=\arg \min _{u \in H_{1}}\left\{g_{1}(u)+\frac{1}{2 \beta}\|u-z\|^{2}-\left\langle\nabla h_{1}(z), u-z\right\rangle\right\}
\end{array}\right.
$$

that is,

$$
\left\{\begin{array}{l}
y:=\left(I_{H_{2}}+\beta \partial g_{2}\right)^{-1}\left(A x+\beta \nabla h_{2}(A x)\right) \tag{3.21}\\
z:=x-r A^{*}(A x-y) \\
w:=\left(I_{H_{1}}+\beta \partial g_{1}\right)^{-1}\left(z+\beta \nabla h_{1}(z)\right)
\end{array}\right.
$$

we know that

$$
\begin{equation*}
A x=y \quad \text { and } \quad z=w \quad \Leftrightarrow \quad x=z \in \Omega_{\mathrm{SDCP}} \tag{3.22}
\end{equation*}
$$

Proof For this equivalence relation, we only need to show that $x=z \in \Omega_{\mathrm{SDCP}}$ implies that $A x=y$ and $z=w$. Indeed, since $x=z \in \Omega_{\mathrm{SDCP}}$, we know that $\nabla h_{1}(z) \in \partial g_{1}(z)$ and $\nabla h_{2}(A x) \in$ $\partial g_{2}(A x)$. By Lemma 2.5,

$$
\left\{\begin{array}{l}
\left(I_{H_{2}}+\beta \partial g_{2}\right)^{-1}\left(A x+\beta \nabla h_{2}(A x)\right)=A x \tag{3.23}\\
\left(I_{H_{1}}+\beta \partial g_{1}\right)^{-1}\left(z+\beta \nabla h_{1}(z)\right)=z
\end{array}\right.
$$

By (3.21) and (3.23), we know that $A x=y$ and $z=w$.

Remark 3.4 In Algorithm 3.1, if $\beta_{n}=\beta$ and $r_{n}=r$ for each $n \in \mathbb{N}$, and $x_{N+1}=x_{N}$ for some $N \in \mathbb{N}$, then $x_{n}=x_{N}, y_{n}=y_{N}$, and $z_{n}=z_{N}$ for each $n \in \mathbb{N}$ with $n \geq N$. By Theorem 3.1, we know that $\lim _{n \rightarrow \infty} x_{n}=x_{N} \in \Omega_{\mathrm{SDCP}}$. So, $x_{n+1}=x_{n}$ could be set as a stop criterion in Algorithm 3.1. Further, from (3.21), we have

$$
\begin{aligned}
x=w & \Rightarrow x \in \Omega_{\mathrm{SDCP}} \\
& \Rightarrow x \in \Omega_{\mathrm{SDCP}} \quad \text { and } \quad y=A x \\
& \Rightarrow x=z \in \Omega_{\mathrm{SDCP}} \quad \text { and } \quad y=A x \\
& \Rightarrow x=z=w \in \Omega_{\mathrm{SDCP}} \quad \text { and } \quad y=A x \\
& \Rightarrow x=w .
\end{aligned}
$$

This equivalence relation is important for the split DC program.

By Remark 3.4, we give the following result.

Proposition 3.2 Under the assumptions in this section, and

$$
\left\{\begin{array}{l}
y:=\arg \min _{v \in H_{2}}\left\{g_{2}(v)+\frac{1}{2 \beta}\|v-A x\|^{2}-\left\langle\nabla h_{2}(A x), v-A x\right\rangle\right\}, \tag{3.24}\\
z:=x-r A^{*}(A x-y) \\
w:=\arg \min _{u \in H_{1}}\left\{g_{1}(u)+\frac{1}{2 \beta}\|u-z\|^{2}-\left\langle\nabla h_{1}(z), u-z\right\rangle\right\}
\end{array}\right.
$$

Then $x \in \Omega_{\mathrm{SDCP}}$ if and only if $x=w$.

Next, we give another convergence theorem for the split proximal linearized algorithm under different assumptions on $\left\{r_{n}\right\}_{n \in \mathbb{N}}$.

Theorem 3.2 Let $\left\{r_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in $\left(0, \frac{1}{\|A\|^{2}}\right)$ with $\lim _{n \rightarrow \infty} r_{n}=0$ and $\sum_{n=1}^{\infty} r_{n}=\infty$. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be generated by Algorithm 3.1. Then $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges to an element $\bar{x} \in \Omega_{\mathrm{SDCP}}$.

Proof Take any $w \in \Omega_{\mathrm{SDCP}}$ and $n \in \mathbb{N}$, and let w and n be fixed. From the proof of Theorem 3.1, we have

$$
\begin{align*}
& \nabla h_{2}\left(A x_{n}\right)-\frac{1}{\beta_{n}}\left(y_{n}-A x_{n}\right) \in \partial g_{2}\left(A x_{n}\right), \tag{3.25}\\
& \nabla h_{1}\left(z_{n}\right)-\frac{1}{\beta_{n}}\left(x_{n+1}-z_{n}\right) \in \partial g_{1}\left(x_{n+1}\right), \tag{3.26}
\end{align*}
$$

and

$$
\begin{align*}
\left\|x_{n+1}-w\right\|^{2} \leq & \left\|x_{n}-w\right\|^{2}-\left(1-r_{n}\|A\|^{2}\right)\left\|x_{n}-z_{n}\right\|^{2}-r_{n}\left\|A z_{n}-y_{n}\right\|^{2} \\
& -r_{n}\left(\frac{2 \beta_{n}(\rho-L)}{1+2 \beta_{n} \rho-\beta_{n} L}\right)\left\|A x_{n}-A w\right\|^{2}-\frac{1}{1+2 \beta_{n} \rho-\beta_{n} L}\left\|x_{n+1}-z_{n}\right\|^{2} \\
\leq & \left\|x_{n}-w\right\|^{2} . \tag{3.27}
\end{align*}
$$

Further, the following are satisfied:

$$
\left\{\begin{array}{l}
\lim _{n \rightarrow \infty}\left\|x_{n}-w\right\| \text { exists, } \\
\left\{x_{n}\right\}_{n \in \mathbb{N}},\left\{A x_{n}\right\}_{n \in \mathbb{N}},\left\{y_{n}\right\}_{n \in \mathbb{N}},\left\{z_{n}\right\}_{n \in \mathbb{N}} \text { are bounded sequences, } \\
\lim _{n \rightarrow \infty}\left\|x_{n+1}-z_{n}\right\|=0 \\
\lim _{n \rightarrow \infty}\left(1-r_{n}\|A\|^{2}\right)\left\|x_{n}-z_{n}\right\|^{2}=0
\end{array}\right.
$$

Since $\lim _{n \rightarrow \infty} r_{n}=0$, we know that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0 \tag{3.28}
\end{equation*}
$$

By (3.27), we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} r_{n}\left\|A z_{n}-y_{n}\right\|^{2} \leq \sum_{n=1}^{\infty}\left(\left\|x_{n}-w\right\|^{2}-\left\|x_{n+1}-w\right\|^{2}\right)<\infty \tag{3.29}
\end{equation*}
$$

By (3.29) and Lemma 2.4, we determine that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\|A z_{n}-y_{n}\right\|^{2}=0 \tag{3.30}
\end{equation*}
$$

Then there exist a subsequence $\left\{y_{n_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{y_{n}\right\}_{n \in \mathbb{N}}$, a subsequence $\left\{z_{n_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{z_{n}\right\}_{n \in \mathbb{N}}$, and $\bar{x} \in H_{1}$ such that $z_{n_{k}} \rightarrow \bar{x}, y_{n_{k}} \rightarrow A \bar{x}$, and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\|A z_{n}-y_{n}\right\|^{2}=\lim _{k \rightarrow \infty}\left\|A z_{n_{k}}-y_{n_{k}}\right\|^{2}=0 \tag{3.31}
\end{equation*}
$$

Clearly, $x_{n_{k}} \rightarrow \bar{x}, x_{n_{k}+1} \rightarrow \bar{x}$, and $A x_{n_{k}} \rightarrow A \bar{x}$. By (3.25) and (3.26), we know that $\bar{x} \in \Omega_{\mathrm{SDCP}}$. Thus, $\bar{x}=\hat{x}$. Since $\lim _{n \rightarrow \infty}\left\|x_{n}-\bar{x}\right\|$ exists, we know $\lim _{n \rightarrow \infty}\left\|x_{n}-\bar{x}\right\|=\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-\bar{x}\right\|=0$. Therefore, the proof is completed.

4 Application to the DC program and numerical results

Let $\rho>L \geq 0$. Let H be a finite dimensional Hilbert space, $g, h: H \rightarrow \mathbb{R}$ be proper, lower semicontinuous, and convex functions. Besides, we also assume that h is Fréchet differentiable, ∇h is L-Lipschitz continuous, g is ρ-strongly convex. Let $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in $(a, b) \subseteq(0, \infty)$. Let $\left\{r_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in $(0,1)$ with $0<\liminf _{n \rightarrow \infty} r_{n} \leq$ $\lim \sup _{n \rightarrow \infty} r_{n}<1$.

Now, we recall the DC program:

$$
\begin{equation*}
\text { Find } \bar{x} \in \arg \min _{x \in H}\{f(x)=g(x)-h(x)\} . \tag{DCP}
\end{equation*}
$$

Let Ω_{DCP} be defined by

$$
\Omega_{\mathrm{DCP}}:=\{x \in H: \nabla h(x) \in \partial g(x)\},
$$

and assume that $\Omega_{\mathrm{DCP}} \neq \emptyset$. If $H_{1}=H_{2}=H, g_{1}=g_{2}=g$, and $h_{1}=h_{2}=h$, then we get the following algorithm and convergence theorem from Algorithm 3.1 and Theorem 3.1, respectively.

Algorithm 4.1

$$
\left\{\begin{array}{l}
x_{1} \in H \quad \text { is chosen arbitrarily, } \\
y_{n}:=\arg \min _{v \in H}\left\{g(v)+\frac{1}{2 \beta_{n}}\left\|v-x_{n}\right\|^{2}-\left\langle\nabla h\left(x_{n}\right), v-x_{n}\right\rangle\right\}, \\
z_{n}:=\left(1-r_{n}\right) x_{n}+r_{n} y_{n}, \\
x_{n+1}:=\arg \min _{u \in H}\left\{g(u)+\frac{1}{2 \beta_{n}}\left\|u-z_{n}\right\|^{2}-\left\langle\nabla h\left(z_{n}\right), u-z_{n}\right\rangle\right\}, \quad n \in \mathbb{N} .
\end{array}\right.
$$

Theorem 4.1 Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be generated by Algorithm 4.1. Then $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges to an element $\bar{x} \in \Omega_{\mathrm{DCP}}$.

In fact, we can get the following algorithm and convergence theorem by Algorithm 4.1 and Theorem 4.1, respectively.

Algorithm 4.2

$$
\left\{\begin{array}{l}
x_{1} \in H \quad \text { is given, } \\
z_{n}:=\arg \min _{u \in H}\left\{g(u)+\frac{1}{2 \beta_{n}}\left\|u-x_{n}\right\|^{2}-\left\langle\nabla h\left(x_{n}\right), u-x_{n}\right\rangle\right\}, \\
y_{n}:=\arg \min _{v \in H}\left\{g(v)+\frac{1}{2 \beta_{n}}\left\|v-z_{n}\right\|^{2}-\left\langle\nabla h\left(z_{n}\right), v-z_{n}\right\rangle\right\}, \\
x_{n+1}:=\left(1-r_{n}\right) z_{n}+r_{n} y_{n}, \quad n \in \mathbb{N} .
\end{array}\right.
$$

Theorem 4.2 Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be generated by Algorithm 4.2. Then $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges to an element $\bar{x} \in \Omega_{\mathrm{DCP}}$.

Example 4.1 Let $g, h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $g\left(x_{1}, x_{2}, x_{3}\right):=2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}$ and $h\left(x_{1}, x_{2}, x_{3}\right):=4 x_{1}+8 x_{2}+12 x_{3}$ for all $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$. Then $\Omega_{\mathrm{DCP}}:=\{x \in H: \nabla h(x) \in$ $\partial g(x)\}=\{(1,2,3)\}$.

Example 4.2 Let $g_{1}, h_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $g_{1}\left(x_{1}, x_{2}, x_{3}\right):=2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}$ and $h_{1}\left(x_{1}, x_{2}, x_{3}\right):=4 x_{1}+8 x_{2}+12 x_{3}$ for all $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$. Let $g_{2}, h_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $g_{2}\left(y_{1}, y_{2}\right):=y_{1}^{2}+y_{2}^{2}$ and $h_{2}\left(y_{1}, y_{2}\right):=28 y_{1}+64 y_{2}$ for all $\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$. Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by $A\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{2}+3 x_{3}, 4 x_{1}+5 x_{2}+6 x_{3}\right)$ for all $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$. Here, $\|A\| \approx 0.10517$ and $\Omega_{\text {SDCP }}=\{(1,2,3)\}$.

From Table 1, we see that Algorithm 4.2 reaches the required errors only need six iterations if $\beta_{n}=500$ for all $n \in \mathbb{N}$, but Algorithm 4.2 reaches the required errors need 73 iterations if $\beta_{n}=0.1$ for all $n \in \mathbb{N}$.

From Table 2, we see that Algorithm 4.2 reaches the required errors only need seven iterations if $\beta_{n}=100$ for all $n \in \mathbb{N}$, but Algorithm 4.2 reaches the required errors need 72 iterations if $\beta_{n}=0.1$ for all $n \in \mathbb{N}$.
From Table 3, we see that Algorithm 3.1 reaches the required errors only need seven iterations if $\beta_{n}=700$ for all $n \in \mathbb{N}$, but Algorithm 3.1 reaches the required errors need 99 iterations if $\beta_{n}=0.1$ for all $n \in \mathbb{N}$.
From Table 3 and Table 4, we see that Algorithm 3.1 reaches the required errors need 283 iterations if $\beta_{n}=1$ and $r_{n}=0.05$ for all $n \in \mathbb{N}$, but Algorithm 3.1 reaches the required errors need 39 iterations if $\beta_{n}=1$ and $r_{n}=0.09$ for all $n \in \mathbb{N}$. On the other hand, for other settings of β_{n}, we know the numerical results in Table 3 and Table 4 show that there are no significant differences in the setting of $\left\{r_{n}\right\}_{n \in \mathbb{N}}$.

Table 1 Numerical results for Example 4.1.

Algorithm 4.2 $\varepsilon=10^{-12}$	$x_{1}=(88,2000,500)$, and $r_{n}=0.5$ for all $n \in \mathbb{N}$	
	Iteration	Approximate solution
$\beta_{n}=0.1$	73	$(1.00000000000004,2.00000000000091,3.00000000000023)$
$\beta_{n}=1$	18	$(1.00000000000002,2.00000000000044,3.00000000000011)$
$\beta_{n}=10$	10	$(1.00000000000000,2.00000000000002,3.00000000000000)$
$\beta_{n}=20$	8	$(1.00000000000003,2.00000000000074,3.00000000000018)$
$\beta_{n}=30$	8	$(1.00000000000000,2.00000000000004,3.00000000000001)$
$\beta_{n}=40$	8	$(1.00000000000000,2.00000000000001,3.00000000000000)$
$\beta_{n}=50$	7	$(1.00000000000002,2.00000000000049,3.00000000000012)$
$\beta_{n}=100$	7	$(1.00000000000000,2.00000000000001,3.00000000000030)$
$\beta_{n}=500$	6	$(1,2,3)$

Table 2 Numerical results for Example 4.1.

Algorithm 4.2	$x_{1}=(123,456,789)$, and $r_{n}=0.5$ for all $n \in \mathbb{N}$	
$\varepsilon=10^{-12}$	Iteration	Approximate solution
$\beta_{n}=0.1$	72	$(1.00000000000009,2.00000000000034,3.00000000000059)$
$\beta_{n}=1$	18	$(1.000000000000003,2.00000000000010,3.000000000000017)$
$\beta_{n}=10$	9	$(1.00000000000007,2.00000000000027,3.00000000000047)$
$\beta_{n}=20$	8	$(1.00000000000005,2.00000000000017,3.000000000000029)$
$\beta_{n}=30$	8	$(1.00000000000000,2.00000000000001,3.00000000000002)$
$\beta_{n}=40$	7	$(1.00000000000011,2.00000000000042,3.00000000000073)$
$\beta_{n}=50$	7	$(1.00000000000003,2.00000000000011,3.00000000000019)$
$\beta_{n}=100$	7	$(1,2,3)$

Table 3 Numerical results for Example 4.2.

Algorithm 3.1	$x_{1}=(123,456,789)$, and $r_{n}=0.05$ for all $n \in \mathbb{N}$	
$\varepsilon=10^{-12}$	Iteration	Approximate solution
$\beta_{n}=0.1$	99	(0.99999999999927, 1.99999999999990, 3.00000000000052)
$\beta_{n}=1$	39	(1.00000000000036, 2.00000000000048, 3.00000000000059)
$\beta_{n}=10$	15	(1.00000000000018, 2.00000000000024, 3.00000000000030)
$\beta_{n}=20$	12	(0.99999999999973, 1.99999999999964, 2.99999999999955)
$\beta_{n}=30$	11	(1.00000000000013, 2.00000000000017, 3.00000000000021)
$\beta_{n}=40$	10	(0.99999999999963, 1.99999999999952, 2.99999999999940)
$\beta_{n}=50$	10	(0.99999999999995, 1.99999999999993, 2.99999999999992)
$\beta_{n}=100$	9	(1.00000000000001, 2.00000000000002, 3.00000000000002)
$\beta_{n}=700$	7	$(1,2,3)$

Table 4 Numerical results for Example 4.2.

Algorithm 3.1	$x_{1}=(123,456,789)$, and $r_{n}=0.09$ for all $n \in \mathbb{N}$	
$\varepsilon=10^{-12}$	Iteration	Approximate solution
$\beta_{n}=0.1$	98	(0.99999999999931, 1.99999999999990, 3.00000000000050)
$\beta_{n}=1$	283	(1.00000000000038, $2.00000000000051,3.00000000000063)$
$\beta_{n}=10$	21	(1.00000000000008, 2.00000000000010, 3.00000000000013)
$\beta_{n}=20$	15	(1.00000000000042, 2.00000000000056, 3.00000000000069)
$\beta_{n}=30$	14	(0.99999999999997, 1.99999999999996, 2.99999999999995)
$\beta_{n}=40$	12	(0.99999999999959, 1.99999999999946, 2.99999999999933)
$\beta_{n}=50$	12	(0.99999999999996, 1.99999999999995, 2.99999999999994)
$\beta_{n}=100$	10	(0.99999999999994, 1.99999999999992, 2.99999999999990)
$\beta_{n}=1300$	7	$(1,2,3)$

Table 5 Numerical results for Example 4.2.

Algorithm 3.1	$x_{1}=(123,456,789)$, and $\beta_{n}=1$ for all $n \in \mathbb{N}$	
$\varepsilon=10^{-12}$	Iteration	Approximate solution
$r_{n}=0.05$	39	$(1.00000000000036,2.00000000000048,3.00000000000059)$
$r_{n}=0.09$	283	$(1.00000000000038,2.00000000000051,3.00000000000063)$
$r_{n}=0.095$	611	$(1.00000000000041,2.00000000000054,3.00000000000067)$
$r_{n}=0.099$	5129	$(1.00000000000043,2.00000000000056,3.00000000000070)$
$r_{n}=0.0994$	18,434	$(0.99999999999957,1.99999999999943,2.99999999999930)$

However, in Table 5, if $\beta_{n}=1$ for all $n \in \mathbb{N}$, then we know the numerical results have big differences in the setting of $\left\{r_{n}\right\}_{n \in \mathbb{N}}$.

Acknowledgements

The authors would like to thank referee(s) for many useful comments and suggestions for the improvement of the article Prof. Chi-Ming Chen was supported by Grant No. MOST 107-2115-M-007-008 of the Ministry of Science and Technology of the Republic of China.

Funding

Not applicable

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors contributed equally and significantly in writing this paper. The authors read and approved the final manuscript.

Author details

'Department of Applied Mathematics, National Chiayi University, Chiayi, Taiwan. ${ }^{2}$ Institute of Computational and Modeling Science, National Tsing Hua University, Hsinchu, Taiwan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 4 October 2018 Accepted: 29 April 2019 Published online: 22 May 2019

References

1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)
2. Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Kluwer Academic, Norwell (2000)
3. Byrne, C., Censor, Y., Gibali, A., Reich, S.: Weak and strong convergence of algorithms for the split common null point problem. J. Nonlinear Convex Anal. 13, 759-775 (2011)
4. Chuang, C.S.: Strong convergence theorems for the split variational inclusion problem in Hilbert spaces. Fixed Point Theory Appl. 2013, 350 (2013)
5. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168-1200 (2005)
6. Fujikara, Y., Kuroiwa, D.: Lagrange duality in canonical DC programming. J. Math. Anal. Appl. 408, 476-483 (2013)
7. Harada, R., Kuroiwa, D.: Lagrange-type in DC programming. J. Math. Anal. Appl. 418, 415-424 (2014)
8. Hiriart-Urruty, J.B., Tuy, H.: Essays on Nonconvex Optimization. Mathematical Programming, vol. 41. North-Holland, Amsterdam (1988)
9. Levy, A.J.: A fast quadratic programming algorithm for positive signal restoration. IEEE Trans. Acoust. Speech Signal Process. 31, 1337-1341 (1983)
10. Marino, G., Xu, H.K.: Convergence of generalized proximal point algorithm. Commun. Pure Appl. Anal. 3, 791-808 (2004)
11. Martinet, B.: Régularisation d'inéquations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Opér 4(Ser R-3), 154-158 (1970)
12. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275-283 (2011)
13. Pham, D.T., An, L.T.H., Akoa, F.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23-46 (2005)
14. Saeki, Y., Kuroiwa, D.: Optimality conditions for DC programming problems with reverse convex constraints. Nonlinear Anal. 80, 18-27 (2013)
15. Souza, J.C.O., Oliveira, R.P., Soubeyran, A.: Global convergence of a proximal linearized algorithm for difference of convex functions. Optim. Lett. 10, 1529-1539 (2016)
16. Sun, W., Sampaio, R.J.B., Candido, M.A.B.: Proximal point algorithm for minimization of DC functions. J. Comput. Math. 21, 451-462 (2003)
17. Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohoma Publishers, Yokohoma (2009)
