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Abstract
In this paper, we propose the weighted cumulative past (residual) inaccuracy for
record values. For this concept, we obtain some properties and characterization
results such as relationships with other reliability functions, bounds, stochastic
ordering and effect of linear transformation. Dynamic versions of this weighted
measure are considered. We also study a problem of estimating the weighted
cumulative past inaccuracy by means of the empirical cumulative inaccuracy for
lower record values.
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1 Introduction
Let X and Y be two non-negative random variables with distribution functions F(x), G(x)
and survival functions F̄(x), Ḡ(x), respectively. If f (x) is the actual probability density func-
tion (pdf) corresponding to the observations and g(x) is the density assigned by the ex-
perimenter, then the inaccuracy measure of X and Y is defined by Kerridge [9] as

I(X, Y ) = I(f , g) = –
∫ +∞

0
f (x) log g(x) dx. (1.1)

Recently, Kundu [10] considered a weighted measure of inaccuracy as

Iw(f , g) = –
∫ +∞

0
xf (x) log g(x) dx. (1.2)

Analogous to the Kerridge measure of inaccuracy (1.1), Thapliyal and Taneja [17] pro-
posed a cumulative past inaccuracy (CPI) measure as

I(F , G) = –
∫ +∞

0
F(x) log G(x) dx. (1.3)

When G(x) = F(x), Eq. (1.3) becomes cumulative entropy studied by Di Crescenzo and
Longobardi [4]. Kundu et al. [11] studied some properties of CPI for truncated ran-
dom variables. In analogy with (1.2), we define the weighted cumulative past inaccuracy
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(WCPI) as

Iw(F , G) = –
∫ +∞

0
xF(x) log G(x) dx. (1.4)

Similarly, Kundu et al. [11] introduced the concept of cumulative residual inaccuracy (CRI)
which is defined as

Ī(F̄ , Ḡ) = –
∫ +∞

0
F̄(x) log Ḡ(x) dx. (1.5)

In analogy with (1.4), we define the weighted cumulative residual inaccuracy (WCRI) as

Īw(F , G) = –
∫ +∞

0
xF̄(x) log Ḡ(x) dx. (1.6)

Let X1, X2, . . . be a sequence of iid random variables having an absolutely continuous cdf
F(x) and pdf f (x). An observation Xj is called a lower record (upper record) value if its value
is less (greater) than that of all previous observations. Thus, Xj is a lower (upper) record if
Xj < (>)Xi for every i < j. Further, assume that T1 = 1 and Tn = min{j : j > Tn–1, Xj < XTn–1}
are known as lower record time sequence. Then, the lower record value sequence can be
defined by Ln = XTn , n ≥ 1. The density function and cumulative distribution function
(cdf ) of Ln, which are denoted by fLn and FLn , respectively, are given by

fLn (x) =
[– log F(x)]n–1

(n – 1)!
f (x), (1.7)

FLn (x) =
n–1∑
j=0

[– log F(x)]j

j!
F(x). (1.8)

Similarly, assume that Z1 = 1 and Zn = min{j∗ : j∗ > Zn–1, Xj∗ > XZn–1} are known as upper
record time sequence. Then, Rn = XZn , n ≥ 1 are said to be upper record values. The pdf
of Rn is given by

fRn (x) =
[– log F̄(x)]n–1

(n – 1)!
f (x). (1.9)

Also, the survival function of Rn can be obtained as

F̄Rn (x) =
n–1∑
j=0

[– log F̄(x)]j

j!
F̄(x). (1.10)

Record values are applied in problems such as industrial stress testing, meteorological
analysis, hydrology, sporting and economics. In reliability theory, record values are used to
study, for example, technical systems which are subject to shocks, e.g., peaks of voltages.
For more details about records and their applications, one may refer to Arnold et al. [1].
Several authors have worked on measures of inaccuracy for ordered random variables.
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Thapliyal and Taneja [16] proposed a measure of inaccuracy between the ith order statistic
and the parent random variable. Thapliyal and Taneja [17] developed measures of dynamic
cumulative residual and past inaccuracy. They studied characterization results of these
dynamic measures under proportional hazard model and proportional reversed hazard
model. Thapliyal and Taneja [18] have introduced the measure of residual inaccuracy of
order statistics and proved a characterization result for it. Tahmasebi and Daneshi [14] and
Tahmasebi et al. [15] obtained some results for inaccuracy measures of record values. In
this paper, we propose a weighted cumulative past (residual) inaccuracy of record values
and study its characterization results. The paper is organized as follows. In Sect. 2, we
consider a weighted measure of inaccuracy associated with FLn and F and obtain some
results of its properties. In Sect. 3, we study a dynamic version of WCPI between FLn

and F . In Sect. 4, we propose empirical WCPI of lower record values. In Sect. 5, we study
WCRI and its dynamic version between F̄Rn and F̄ , and obtain some results about their
properties. Throughout the paper we assume that the terms increasing and decreasing are
used in non-strict sense.

2 Weighted cumulative past inaccuracy for Ln

In this section, we propose a weighted measure of CPI between FLn and F . For this concept,
we study some properties and characterization results under some assumptions.

Definition 2.1 Let X be a non-negative absolutely continuous random variable with cdf F .
Then, we define the WCPI between FLn (distribution function of the nth lower record
value Ln) and F as

Iw(FLn , F) = –
∫ ∞

0
xFLn (x) log F(x) dx

=
∫ ∞

0

n–1∑
j=0

(j + 1)x
[
FLj+2 (x) – FLj+1 (x)

]
dx

=
n–1∑
j=0

(j + 1)ELj+2

[
X

λ̃(X)

]
, (2.1)

where λ̃(x) = f (x)
F(x) is the reversed hazard rate function and Lj+2 is a random variable with

density function fLj+2 (x) = [– log F(x)]j+1f (x)
(j+1)! .

In the following, we present some examples and properties of Iw(FLn , F).

Example 2.1
(i) If X has an inverse Weibull distribution with the cdf F(x) = exp(–( α

x )β ), x > 0, then
we have

Iw(FLn , F) =
α2

β

n–1∑
j=0

Γ ( (j+1)β–2
β

)
j!

.
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(ii) If X is uniformly distributed on [0, θ ], then we obtain

Iw(FLn , F) = θ2
n–1∑
j=0

(j + 1)
(

1
3

)j+2

.

(iii) If X has a power distribution with cdf F(x) = [ x
α

]β , 0 < x < α, β > 0, then we obtain

Iw(FLn , F) = α2
n–1∑
j=0

(j + 1)
β j+1

(2 + β)j+2 .

Proposition 2.2 Let X be a non-negative random variable with cdf F, then we have

Iw(FLn , F) =
n–1∑
j=0

1
j!

∫ ∞

0
λ̃(z)

[∫ z

0
x
[
– log F(x)

]jF(x) dx
]

dz. (2.2)

Proof By (2.1) and using the relation – log F(x) =
∫ ∞

x λ̃(z) dz, we have

Iw(FLn , F) =
n–1∑
j=0

∫ ∞

0
x

[– log F(x)]j+1

j!
F(x) dx

=
n–1∑
j=0

∫ ∞

0

[∫ ∞

x
λ̃(z) dz

]
x

[– log F(x)]j

j!
F(x) dx

=
n–1∑
j=0

1
j!

∫ ∞

0
λ̃(z)

[∫ z

0
x
[
– log F(x)

]jF(x) dx
]

dz.

So, the proof is completed. �

The weighted mean inactivity time (WMIT) function of a non-negative random variable
X is given by

μw(t) =
∫ t

0 xF(x) dx
tF(t)

, t > 0.

Now, the WMIT of Ln is given by

μw
n (t) =

∑n–1
j=0

1
j!
∫ t

0 xF(x)[– log F(x)]j dx

t
∑n–1

j=0
1
j! F(t)[– log F(t)]j

. (2.3)

Note that μw
n (t) is analogous to the mean residual waiting time used in reliability and

survival analysis (for more details, see Bdair and Raqab [2]).

Proposition 2.3 Let X be a non-negative random variable with cdf F . Then, we have

Iw(FLn , F) =
n–1∑
j=0

ELj+1

[
Xμw

n (X)
]
.
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Proof From (2.2) and (2.3), we obtain

Iw(FLn , F) =
∫ ∞

0
λ̃(z)

[ n–1∑
j=0

1
j!

[∫ z

0
x
[
– log F(x)

]jF(x) dx
]]

dz

=
∫ +∞

0

n–1∑
j=0

zμw
n (z)fLj+1 (z) dz

=
n–1∑
j=0

∫ +∞

0
zμw

n (z)fLj+1 (z) dz

=
n–1∑
j=0

ELj+1

[
Xμw

n (X)
]
,

yielding the claim. �

Proposition 2.4 Let X be an absolutely continuous non-negative random variable with
Iw(FLn , F) < ∞, for all n ≥ 1. Then we have

Iw(FLn , F) =
n–1∑
j=0

1
j!
E

(
h̃w

j+1(T)
)
, (2.4)

where h̃w
j+1(t) =

∫ ∞
t x[– log F(x)]j+1 dx.

Proof By using (2.1) and Fubini’s theorem, we obtain

Iw(FLn , F) =
n–1∑
j=0

∫ ∞

0
x

[– log F(x)]j+1

j!

[∫ x

0
f (t) dt

]
dx

=
n–1∑
j=0

∫ ∞

0

f (t)
j!

[∫ ∞

t
x
[
– log F(x)

]j+1 dx
]

dt

=
n–1∑
j=0

1
j!
E

[
h̃w

j+1(T)
]
.

�

Remark 2.1 Let X be a symmetric random variable with respect to the finite mean μ =
E(X), i.e., F(x + μ) = 1 – F(μ – x) for all x ∈ R. Then

Iw(FLn , F) = Īw(F̄Rn , F̄) – 2μĪ(F̄Rn , F̄),

where Īw(F̄Rn , F̄) is the weighted cumulative residual measure of inaccuracy between F̄Rn

(survival function of the nth upper record value Rn) and F̄ .

Now we can prove an important property of the inaccuracy measure using some prop-
erties of stochastic ordering. For that we present the following definitions:

1. A random variable X is said to be smaller than Y according to stochastic ordering
(denoted by X ≤st Y ) if P(X ≥ x) ≤ P(Y ≥ x) for all x. It is known that
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X ≤st Y ⇔ E(φ(X)) ≤ E(φ(Y )) for all increasing functions (equivalency (1.A.7) in
Shaked and Shanthikumar [13]).

2. A random variable X is said to be smaller than Y in likelihood ratio ordering
(denoted by X ≤lr Y ) if g(x)

f (x) is increasing in x.
3. A random variable X is said to be smaller than a random variable Y in the increasing

convex order, denoted by X ≤icx Y , if E(φ(X)) ≤ E(φ(Y )) for all increasing convex
functions φ such that the expectations exist.

4. A non-negative random variable X is said to have a decreasing reversed hazard rate
on average (DRHRA) if λ̃(x)

x is decreasing in x.
5. A non-negative random variable X is said to have a decreasing hazard rate on average

(DHRA) if λ(x)
x is decreasing in x.

Theorem 2.5 Suppose that a non-negative random variable X is DRHRA, then

Iw(FLn+1 , F) – Iw(FLn , F) ≤
n+1∑
i=1

ELi

[
X

λ̃(x)

]
. (2.5)

Proof Let fLn (x) be the pdf of the nth lower record value XLn . Then, the ratio fLn (x)
fLn+1 (x) = –n

log F(x)

is increasing in x. Therefore, Xn+1 ≤lr Xn, and this implies that Xn+1 ≤st Xn, i.e., F̄n+1(x) ≤
F̄n(x) (for more details, see Shaked and Shanthikumar ([13], Chap. 1)). This is equivalent
(see Shaked and Shanthikumar ([13], p. 4)) to having

E
(
φ(Xn+1)

) ≤ E
(
φ(Xn)

)

for all increasing functions φ such that these expectations exist. Thus, if X is DRHRA and
λ̃(x) is its reversed hazard rate, then x

λ̃(x) is increasing in x. From (2.1), we have that

Iw(FLn+1 , F) =
n∑

j=0

(j + 1)ELj+2

[
X

λ̃(X)

]

≤
n∑

j=0

(j + 1)ELj+1

[
X

λ̃(X)

]

=
n–1∑
i=–1

(i + 2)ELi+2

[
X

λ̃(X)

]

=
n–1∑
i=0

(i + 2)ELi+2

[
X

λ̃(X)

]
+ EL1

[
X

λ̃(X)

]

= Iw(FLn , F) +
n+1∑
i=1

ELi

[
X

λ̃(X)

]
.

Thus the proof is completed. �
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Proposition 2.6 Let X be a non-negative random variable with absolutely continuous cu-
mulative distribution function F(x). Then for n = 1, 2, . . . , we have

Iw(FLn , F) ≥
n–1∑
j=0

j+1∑
i=0

(–1)i(j + 1)
i!(j + 1 – i)!

∫ ∞

0
x
[
F(x)

]i+1 dx.

Proof Since – log F(x) ≥ 1 – F(x), the proof follows by recalling (2.1). �

Proposition 2.7 Let X be a non-negative random variable with absolutely continuous cu-
mulative distribution function F(x). Then for n = 1, 2, . . . , we have

Iw(FLn , F) ≤
n–1∑
j=0

1
j!

∫ ∞

0
x
[
– log F(x)

]j+1 dx.

Assume that X̃θ denotes a non-negative absolutely continuous random variable with
the distribution function Hθ (x) = [F(x)]θ , x ≥ 0. We now obtain the cumulative measure
of inaccuracy between HLn and H as follows:

Iw(HLn , H) = –
∫ +∞

0
xHLn (x) log

(
H(x)

)
dx

=
n–1∑
j=0

θ j+1
∫ +∞

0
x

[– log F(x)]j+1

j!
[
F(x)

]θ dx. (2.6)

Proposition 2.8 If θ ≥ 1, then for any n = 1, 2, . . . , we have

Iw(HLn , H) =
n–1∑
j=0

(j + 1)CEw
j+1(X̃θ ) ≤

n–1∑
j=0

θ j+1(j + 1)CEw
j+1(X). (2.7)

Proof Suppose that θ ≥ 1, then it is clear that [F(x)]θ ≤ F(x), and hence we have

Iw(HLn , H) =
n–1∑
j=0

(j + 1)CEw
j+1(X̃θ ) ≤

n–1∑
j=0

θ j+1(j + 1)CEw
j+1(X).

�

Proposition 2.9 Let X be a non-negative random variable with cdf F , then an analytical
expression for Iw(FLn , F) is given by

Iw(FLn , F) =
n–1∑
j=0

∫ ∞

0
x

[– log F(x)]j+1

j!
F(x) dx =

n–1∑
j=0

(j + 1)CEw
j+1(X), (2.8)

where

CEw
j+1(X) =

∫ ∞

0
x

[– log F(x)]j+1

(j + 1)!
F(x) dx, (2.9)

is a weighted generalized cumulative entropy (WGCE) which was introduced by Kayal and
Moharana [7].
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Proposition 2.10 Let a, b > 0. Then for n = 1, 2, . . . , it holds that

Iw(FaLn+b, FaX+b) = a2Iw(FLn , F) + abI(FLn , F). (2.10)

Proof From (2.8), we have

Iw(FaLn+b, FaX+b) =
n–1∑
j=0

(j + 1)CEw
j+1(aX + b)

= a2
n–1∑
j=0

(j + 1)CEw
j+1(X) + ab

n–1∑
j=0

(j + 1)CE j+1(X)

= a2Iw(FLn , F) + abI(FLn , F).

The proof is completed. �

Recently, Cali et al. [3] introduced a generalized CPI of order m defined as

Im(F , G) =
1

m!

∫ +∞

0
F(x)

[
– log G(x)

]m dx. (2.11)

In analogy with the measure defined in Eq. (2.11), we now introduce a weighted general-
ized CPI (WGCPI) of order m defined as

Iw
m(F , G) =

1
m!

∫ +∞

0
xF(x)

[
– log G(x)

]m dx. (2.12)

Remark 2.2 Let X be a non-negative absolutely continuous random variable with cdf F .
Then, the WGCPI of order m between FLn and F is

Iw
m(FLn , F) =

1
m!

∫ ∞

0
xFLn (x)

[
– log F(x)

]m dx

=
n–1∑
j=0

(
m + j

j

)
CEw

m+j(X). (2.13)

3 Dynamic weighted cumulative past inaccuracy
In this section, we study a dynamic version of Iw(FLn , F). If a system that begins to work
at time 0 is observed only at deterministic inspection times, and is found to be ‘down’ at
time t, then we consider a dynamic cumulative measure of inaccuracy as

Iw(FLn , F ; t) = –
∫ t

0
x

FLn (x)
FLn (t)

log

(
F(x)
F(t)

)
dx

= log F(t)μw
n (t) –

∫ t

0
x

FLn (x)
FLn (t)

log
(
F(x)

)
dx

= log F(t)μw
n (t) +

1
FLn (t)

n–1∑
j=0

∫ t

0
x

[– log F(x)]j+1

j!
F(x) dx. (3.1)
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Note that limt→∞ Iw(FLn , F ; t) = Iw(FLn , F). Since log F(t) ≤ 0 for t ≥ 0, we have

Iw(FLn , F ; t) ≤ 1
FLn (t)

n–1∑
j=0

∫ t

0
x

[– log F(x)]j+1

j!
F(x) dx

≤ 1
FLn (t)

n–1∑
j=0

∫ +∞

0
x

[– log F(x)]j+1

j!
F(x) dx =

Iw(FLn , F)
FLn (t)

.

In the following theorem, we prove that Iw(FLn , F ; t) uniquely determines the distribution
function.

Theorem 3.1 Let X be a non-negative continuous random variable with distribution func-
tion F(·). Let the weighted dynamic cumulative inaccuracy of the nth lower record value be
finite, that is, Iw(FLn , F ; t) < ∞, t ≥ 0. Then Iw(FLn , F ; t) characterizes the distribution func-
tion.

Proof From (3.1) we have

Iw(FLn , F ; t) = log F(t)μw
n (t) +

1
FLn (t)

n–1∑
j=0

∫ t

0
x

[– log F(x)]j+1

j!
F(x) dx. (3.2)

Differentiating both sides of (3.2) with respect to t, we obtain

∂

∂t
[
Iw(FLn , F ; t)

]
= λ̃F (t)μw

n (t) – λ̃FLn (t)Iw(FLn , F ; t)

= λ̃F (t)μw
n (t) – c(t)λ̃F (t)Iw(FLn , F ; t)

= λ̃F (t)
[
μw

n (t) – c(t)Iw(FLn , F ; t)
]
.

Taking derivative with respect to t again, we get

´̃
λF (t) =

(λ̃F (t))2(ć(t)Iw(FLn , F ; t) + c(t)Íw(FLn , F ; t) – t + c(t)λ̃F (t)μw
n (t))

Íw(FLn , F ; t)
. (3.3)

Suppose that there are two functions F and F∗ such that

Iw(FLn , F ; t) = Iw(
F∗

Ln , F∗; t
)

= z(t).

Then for all t, from (3.3) we get

´̃
λF (t) = ϕ

(
t, λ̃F (t)

)
, ´̃

λF∗ (t) = ϕ
(
t, λ̃F∗ (t)

)
,

where

ϕ(t, y) =
y2[ć(t)z(t) + c(t)(ź(t) + ys(t)) – t]

ź(t)
,

and s(t) = μw
n (t). By using Theorem 2.1 and Lemma 2.2 of Gupta and Kirmani [5], we have

λ̃F (t) = λ̃F∗ (t), for all t. Since the reversed hazard rate function characterizes the distribu-
tion function uniquely, we complete the proof. �
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4 Empirical weighted cumulative past inaccuracy
In this section we address the problem of estimating the weighted cumulative measure
of inaccuracy by means of the empirical weighted cumulative inaccuracy of lower record
values. Let X1, X2, . . . , Xm be a random sample of size m from an absolutely continuous
cumulative distribution function F(x). Then according to (2.8), the empirical cumulative
measure of inaccuracy is

Îw(FLn , F) =
n–1∑
j=0

∫ ∞

0
x

[– log F̂m(x)]j+1

j!
F̂m(x) dx =

n–1∑
j=0

(j + 1)CEw
j+1(F̂m), (4.1)

where

F̂m(x) =
1
m

m∑
i=1

I(Xi≤x), x ∈R,

is the empirical distribution of the sample and I is the indicator function. If we denote
X(1) ≤ X(2) ≤ · · · ≤ X(m) as the order statistics of the sample, then (4.1) can be written as

Îw(FLn , F) =
n–1∑
j=0

m–1∑
k=1

∫ X(k+1)

X(k)

x
[– log F̂m(x)]j+1

j!
F̂m(x) dx. (4.2)

Moreover,

F̂m(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < X(1),
k
m , X(k) ≤ x ≤ X(k+1), k = 1, 2, . . . , j,

1, x > X(k+1).

Hence, (4.2) can be written as

Îw(FLn , F) =
n–1∑
j=0

m–1∑
k=1

1
j!

Uk
k
m

(
– log

k
m

)j+1

, (4.3)

where Uk =
X2

(k+1)–X2
(k)

2 , k = 1, 2, . . . , m – 1 are the sample spacings.

Example 4.1 Consider a random sample X1, X2, . . . , Xm from the Weibull distribution with
density function

f (x) = 2λ exp
(
–λx2).

Then Yk = X2
k has an exponential distribution with mean 1

λ
. In this case, the sample spac-

ings 2Uk = X2
(k+1) – X2

(k) are independent and exponentially distributed with mean 1
λ(m–k)

(for more details, see Pyke [12]). Now from (4.3) we obtain

E
[
Îw(FLn , F)

]
=

n–1∑
j=0

m–1∑
k=1

k
2λj!(m – k)m

(
– log

k
m

)j+1

(4.4)
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Table 1 Numerical values of E[̂Iw(FLn , F)] and Var[̂Iw(FLn , F)] for Weibull distribution

m n = 2 n = 3 n = 4 n = 5

λ = 0.5 λ = 1 λ = 2 λ = 0.5 λ = 1 λ = 2 λ = 0.5 λ = 1 λ = 2 λ = 0.5 λ = 1 λ = 2

E[̂Iw (FLn , F)]
10 0.196 0.098 0.049 0.239 0.120 0.060 0.261 0.131 0.065 0.271 0.135 0.068
15 0.134 0.067 0.033 0.165 0.082 0.041 0.181 0.090 0.045 0.189 0.094 0.047
20 0.102 0.051 0.025 0.125 0.063 0.031 0.138 0.069 0.034 0.145 0.072 0.036

Var[̂Iw (FLn , F)]
10 0.063 0.016 0.004 0.072 0.018 0.004 0.076 0.019 0.005 0.077 0.019 0.005
15 0.043 0.011 0.002 0.050 0.012 0.003 0.053 0.013 0.003 0.054 0.014 0.003
20 0.033 0.008 0.002 0.038 0.009 0.002 0.041 0.010 0.002 0.042 0.010 0.003

Table 2 Numerical values of E[̂Iw(FLn , F)] and Var[̂Iw(FLn , F)] for beta distribution

m E[̂Iw (FLn , F)] Var[̂Iw (FLn , F)]

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5

10 0.219 0.291 0.330 0.349 0.003 0.004 0.004 0.005
15 0.230 0.309 0.356 0.380 0.002 0.003 0.004 0.004
20 0.235 0.319 0.370 0.397 0.001 0.002 0.003 0.003

and

Var
[
Îw(FLn , F)

]
=

n–1∑
j=0

m–1∑
k=1

k2

4λ2(j!)2(m – k)2m2

(
– log

k
m

)2(j+1)

. (4.5)

We have computed the values of E[Îw(FLn , F)] and Var[Îw(FLn , F)] for sample sizes m =
10, 15, 20, λ = 0.5, 1, 2 and n = 2, 3, 4, 5 in Table 1. We can easily see that E[Îw(FLn , F)] and
Var[Îw(FLn , F)] are decreasing in m. Also, we consider that limm→∞ Var[Îw(FLn , F)] = 0.

Example 4.2 Let X1, X2, . . . , Xm be a random sample from a population with pdf f (x) =
2x, 0 < x < 1. Then the sample spacings 2Uk are independent and beta distributed with
parameters 1 and m (for more details, see Pyke [12]). Now from (4.3) we obtain

E
[
Îw(FLn , F)

]
=

n–1∑
j=0

m–1∑
k=1

k
2j!(m + 1)m

(
– log

k
m

)j+1

(4.6)

and

Var
[
Îw(FLn , F)

]
=

n–1∑
j=0

m–1∑
k=1

k2

4(j!)2(m + 1)2(m + 2)m

(
– log

k
m

)2(j+1)

. (4.7)

We have computed the values of E[Îw(FLn , F)] and Var[Îw(FLn , F)] for sample sizes m =
10, 15, 20 and n = 2, 3, 4, 5 in Table 2. We can easily see that Var[Îw(FLn , F)] is decreasing in
m and limm→∞ Var[Îw(FLn , F)] = 0.

Theorem 4.1 Let X be an absolutely continuous non-negative random variable such that
Iw(FLn , F) < ∞, for all n ≥ 1. Then we have

Îw(FLn , F) −→ Iw(FLn , F) a.s.
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Proof From (2.8) we have

Îw(FLn , F) =
n–1∑
j=0

(j + 1)CEw
j+1(F̂m), (4.8)

where

CEw
j+1(F̂m) =

∫ ∞

0
x

(– log F̂m(x))j+1

(j + 1)!
F̂m(x) dx.

Now we can obtain

(j + 1)!CEw
j+1(F̂m)

(–1)j+1 =
∫ ∞

0
x
(
log F̂m(x)

)j+1F̂m(x) dx

=
∫ 1

0
x
(
log F̂m(x)

)j+1F̂m(x) dx +
∫ ∞

1
x
(
log F̂m(x)

)j+1F̂m(x) dx

=: W1 + W2, (4.9)

where

W1 =
∫ 1

0
x
(
log F̂m(x)

)j+1F̂m(x) dx,

W2 =
∫ ∞

1
x
(
log F̂m(x)

)j+1F̂m(x) dx.

Using dominated convergence (DCT) and Glivenko–Cantelli theorems, we have

∫ 1

0
x
(
log F̂m(x)

)j+1F̂m(x) dx −→
∫ 1

0
x
(
log F(x)

)j+1F(x) dx as m → ∞. (4.10)

It follows that

xpF̂m(x) ≤ 1
m

m∑
i=1

Xp
i .

Moreover, by using SLLN, 1
m

∑m
i=1 Xp

i −→ E(Xp) and supm( 1
m

∑m
i=1 Xp

i ) < ∞, so F̂m(x) ≤
x–p(supm( 1

m
∑m

i=1 Xp
i )) = Cx–p. Now applying DCT, we have

lim
m→∞ W2 =

∫ ∞

1
xF(x)

(
log F(x)

)j+1 dx. (4.11)

Finally, by using (4.8) and (4.9), the result follows. �

5 Weighted cumulative residual inaccuracy for Rn

In this section, we propose WCRI between F̄Rn and F̄ . We discuss some properties of
WCRI such as the effect of a linear transformation, relationships with other reliability
functions, bounds and stochastic ordering.
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Definition 5.1 Let X be a non-negative absolutely continuous random variable with sur-
vival function F̄ . Then, we define the WCRI between F̄Rn and F̄ as follows:

Īw(F̄Rn , F̄) = –
∫ +∞

0
xF̄Rn (x) log

(
F̄(x)

)
dx

=
n–1∑
j=0

∫ +∞

0
x

[– log F̄(x)]j+1

j!
F̄(x) dx

=
n–1∑
j=0

(j + 1)ERj+2

(
X

λ(X)

)
, (5.1)

where λ(x) = f (x)
F̄(x) is the hazard rate function and Rj+2 is a random variable with reliability

F̄Rj+2 .

In the following example, we calculate Īw(F̄Rn , F̄) for some specific lifetime distributions
which are widely used in reliability theory and life testing.

Example 5.1
(a) If X is uniformly distributed on [0, θ ], then it is easy to see that

Īw(F̄Rn , F̄) = θ2 ∑n–1
j=0

3j+2–2j+2

6j+2 (j + 1), for all integers n ≥ 1.
(b) If X has a Weibull distribution with survival function F̄(x) = e–αxβ , x ≥ 0, α,β > 0,

then for all integers n ≥ 1, we obtain Īw(F̄Rn , F̄) = 1
β

∑n–1
j=0

α
2(1+j– 1

β
)
(j+ 2

β
)!

j! .
(c) Let X be an exponential distribution with mean 1

λ
, then Īw(F̄Rn , F̄) = n(n+1)(n+2)

3λ2 .

Proposition 5.2 Let X be an absolutely continuous non-negative random variable with
survival function F̄ . Then, we have

Īw(F̄Rn , F̄) =
n–1∑
j=0

(j + 1)x[μj+2 – μj+1],

where μn =
∫ +∞

0 F̄Rn (x) dx.

Proof From (1.10) and (5.1) we have

Īw(F̄Rn , F̄) =
n–1∑
j=0

∫ +∞

0
x

[– log F̄(x)]j+1

j!
F̄(x) dx

=
n–1∑
j=0

(j + 1)
∫ +∞

0
x
[
F̄Rj+2 (x) – F̄Rj+1 (x)

]
dx

=
n–1∑
j=0

(j + 1)x[μj+2 – μj+1].
�

Proposition 5.3 Let a, b > 0. For n = 1, 2, . . . , it holds that

Īw(F̄aRn+b, F̄aX+b) = a2 Īw(F̄Rn , F̄) + abĪ(F̄Rn , F̄).
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Proof From (5.1) and noting that F̄aX+b(x) = F̄( x–b
a ), we have

Īw(F̄aRn+b, F̄aX+b) = –
∫ +∞

0

n–1∑
j=0

x
[– log F̄aX+b(x)]j+1

j!
F̄aX+b(x) dx

= –
∫ +∞

0

n–1∑
j=0

x
[– log F̄X( x–b

a )]j+1

j!
F̄X

(
x – b

a

)
dx

= –
∫ +∞

0

n–1∑
j=0

a(ay + b)
[– log F̄X(y)]j+1

j!
F̄X(y) dy

= a2 Īw(F̄Rn , F̄) + abĪ(F̄Rn , F̄). (5.2)
�

Kayid et al. [8] proposed the combination mean residual life (CMRL) function of X as
the reciprocal hazard rate of the length-biased equilibrium distribution given by

mc(t) =
∫ +∞

t xF̄(x) dx
tF̄(t)

, t > 0.

Now, the CMRL of Rn is given by

mc
n(t) =

∑n–1
j=0

1
j!
∫ +∞

t xF̄(x)[– log F̄(x)]j dx

t
∑n–1

j=0
1
j! F̄(t)[– log F̄(t)]j

. (5.3)

Proposition 5.4 Let X be an absolutely continuous non-negative random variable with
survival function F̄ . Then, we have

Īw(F̄Rn , F̄) =
n–1∑
j=0

1
j!

∫ ∞

0
λ(z)

[∫ ∞

z
x
[
– log F̄(x)

]jF̄(x) dx
]

dz.

Proof By (5.1) and the fact that – log F̄(x) =
∫ x

0 λ(z) dz, we have

Īw(F̄Rn , F̄) =
n–1∑
j=0

∫ +∞

0
x

[– log F̄(x)]j+1

j!
F̄(x) dx

=
n–1∑
j=0

∫ +∞

0

[∫ x

0
λ(z) dz

]
x

[– log F̄(x)]j

j!
F̄(x) dx

=
n–1∑
j=0

1
j!

∫ +∞

0
λ(z)

[∫ ∞

z
x
[
– log F̄(x)

]jF̄(x) dx
]

dz.
�

Proposition 5.5 Let X be a non-negative random variable with survival function F̄ . Then,
we have

Īw(F̄Rn , F̄) =
n–1∑
j=0

ERj+1

[
Xmc

n(X)
]
.
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Proof From (5.3) and using Proposition 5.4, we obtain

Īw(F̄Rn , F̄) =
∫ ∞

0
λ(z)

[ n–1∑
j=0

1
j!

[∫ ∞

z
x
[
– log F̄(x)

]jF̄(x) dx
]]

dz

=
∫ +∞

0

n–1∑
j=0

zmc
n(z)fRj+1 (z) dz

=
n–1∑
j=0

∫ +∞

0
zmc

n(z)fRj+1 (z) dz

=
n–1∑
j=0

ERj+1

[
Xmc

n(X)
]
.

This completes the proof. �

Proposition 5.6 Let X be an absolutely continuous non-negative random variable such
that Īw(F̄Rn , F̄) < ∞, for n ≥ 1. Then, we have

Īw(F̄Rn , F̄) =
n–1∑
j=0

1
j!
E

[
hw

j+1(X)
]
, (5.4)

where

hw
j+1(x) =

∫ x

0
z
[
– log F̄(z)

]j+1 dz, x ≥ 0.

Proof From (5.1) and using Fubini’s theorem, we obtain

Īw(F̄Rn , F̄) =
n–1∑
j=0

∫ ∞

0
z

[– log F̄(z)]j+1

j!
F̄(z) dz

=
n–1∑
j=0

1
j!

∫ ∞

0

[∫ ∞

z
f (x) dx

]
z
[
– log F̄(z)

]j+1 dz

=
n–1∑
j=0

1
j!

∫ ∞

0
f (x)

[∫ x

0
z
[
– log F̄(z)

]j+1 dz
]

dx =
n–1∑
j=0

1
j!
E

[
hw

j+1(X)
]
.

�

Proposition 5.7 Let X be a non-negative and absolutely continuous random variable with
cdf F . Then

Īw(F̄Rn , F̄) ≥
n–1∑
j=0

1
j!
[
Ewj+1 (X)

]j+1,

where Ewj+1 (X) = –
∫ ∞

0 x( 1
j+1 )F̄(x) log F̄(x) dx.
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Proof From (5.1), we have

Īw(F̄Rn , F̄) =
n–1∑
j=0

1
j!

∫ +∞

0
xF̄(x)

[
– log F̄(x)

]j+1 dx

≥
n–1∑
j=0

1
j!

∫ +∞

0

[
x( 1

j+1 )F̄(x)
[
– log F̄(x)

]]j+1 dx

≥
n–1∑
j=0

1
j!

[
–

∫ +∞

0
x( 1

j+1 )F̄(x) log F̄(x) dx
]j+1

.

This completes the proof. �

The next propositions give some lower and upper bounds for Īw(F̄Rn , F̄).

Proposition 5.8 Let X be a non-negative random variable with absolutely continuous cu-
mulative distribution function F(x). Then for n = 1, 2, . . . , we have

Īw(F̄Rn , F̄) ≤
n–1∑
j=0

1
j!

∫ ∞

0
x
[
– log F̄(x)

]j+1 dx.

Proof By using (5.1), the proof is easy. �

Proposition 5.9 Let X be a non-negative random variable with survival function F̄(x).
Then for n = 1, 2, . . . , we have

Īw(F̄Rn , F̄) ≥
n–1∑
j=0

j+1∑
i=0

(–1)i(j + 1)
i!(j + 1 – i)!

∫ ∞

0
x
[
F̄(x)

]i+1 dx.

Proof Since – log F̄(x) ≥ 1 – F̄(x), the proof follows by recalling (5.1). �

In the following, we obtain some results on Iw(F̄Rn , F̄) and its connection with notions
of reliability theory.

Proposition 5.10 If X is DFRA, then for n = 1, 2, . . . , we have

Īw(F̄Rn+1 , F̄) – Īw(F̄Rn , F̄) ≥
n+1∑
i=1

ERi

[
X

λ(X)

]
. (5.5)

Proof Suppose that fRn is the pdf of of the nth record value Rn. Then, the ratio fRn+1 (t)
fRn (t) =

– log F̄(t)
n is increasing in t. Therefore, Rn ≤lr Rn+1, and this implies that Rn ≤st Rn+1, i.e., F̄Rn ≤

F̄Rn+1 (for more details, see Shaked and Shanthikumar ([13], Chap. 1)). Hence, if X is DFRA
and λ(x) is its hazard rate, then x

λ(x) is incre asing function of x. So, from (5.1) we have

Īw(F̄Rn+1 , F̄) =
n∑

j=0

(j + 1)ERj+2

[
X

λ(X)

]

≥
n∑

j=0

(j + 1)ERj+1

[
X

λ(X)

]
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=
n–1∑
i=–1

(i + 2)ERi+2

[
X

λ(X)

]

=
n–1∑
i=0

(i + 2)ERi+2

[
X

λ(X)

]
+ ER1

[
X

λ(X)

]

=
n–1∑
i=0

(i + 1)ERi+2

[
X

λ(X)

]
+

n–1∑
i=0

ERi+2

[
X

λ(X)

]
+ ER1

[
X

λ(X)

]

= Īw(F̄Rn , F̄) +
n+1∑
i=1

ERi

[
X

λ(X)

]
. (5.6)

The proof is completed. �

Proposition 5.11 If X has the exponential distribution with mean μ = 1
θ

, then as the
hazard rate is constant, we obtain that Īw(F̄Rn , F̄) = n(n+1)(n+2)

3 μ2, which is an increasing
function of n.

Proposition 5.12 Let X and Y be two non-negative random variables with reliability func-
tions F̄(x) and Ḡ(x), respectively. If X ≤hr Y and X is DFRA, then

Īw(F̄Rn , F̄) ≤ Īw(ḠR̃n , Ḡ), (5.7)

for n = 1, 2, . . . .

Proof It is well known that X ≤hr Y implies X ≤st Y (see Shaked and Shanthikumar [13]).
Hence, we have

F̄Rj+2 ≤ ḠR̃j+2
,

where ḠR̃j+2
is the survival function of R̃j+2. That is, Rj+2 ≤st R̃j+2 holds. This is equivalent

(see Shaked and Shanthikumar [13], p. 4) to having

E
(
φ(Rj+2)

) ≤ E
(
φ(R̃j+2)

)
,

for all increasing functions φ such that these expectations exist. Thus, if we assume that
X is DFRA and λ(x) is its failure rate, then x

λ(x) is increasing and we have

Īw(F̄Rn , F̄) =
n–1∑
j=0

(j + 1)ERj+2

(
X

λF (X)

)
≤

n–1∑
j=0

(j + 1)ER̃j+2

(
X

λF (X)

)
.

On the other hand, X ≤hr Y implies that the respective failure rate functions satisfy λF (x) ≥
λG(y). Hence, we have

n–1∑
j=0

(j + 1)ER̃j+2

(
X

λF (X)

)
≤

n–1∑
j=0

(j + 1)ER̃j+2

(
X

λG(Y )

)
= Iw(ḠR̃n , Ḡ).

Therefore, using both expressions, we obtain Īw(F̄Rn , F̄) ≤ Īw(ḠR̃n , Ḡ). �
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Proposition 5.13 Let X and Y be two non-negative random variables with reliability func-
tions F̄(x) and Ḡ(x), respectively. If X ≤icx Y , then

Īw(F̄Rn , F̄) ≤ Īw(ḠR̃n , Ḡ).

Proof Since hw
j+1(·) is an increasing convex function for j ≥ 0, it follows by Shaked and

Shanthikumar [13] that X ≤icx Y implies hw
j+1(X) ≤icx hw

j+1(Y ). By recalling the definition of
increasing convex order and Proposition 5.6, the proof is complete. �

Proposition 5.14 If X is IFRA (DFRA), then for n = 1, 2, . . . , we have

Īw(F̄Rn , F̄) ≤ (≥)
n–1∑
j=0

1
j!
E

[
X2(– log F̄(X)

)j]. (5.8)

Proof From (5.1), we have

Īw(F̄Rn , F̄) =
n–1∑
j=0

∫ +∞

0
x

[– log F̄(x)]j

j!
[
– log F̄(x)

]
F̄(x) dx. (5.9)

Now, since X is IFRA (DFRA), – log F̄(x)
x is increasing (decreasing) with respect to x > 0,

which implies that

–F̄(x) log F̄(x) ≤ (≥)xf (x), x > 0. (5.10)

Hence, the proof is completed by noting (5.9) and (5.10). �

Proposition 5.15 Let X and Y be two non-negative random variables with survival func-
tions F̄(x) and Ḡ(x), respectively. If X ≤hr Y , then for n = 1, 2, . . . , it holds that

Īw(F̄Rn , F̄)
E(X)

≤ Īw(ḠRn , Ḡ)
E(Y )

.

Proof By noting that the function hw
j+1(x) =

∫ x
0 z[– log F̄(z)]j+1 dz is an increasing convex

function, under the assumption X ≤hr Y , it follows, by Shaked and Shanthikumar [13],
that

n–1∑
j=0

1
j!

[
E[hw

j+1(X)]
E(X)

]
≤

n–1∑
j=0

1
j!

[
E[hw

j+1(Y )]
E(Y )

]
.

Hence, the proof is completed by recalling (5.1). �

Proposition 5.16
(i) Let X be a continuous random variable with survival function F̄(·) that takes values

in [0, b], with finite b. Then,

Īw(F̄Rn , F̄) ≤ bĪ(F̄Rn , F̄).



Daneshi et al. Journal of Inequalities and Applications        (2019) 2019:134 Page 19 of 22

(ii) Let X be a non-negative continuous random variable with survival function F̄(·) that
takes values in [a,∞), with finite a > 0. Then,

Īw(F̄Rn , F̄) ≥ aĪ(F̄Rn , F̄).

Assume that X∗
θ denotes a non-negative absolutely continuous random variable with

the survival function H̄θ (x) = [F̄(x)]θ , x ≥ 0. This model is known as a proportional haz-
ards rate model. We now obtain the weighted cumulative residual measure of inaccuracy
between H̄Rn and H̄ as follows:

Īw(H̄Rn , H̄) = –
∫ +∞

0
xH̄Rn (x) log

(
H̄(x)

)
dx

=
n–1∑
j=0

θ j+1
∫ +∞

0
x

[– log F̄(x)]j+1

j!
[
F̄(x)

]θ dx. (5.11)

Proposition 5.17 If θ ≥ (≤)1, then for any n ≥ 1, we have

Īw(H̄Rn , H̄) ≤ (≥)
n–1∑
j=0

(j + 1)θ j+1Ew
j+1(X),

where Ew
j+1(X) is the weighted generalized cumulative residual entropy of X, defined by

Kayal [6] as

Ew
j+1(X) =

∫ +∞

0
x

F̄(x)[– log F̄(x)]j+1

(j + 1)!
dx.

Proof Suppose that θ ≥ (≤)1, then it is clear that [F̄(x)]θ ≤ (≥)F̄(x), and hence (5.11) yields

Īw(H̄Rn , H̄) ≤ (≥)
n–1∑
j=0

(j + 1)θ j+1Ew
j+1(X).

�

Proposition 5.18 Let X be a non-negative random variable with survival function F̄(·),
then an analytical expression for Iw(F̄Rn , F̄) is given by

Īw(F̄Rn , F̄) =
n–1∑
j=0

∫ ∞

0
x

[– log F̄(x)]j+1

j!
F̄(x) dx =

n–1∑
j=0

(j + 1)Ew
j+1(X). (5.12)

Theorem 5.19 Īw(F̄Rn , F̄) = 0 if and only if X is degenerate.

Proof Suppose X is degenerate at point a. Then, obviously, by definition of degenerate
function and definition of Īw(F̄Rn , F̄), we have Īw(F̄Rn , F̄) = 0.

Now, suppose that Iw(F̄Rn , F̄) = 0, i.e.,

Ew
j+1(X) =

∫ ∞

0
xF̄(x)

(
– log F̄(x)

)j+1 dx = 0. (5.13)
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Then, by noting that the integrand of (5.13) is non-negative, we conclude that

xF̄(x)
(
– log F̄(x)

)j+1 = 0,

for almost all x ∈R
+. Thus, F̄(x) = 0 or 1, for almost all x ∈R

+. �

Remark 5.1 Let X be a non-negative absolutely continuous random variable with survival
function F̄(·). Then in analogy with the measure defined in (2.13), the WGCRI of order m
between F̄Rn and F̄ is given by

Īw
m(F̄Rn , F̄) =

1
m!

∫ ∞

0
xF̄Rn (x)

[
– log F̄(x)

]m dx

=
n–1∑
j=0

(
m + j

m

)
Ew

m+j(X).

In the remainder of this section, we study a dynamic version of Īw(F̄Rn , F̄). Let X be the
lifetime of a system under the condition that the system has survived up to age t. Analo-
gously, we can also consider a dynamic version of Īw(F̄Rn , F̄) as

Īw(F̄Rn , F̄ ; t) = –
∫ +∞

t
x

F̄Rn (x)
F̄Rn (t)

log

(
F̄(x)
F̄(t)

)
dx

= log F̄(t)mc
n(t) –

∫ +∞

t
x

F̄Rn (x)
F̄Rn (t)

log
(
F̄(x)

)
dx

= log F̄(t)mc
n(t) +

1
F̄Rn (t)

n–1∑
j=0

∫ +∞

t
x

[– log F̄(x)]j+1

j!
F̄(x) dx. (5.14)

Note that limt→0 Īw(F̄Rn , F̄ ; t) = Īw(F̄Rn , F̄). Since log F̄(t) ≤ 0 for t ≥ 0, we have

Īw(F̄Rn , F̄ ; t) ≤ 1
F̄Rn (t)

n–1∑
j=0

∫ +∞

t
x

[– log F̄(x)]j+1

j!
F̄(x) dx

≤ 1
F̄Rn (t)

n–1∑
j=0

∫ +∞

0
x

[– log F̄(x)]j+1

j!
F̄(x) dx =

Īw(F̄Rn , F̄)
F̄Rn (t)

.

Theorem 5.20 Let X be a non-negative continuous random variable with distribution
function F(·). Let the weighted dynamic cumulative inaccuracy of the nth record value sat-
isfy Īw(F̄Rn , F̄ ; t) < ∞, t ≥ 0. Then Īw(F̄Rn , F̄ ; t) characterizes the distribution function.

Proof From (5.14) we have

Īw(F̄Rn , F̄ ; t) = log F̄(t)mc
n(t) +

1
F̄Rn (t)

n–1∑
j=0

∫ +∞

t
x

[– log F̄(x)]j+1

j!
F̄(x) dx. (5.15)
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Differentiating both sides of (5.15) with respect to t, we obtain

∂

∂t
[
Īw(F̄Rn , F̄ ; t)

]
= –λF (t)mc

n(t) + λFRn (t)Īw(F̄Rn , F̄ ; t)

= –λF (t)mc
n(t) + c(t)λF (t)Īw(F̄Rn , F̄ ; t)

= λF (t)
[
c(t)Īw(F̄Rn , F̄ ; t) – mc

n(t)
]
.

Taking derivative with respect to t again, we get

λ́F (t) =
(λF (t))2[t – c(t)λF (t)mc

n(t) + ć(t)Īw(F̄Rn , F̄ ; t) + c(t) ∂
∂t Īw(F̄Rn , F̄ ; t)]

∂
∂t Īw(F̄Rn , F̄ ; t)

. (5.16)

Suppose that there are two functions F and F∗ such that

Īw(F̄Rn , F̄ ; t) = Īw(
F̄∗

Rn , F̄∗; t
)

= z̃(t).

Then for all t, from (5.16) we get

λ́F (t) = ϕ
(
t,λF (t)

)
, λ́F∗ (t) = ϕ

(
t,λF∗ (t)

)
,

where

ϕ(t, y) =
y2[ć(t)z̃(t) + c(t)( ´̃z(t) – ys̃(t)) + t]

´̃z(t)
,

and s̃(t) = mc
n(t). By using Theorem 3.2 and Lemma 3.3 of Gupta and Kirmani [5], we

have λF (t) = λF∗ (t), for all t. Since the hazard rate function characterizes the distribution
function uniquely, we complete the proof. �

6 Conclusions
In this paper, we discussed the concept of a weighted past inaccuracy measure between
FLn and F . We proposed a dynamic version of WCPI and studied its characterization re-
sults. We have also proved that Iw(FLn , F ; t) uniquely determines the parent distribution F .
Moreover, we studied some new basic properties of Iw(FLn , F) such as the effect of a linear
transformation, relationships with other reliability functions, bounds and stochastic order
properties. We estimated the WCPI by means of the empirical cumulative inaccuracy of
lower record values. Finally, we proposed the WCRI measure between the survival func-
tion F̄Rn and F̄ . We also studied some properties of Īw(F̄Rn , F̄) such as the connections with
other reliability functions, several useful bounds and stochastic orderings. These concepts
can be applied in measuring the weighted inaccuracy contained in the associated past
(residual) lifetime.
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