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Abstract
In this paper, we propose an inexact version of proximal gradient algorithm with
extrapolation for solving a class of nonconvex nonsmooth optimization problems.
Specifically, the subproblem in proximal gradient algorithm with extrapolation is
allowed to be solved inexactly by certain relative error criterion, in the sense that the
criterion can be updated adaptively in each iteration. Under the assumption that an
auxiliary function satisfies the Kurdyka–Łojasiewicz (KL) inequality, we prove that the
iterative sequence generated by the inexact proximal gradient algorithm with
extrapolation converges to a stationary point of the considered problem.
Furthermore, the convergence rate of the proposed algorithm can be established
when the KL exponent is known. Moreover, we illustrate the advantage by applying
the algorithm to solve a nonconvex optimization problem.

Keywords: Nonconvex minimization; Proximal gradient algorithm; Relative error
criterion; Extrapolation; Global convergence

1 Introduction
In this paper, we consider the following structured optimization problem:

min
x∈Rn

F(x) := f (x) + g(x), (1)

where g : Rn → R ∪ {+∞} is a proper closed convex function, and f : Rn → R is a pos-
sibly nonconvex function which has a Lipschitz continuous gradient. We assume that the
optimal value of (1) is finite and is attained. Problem (1) arises in many applications such
as compressed sensing [1, 2] and image processing [3]. Due to the special structure and
properties, the first-order methods, especially the proximal gradient algorithm, are widely
used for solving problem (1).

The proximal gradient algorithm, also known as forward-backward splitting method
[4], takes full advantage of the property of the problem whose objective is the sum of a
smooth function and a nonsmooth function. In each iteration, the algorithm executes a
gradient step for the smooth part and a proximal step for the nonsmooth part. In the con-
vex case, i.e., both functions f and g are convex, this method has been widely studied, see,
e.g., [4, 5]. However, the proximal gradient algorithm, in its original form, usually performs
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slowly in practice [6]. To accelerate the convergence speed of the proximal gradient algo-
rithm, many strategies have been proposed in the last decades. One of the most efficient
strategies is to incorporate extrapolation, where a momentum term based on the previ-
ous iterations is introduced to update the current iteration. The concrete iterative scheme
takes the following form:

⎧
⎨

⎩

yk = xk + βk(xk – xk–1),

xk+1 = proxμg(yk – μ∇f (yk)),
(2)

where μ > 0, βk ∈ [0, 1) and proxμg(·) denotes the proximal mapping [7] which is defined
by

proxμg(v) = arg min
x∈Rn

{

g(x) +
1

2μ
‖x – v‖2

}

for any v ∈ Rn. Indeed, many accelerated methods can be contained in the framework
of scheme (2). A famous example is the fast iterative shrinkage-thresholding algorithm
(FISTA) proposed by Beck and Teboulle [8], where they require βk satisfying a certain re-
currence relation. In [8], it has been shown that FISTA possesses O(1/k2) convergence rate
for the convex case which is faster than the original proximal gradient algorithm, where k
counts the iteration number. For the nonconvex case, there are also some works consider-
ing the proximal gradient method with or without acceleration, see, e.g., [9–15]. In [13],
Wen et al. proved the linear convergence of proximal gradient algorithm with extrapola-
tion for nonconvex optimization problem (1), based on the error bound condition, while
the works [9–12, 14, 15] studied the proximal gradient algorithm or its variants under
the Kurdyka–Łojasiewicz (KL) framework for the nonconvex case, in which they usually
require some potential functions satisfying the KL property (see Definition 2.1).

However, the efficiency of the proximal gradient method or its accelerated versions
largely relies on the solving difficulty of the subproblem in (2). In many applications, the
proximal mapping proxμg(·) is not easy to evaluate and does not possess closed-form solu-
tion. Therefore, in practice, one prefers to solve the subproblem in (2) inexactly with some
tolerance initially, and then tighten the solution as the iteration goes, instead of solving it
with high accuracy. Such an idea is reasonable, as it can help avoid spending too much
effort at the beginning of the iterations for an exact minimizer. In order to achieve the in-
exact solving, many inexact criteria for the proximal-based methods have been proposed
recently. The oldest one for the proximal point algorithm is the absolute summable error
criterion [16], which involves a sequence of error tolerance parameters εk ⊂ [0,∞) with
∑∞

k=1 εk < ∞. However, such an absolute error criterion does not provide any guidance
on selecting the value of εk in the implementation. To overcome this drawback, a class of
relative error criteria is proposed for approximating the proximal point algorithm [17–
19], which only involves a single scalar parameter to control the ratio of the residual of
the subproblem and other quantities in algorithm. The advantages of such criteria include
that they do not need to determine the value of a sequence and can be adjusted adaptively
in each iteration. Based on these works, a natural question is whether we can design an
inexact proximal gradient method with a relative error criterion for solving the nonconvex
optimization problems considered in this paper.
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Along this line, we propose an inexact version of proximal gradient algorithm with ex-
trapolation for solving the nonconvex nonsmooth optimization problem (1). In particular,
the subproblem in proximal gradient algorithm with extrapolation is allowed to be solved
inexactly under a certain relative error criterion, the scheme is as follows:

⎧
⎨

⎩

yk = xk + βk(xk – xk–1),

xk+1 ≈ xk+1
exact = proxμg(yk – μ∇f (yk)).

(3)

Evidently, if we set xk+1 = xk+1
exact for each k ≥ 0, scheme (3) reduces to the proximal gradient

algorithm with extrapolation (2), which is actually well studied in [13]. By introducing a
reasonable relative inexact criterion, we analyze the global convergence of the sequence
generated by this inexact algorithm (3) based on the KL property. Besides, the convergence
rate of the proposed method can be established if the KL exponent is known. It is worth
noting that Li et al. [20] have proved that if the error bound condition and the assumption
of the separability of stationary values hold, the potential function of the proximal gradient
algorithm with extrapolation for optimization problem (1) satisfies the KL property with
an exponent of 1/2. With the later condition (a milder one), in this paper, we can prove
the linear convergence of the inexact algorithm (3) (which contains (2) as a special case).
This indicates that our work can get the same linear convergence result under a weaker
condition compared with [13].

The rest of this paper is organized as follows. Section 2 presents some basic nota-
tions and preliminary materials. In Sect. 3, we present the inexact proximal gradient al-
gorithm with extrapolation under relative error criteria concretely. Under the Kurdyka–
Łojasiewicz framework, we establish the convergence properties and convergence rate of
the iterates generated by the proposed method. In Sect. 4, we perform a numerical exper-
iment to illustrate the feasibility and advantage of the proposed method. Finally, we make
some conclusions in Sect. 5.

2 Preliminaries
In this section, we summarize some notations and preliminaries which will be used in
further analysis.

Throughout this paper, we use Rn to denote the n-dimensional Euclidean space, with
its standard inner product denoted by 〈·, ·〉. The Euclidean norm is denoted by ‖ · ‖. For
a matrix A ∈ Rm×n, we use AT to denote its transpose. For any subset Ω ⊂ Rn and any
point x ∈Rn, the distance from x to Ω , denoted by dist(x,Ω), is defined as

dist(x,Ω) = inf
y∈Ω

‖y – x‖.

When Ω is closed and convex, we use PΩ (x) to denote the projection of x onto Ω .
For an extended-real-valued function g : Rn →R∪ {+∞}, the domain of g is defined as

dom g =
{

x ∈Rn|g(x) < +∞}
.

We say that g is proper if it never equals –∞ and dom g = ∅. Such a function is closed if
it is lower semicontinuous. For a proper closed convex function g : Rn → R ∪ {+∞}, the
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subdifferential of g at x ∈ dom g is given by

∂g(x) =
{
ξ ∈Rn|g(u) – g(x) – 〈ξ , u – x〉 ≥ 0,∀u ∈Rn}.

A necessary condition for x ∈ Rn to be a minimizer of the sum of a differentiable func-
tion f and a closed convex function g is

0 ∈ ∇f (x) + ∂g(x). (4)

Throughout the paper, a point which satisfies (4) is called critical point or stationary point
of problem (1), and the set of all critical points satisfying (4) is denoted by crit F .

Next, we recall the definitions of the KL property, KL function, and KL exponent from
[10].

Definition 2.1 (KL property) Let f : Rn →R∪ {+∞} be a proper lower semicontinuous
function. For –∞ < η1 < η2 ≤ +∞, set [η1 < f < η2] = {x ∈ Rn : η1 < f (x) < η2}. We say that
f has the KL property at x∗ ∈ dom ∂f if there exist η ∈ (0, +∞], a neighborhood U of x∗,
and a continuous concave function φ : [0,η) →R+ such that

(i) φ(0) = 0 and φ is continuously differentiable on (0,η) with φ′(s) > 0,∀s ∈ (0,η);
(ii) for all x in U ∩ [f (x∗) < f < f (x∗) + η], the following KL inequality holds:

φ′(f (x) – f
(
x∗))d

(
0, ∂f (x)

) ≥ 1.

Definition 2.2 (KL function) If f satisfies the KL property at each point of dom ∂f , then
f is called a KL function.

Definition 2.3 (KL exponent) If the function φ can be chosen as φ(s) = cs1–θ , θ ∈ [0, 1), c >
0, i.e., there exists η > 0, so that

d
(
0, ∂f (x)

) ≥ c
(
f (x) – f

(
x∗))θ

for all x in U ∩ [f (x∗) < f < f (x∗) + η], then we say that f has the KL property at x∗ with an
exponent of θ .

Remark 2.4 One can easily check that the KL property is automatically satisfied at any
noncritical point x∗ ∈ dom f , see, e.g., [14, Lemma 2.1]. Besides, a big class of functions
that have the KL property is given by real semialgebraic functions [10], which include
most of the convex functions and some other classes of nonconvex functions.

Below we recall an important property for the KL functions, whose proof can be found
in [21].

Lemma 2.5 (Uniformized KL property [21]) Denote by Φη the set of functions which satisfy
Definition 2.1(i), and let Ω be a compact set, and let f : Rn →R∪ {+∞} be a proper lower
semicontinuous function. Assume that f is constant on Ω and satisfies the KL property at
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each point of Ω . Then there exist ε > 0,η > 0, and φ ∈ Φη such that, for all x̄ ∈ Ω and for
all x in the following intersection:

{
x ∈Rn : dist(x,Ω) < ε

} ∩ [
f (x̄) < f < f (x̄) + η

]
,

one has

φ′(f (x) – f (x̄)
)

dist
(
0, ∂f (x)

) ≥ 1.

The following descent lemma for a smooth function is useful for the convergence anal-
ysis.

Lemma 2.6 ([22]) Let f : Rn →R be a continuous differentiable function, and the gradient
∇f is Lipschitz continuous with modulus Lf > 0, then for any x, y ∈Rn, we have

∣
∣f (y) – f (x) –

〈∇f (x), y – x
〉∣
∣ ≤ Lf

2
‖y – x‖2.

3 Algorithm and convergence analysis
In this section, we first propose an inexact proximal gradient algorithm with extrapolation
for solving the possibly nonconvex nonsmooth optimization problems. Then, based on the
KL property, we establish the global convergence and convergence rate of the proposed
method.

3.1 An inexact proximal gradient algorithm with extrapolation
In this subsection, we propose an inexact proximal gradient algorithm with extrapolation
under the relative error criterion. The concrete algorithmic framework is presented in Al-
gorithm 1, where only one nonnegative constant σ and the subgradient information are
needed to control the error tolerance and obtain a candidate solution. Note that Algo-
rithm 1 reduces to the proximal gradient algorithm with extrapolation (2) if we take σ = 0.

Remark 3.1 In Algorithm 1, the dk+1 in Step 2 can be chosen as follows:

dk+1 = ξ k+1 – ηk+1,

where ηk+1 = –L(xk+1 – yk) – ∇f (yk) and ξ k+1 = P∂g(xk+1)(ηk+1).

Algorithm 1 An inexact proximal gradient algorithm with extrapolation and relative error
criteria

Let σ ∈ [0, L
2 ), βk ∈ [0,

√
L–2σ
L+l ], and ε > 0. Choose x0 ∈ dom g , and set x–1 = x0. For k =

0, 1, . . .
Step 1. yk = xk + βk(xk – xk–1)
Step 2. Compute xk+1 ≈ arg minx∈Rn{〈∇f (yk), x〉 + L

2 ‖x – yk‖2 + g(x)} such that

∣
∣
〈
dk+1, xk – xk+1〉∣∣ +

∥
∥dk+1∥∥2 ≤ σ

∥
∥xk – xk+1∥∥2, (5)

with dk+1 ∈ ∂g(xk+1) + L(xk+1 – yk) + ∇f (yk).
Step 3. If ‖xk+1 – xk‖ ≤ ε, stop; otherwise set k := k + 1 and go to Step 1.
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Before analyzing the convergence of Algorithm 1, we firstly define an auxiliary function

Hα(x, w) = f (x) + g(x) + α‖x – w‖2,

where α is a fixed non-negative constant. By the definition of a critical point, we know that
(x∗, w∗) is a critical point of the function Hα if it satisfies

⎧
⎨

⎩

0 ∈ ∇f (x∗) + ∂g(x∗) + 2α(x∗ – w∗),

0 = w∗ – x∗.

The critical points set of Hα is denoted by crit Hα . Indeed, it is easy to verify that if (x∗, w∗) ∈
crit Hα , then x∗ is a critical point of problem (1), i.e., x∗ ∈ crit F . In this paper, we assume
that there is at least a critical point of problem (1).

Correspondingly, an auxiliary function sequence is given as follows:

Hk+1,α := Hα

(
xk+1, wk+1) = f

(
xk+1) + g

(
xk+1) + α

∥
∥xk+1 – wk+1∥∥2

for fixed α ∈ ( L+l
2 β̄2, L

2 – σ ) with β̄ = supk βk , where {xk} is generated by Algorithm 1, and
{wk|wk := xk–1}. Through studying the nonincreasing property and the convergence of
Hk,α , we can obtain that {(xk , wk)} converges to a critical point of Hα , and thus {xk} con-
verges to a stationary point of problem (1).

3.2 Convergence analysis
In this subsection, we analyze the convergence and the convergence rate of the sequence
generated by the inexact proximal gradient algorithm with extrapolation for solving (1).
Invoking the optimality condition of the subproblem in Algorithm 1, we have

⎧
⎨

⎩

yk = xk + βk(xk – xk–1),

dk+1 ∈ ∂g(xk+1) + L(xk+1 – yk) + ∇f (yk).
(6)

As discussed in [13], any function f with Lipschitz continuous gradient can be decom-
posed to the difference of two convex and differentiable functions, and their gradients are
Lipschitz continuous. In other words, there exist convex and differentiable functions f1

and f2 with Lipschitz continuous gradients such that

f = f1 – f2.

For instance, one can decompose f so that f1(x) = f (x) + τ
2 ‖x‖2 and f2(x) = τ

2 ‖x‖2 with τ ≥
Lf , where Lf denotes the Lipschitz constant of ∇f . Without loss of generality, we suppose
that f = f1 – f2 for some convex functions f1 and f2 with Lipschitz continuous gradients in
the following analysis. We also denote the Lipschitz continuity moduli of ∇f1 and ∇f2 by
L > 0 and l ≥ 0, respectively. Furthermore, by taking larger L if necessary, we assume that
L ≥ l. Then it is not hard to show that ∇f is Lipschitz continuous with a modulus Lf = L.
Therefore, it holds that

f1
(
yk) +

〈∇f1
(
yk), z – yk 〉 ≤ f1(z), (7)
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and

f2(z) – f2
(
yk) –

〈∇f2
(
yk), z – yk 〉 ≤ l

2
∥
∥z – yk∥∥2. (8)

Now we begin our analysis with the following lemma.

Lemma 3.2 Suppose that σ ∈ [0, L
2 ) and β̄ ∈ (0,

√
L–2σ
L+l ). Let {xk} be the sequence generated

by Algorithm 1, and {wk|wk := xk–1}. Then Hk,α is monotonically nonincreasing. In partic-
ular, it holds that

Hk+1,α ≤ Hk,α – δ
∥
∥uk+1 – uk∥∥2, (9)

where uk := (xk , wk),∀k > 0, and δ is a positive constant.

Proof Fix any k and z ∈ domg . Due to the convexity of g , for any ξ k+1 ∈ ∂g(xk+1), we have

g(z) ≥ g
(
xk+1) +

〈
ξ k+1, z – xk+1〉.

From the second relation in (6), we can set ξ k+1 = dk+1 – L(xk+1 – yk) – ∇f (yk), then the
above inequality can be written as

g(z) – g
(
xk+1) ≥ 〈

dk+1 – L
(
xk+1 – yk) – ∇f

(
yk), z – xk+1〉

=
〈
dk+1, z – xk+1〉 –

〈∇f
(
yk), z – xk+1〉 –

〈
L
(
xk+1 – yk), z – xk+1〉.

Rearranging the above inequality, we obtain

g
(
xk+1) ≤ g(z) +

〈
dk+1, xk+1 – z

〉
+

〈∇f
(
yk), z – xk+1〉 +

〈
L
(
xk+1 – yk), z – xk+1〉

= g(z) +
〈
dk+1, xk+1 – z

〉
+

〈∇f
(
yk), z – xk+1〉

+
L
2
(∥
∥yk – z

∥
∥2 –

∥
∥yk – xk+1∥∥2 –

∥
∥xk+1 – z

∥
∥2). (10)

Since ∇f is Lipschitz continuous with modulus L, it follows from Lemma 2.6 that

f
(
xk+1) ≤ f

(
yk) +

〈∇f
(
yk), xk+1 – yk 〉 +

L
2
∥
∥xk+1 – yk∥∥2. (11)

Combining (10) and (11), we get

f
(
xk+1) + g

(
xk+1) ≤ f

(
yk) + g(z) +

〈
dk+1, xk+1 – z

〉
+

〈∇f
(
yk), z – yk 〉

+
L
2
(∥
∥yk – z

∥
∥2 –

∥
∥xk+1 – z

∥
∥2). (12)

Together with inequalities (7) and (8), we obtain

f
(
yk) +

〈∇f
(
yk), z – yk 〉 ≤ f (z) +

l
2
∥
∥z – yk∥∥2.
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Substituting the above inequality into (12), we get

f
(
xk+1) + g

(
xk+1) ≤ f (z) + g(z) +

〈
dk+1, xk+1 – z

〉

+
L + l

2
∥
∥yk – z

∥
∥2 –

L
2
∥
∥xk+1 – z

∥
∥2. (13)

Setting z := xk in (13), we obtain

F
(
xk+1) – F

(
xk) ≤ 〈

dk+1, xk+1 – xk 〉 +
L + l

2
∥
∥yk – xk∥∥2 –

L
2
∥
∥xk+1 – xk∥∥2

=
〈
dk+1, xk+1 – xk 〉 +

L + l
2

β2
k
∥
∥xk – xk–1∥∥2 –

L
2
∥
∥xk+1 – xk∥∥2,

where the equality follows from (6). Rearranging this inequality, we can deduce

F
(
xk+1) + α

∥
∥xk+1 – xk∥∥2

≤ F
(
xk) + α

∥
∥xk – xk–1∥∥2 +

〈
dk+1, xk+1 – xk 〉

–
(

α –
L + l

2
β2

k

)
∥
∥xk – xk–1∥∥2 –

(
L
2

– α

)
∥
∥xk+1 – xk∥∥2

≤ F
(
xk) + α

∥
∥xk – xk–1∥∥2

–
(

α –
L + l

2
β̄2

)
∥
∥wk+1 – wk∥∥2 –

(
L
2

– α – σ

)
∥
∥xk+1 – xk∥∥2, (14)

where α is a non-negative constant, and the second inequality follows from (5). Recalling
that β̄ <

√
L–2σ
L+l , one can choose α ∈ ( L+l

2 β̄2, L
2 – σ ), and then (14) becomes

Hk+1,α ≤ Hk,α – δ1
∥
∥wk+1 – wk∥∥2 – δ2

∥
∥xk+1 – xk∥∥2,

where δ1, δ2 are two positive constants. Let δ = min{δ1, δ2} > 0, and then assertion (9)
follows immediately. This evidently implies {Hk,α} is nonincreasing. This completes the
proof. �

Lemma 3.3 Let {xk} be the sequence generated by Algorithm 1, and {wk|wk := xk–1}. Then
there exists c̃ > 0 such that

dist
(
0, ∂Hα

(
xk+1, wk+1)) ≤ c̃

∥
∥uk+1 – uk∥∥,

where uk := (xk , wk),∀k > 0.

Proof From the definition of Hα(xk+1, wk+1), it follows that

∂xHα

(
xk+1, wk+1) = ∇f

(
xk+1) + ∂g

(
xk+1) + 2α

(
xk+1 – xk),

∇wHα

(
xk+1, wk+1) = 2α

(
xk – xk+1).

From this, together with (6), we obtain

ζ k+1 := dk+1 – L
(
xk+1 – yk) – ∇f

(
yk) + ∇f

(
xk+1) + 2α

(
xk+1 – xk) ∈ ∂xHα

(
xk+1, wk+1).
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Then, using the trigonometric inequality, we have

∥
∥dk+1 – L

(
xk+1 – yk) – ∇f

(
yk) + ∇f

(
xk+1) + 2α

(
xk+1 – xk)∥∥

≤ ∥
∥dk+1∥∥ +

∥
∥–L

(
xk+1 – yk) + 2α

(
xk+1 – xk)∥∥ +

∥
∥∇f

(
xk+1) – ∇f

(
yk)∥∥

≤ ∥
∥dk+1∥∥ +

∥
∥–L

(
xk+1 – yk) + 2α

(
xk+1 – xk)∥∥ + L

∥
∥xk+1 – yk∥∥

≤ √
σ
∥
∥xk+1 – xk∥∥ +

∥
∥(2α – L)

(
xk+1 – xk) + βkL

(
xk – xk–1)∥∥

+ L
∥
∥xk+1 – xk – βk

(
xk – xk–1)∥∥

≤ (
√

σ + L – 2α + L)
∥
∥xk+1 – xk∥∥ + 2βkL

∥
∥xk – xk–1∥∥

= (
√

σ + 2L – 2α)
∥
∥xk+1 – xk∥∥ + 2βkL

∥
∥wk+1 – wk∥∥,

where the second inequality follows from the Lipschitz continuity of ∇f , and the third
inequality is due to (5) and (6). Thus, there exist c1 and c2 > 0 such that

dist
(
0, ∂Hα

(
xk+1, wk+1)) ≤

√∥
∥ζ k+1

∥
∥2 +

∥
∥2α

(
xk – xk+1

)∥
∥2

≤
√

c1
∥
∥xk+1 – xk

∥
∥2 + c2

∥
∥wk+1 – wk

∥
∥2

≤ c̃
√

(∥
∥xk+1 – xk

∥
∥2 +

∥
∥wk+1 – wk

∥
∥2)

= c̃
∥
∥uk+1 – uk∥∥,

where c̃ = max{√c1,√c2}. This completes the proof. �

In the following lemma, we present several properties of the limit point set of {(xk , wk)}.

Lemma 3.4 Let {xk} be the sequence generated by Algorithm 1, which is assumed to be
bounded, and let {wk|wk := xk–1}. Let S denote the set of the limit points of {(xk , wk)}. Then

(i) S is a nonempty compact set, and dist((xk , wk), S) → 0, as k → +∞;
(ii) S ⊂ crit Hα ;

(iii) Hα is finite and constant on S, equal to infk∈N Hα(xk , wk) = limk→+∞ Hα(xk , wk).

Proof (i) By definition, it is trivial. (ii) Let (x∗, w∗) ∈ S, then there exists a subsequence
{(xkj , wkj )} of {(xk , wk)} converging to (x∗, w∗). Note that Lemma 3.2 implies

∥
∥xk+1 – xk∥∥2 → 0,

∥
∥wk+1 – wk∥∥2 → 0,

which means that the sequences {(xkj+1, wkj+1)} and {(xkj–1, wkj–1)} also converge to (x∗, w∗),
and further x∗ = w∗. Together with (5), we can also deduce ‖dk‖ → 0. Considering the
continuity of ∇f and the closeness of ∂g , by taking the limit in (6) along the sequence
(xkj+1, wkj+1), we have

0 ∈ ∂g
(
x∗) + ∇f

(
x∗).

Therefore, {(x∗, w∗)} is a critical point of Hα , hence {(x∗, w∗)} ∈ crit Hα .
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(iii) In the following, we will consider the value of Hα on the set of accumulation points.
Considering the convexity of g , we have

g
(
x∗) ≥ g(xkj+1) + ξT

kj+1
(
x∗ – xkj+1

)
, ∀ξkj+1 ∈ ∂g(xkj+1).

According to the optimality condition (6), we can take ξkj+1 = dkj+1 – L(xkj+1 – ykj ) –∇f (ykj ).
Thus we have

g
(
x∗) ≥ g(xkj+1) +

(
dkj+1 – L

(
xkj+1 – ykj

)
– ∇f

(
ykj

))T(
x∗ – xkj+1

)
.

From this together with the continuity of f (x) with respect to x, and the continuity of
α‖x – w‖2 with respect to both x and w, we have

f
(
x∗) + g

(
x∗) + α

∥
∥x∗ – w∗∥∥2

= lim
j→+∞ f

(
x∗) + g

(
x∗) + α

∥
∥x∗ – wkj+1

∥
∥2

≥ lim sup
j→+∞

{
f (xkj+1) + g(xkj+1) + α‖xkj+1 – wkj+1‖2

+
(
dkj+1 – L

(
xkj+1 – ykj

)
– ∇f

(
ykj

))T(
x∗ – xkj+1

)}
.

Furthermore, from (5) and (6), we get xkj+1 – ykj → 0 and ‖dkj+1‖ → 0. Combining the
boundedness of sequence {xk}, we further have

Hα

(
x∗, w∗) ≥ lim sup

j→+∞
Hα

(
xkj+1, wkj+1). (15)

On the other hand, according to the lower semicontinuity of Hα , we have

Hα

(
x∗, w∗) ≤ lim inf

j→+∞ Hα

(
xkj+1, wkj+1). (16)

Using inequalities (15), (16), and {Hα(xk , wk)} is nonincreasing, we obtain

Hα

(
x∗, w∗) = lim

k→+∞
Hα

(
xk , wk).

Therefore, {Hα(x, w)} is constant on S. Moreover, it holds that infk∈N Hα(xk , wk) =
limk→+∞ Hα(xk , wk). �

We are now ready to prove the main result of this paper.

Theorem 3.5 Let {xk} be the sequence generated by Algorithm 1, which is assumed to be
bounded, and let {wk|wk := xk–1}. Suppose that f and g are semi-algebraic functions, then

+∞∑

k=0

∥
∥xk+1 – xk∥∥ < +∞,

+∞∑

k=0

∥
∥wk+1 – wk∥∥ < +∞,

and thus {(xk , wk)} converges to a critical point of Hα .
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Proof From the proof of Lemma 3.4, we know that limk→+∞ Hα(xk , wk) = Hα(x∗, w∗) for all
(x∗, w∗) ∈ S. Then there are two cases we need to consider.

Case I: There exists an integer k0 such that Hα(xk0 , wk0 ) = Hα(x∗, w∗). Rearranging
terms of inequality (9), and using that Hα(xk , wk) is nonincreasing, for any k ≥ k0, we
have

δ
∥
∥xk+1 – xk∥∥2 + δ

∥
∥wk+1 – wk∥∥2 ≤ Hk,α – Hk+1,α ≤ Hk0,α – Hα

(
x∗, w∗) = 0.

Thus, for ∀k ≥ k0, we have xk+1 = xk and wk+1 = wk , the assertion holds.
Case II: Now we assume that Hα(xk , wk) > Hα(x∗, w∗),∀k. Since dist((xk , wk), S) → 0, it

follows that for all ε > 0, there exists K1 > 0 such that, for any k > K1, dist((xk , wk), S) < ε.
Considering that limk→+∞ Hα(xk , wk) = Hα(x∗, w∗), then for any given η > 0, there exists
K2 > 0 such that Hα(xk , wk) < Hα(x∗, w∗) + η,∀k > K2. Therefore, for any ε,η > 0, we have

dist
((

xk , wk), S
)

< ε, Hα

(
xk , wk) < Hα

(
x∗, w∗) + η, ∀k > K̃ ,

where K̃ = max{k1, k2}. Since S is a nonempty compact set and Hα is constant on S, apply-
ing Lemma 2.5 with Ω = S, we deduce

φ′(Hα

(
xk , wk) – Hα

(
x∗, w∗))dist

(
0, ∂Hα

(
xk , wk)) ≥ 1, ∀k > K̃ .

Recalling the concavity of φ and Hk,α – Hk+1,α = (Hk,α – Hα(x∗, w∗)) – (Hk+1,α – Hα(x∗, w∗)),
we get

φ
(
Hk,α – Hα

(
x∗, w∗)) – φ

(
Hk+1,α – Hα

(
x∗, w∗)) ≥ φ′(Hk,α – Hα

(
x∗, w∗))(Hk,α – Hk+1,α).

From Lemma 3.3, we know dist(0, ∂Hα(xk+1, wk+1)) ≤ c̃‖uk+1 – uk‖. Together with φ′(Hk,α –
Hα(x∗, w∗)) > 0, we obtain

Hk,α – Hk+1,α

≤ φ(Hk,α – Hα(x∗, w∗)) – φ(Hk+1,α – Hα(x∗, w∗))
φ′(Hk,α – Hα(x∗, w∗))

≤ dist
(
0, ∂Hα

(
xk , wk))[φ

(
Hk,α – Hα

(
x∗, w∗)) – φ

(
Hk+1,α – Hα

(
x∗, w∗))]

≤ c̃
∥
∥uk – uk–1∥∥

[
φ
(
Hk,α – Hα

(
x∗, w∗)) – φ

(
Hk+1,α – Hα

(
x∗, w∗))], ∀k > K̃ .

For notational convenience, we denote �k,k+1 = φ(Hk,α – Hα(x∗, w∗)) –
φ(Hk+1,α – Hα(x∗, w∗)). Combining Lemma 3.2 with the above inequality yields that, for
all k > K̃ ,

δ
∥
∥uk+1 – uk∥∥2 ≤ c̃

∥
∥uk – uk–1∥∥�k,k+1,

and hence

∥
∥uk+1 – uk∥∥ ≤

√
∥
∥uk – uk–1

∥
∥

(
c̃
δ
�k,k+1

)

.
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Using the fact that 2
√

ab ≤ a + b for any a, b > 0, we obtain

2
∥
∥uk+1 – uk∥∥ ≤ ∥

∥uk – uk–1∥∥ +
c̃
δ
�k,k+1.

Summing up the equation above for k = K̃ + 1, . . . , m yields

2
m∑

k=K̃+1

∥
∥uk+1 – uk∥∥ ≤

m∑

k=K̃+1

∥
∥uk – uk–1∥∥ +

c̃
δ
�K̃+1,m+1.

By rearranging the terms of the above inequality, we can write the above inequality as
follows:

m∑

k=K̃+1

∥
∥uk+1 – uk∥∥ ≤ ∥

∥uK̃+1 – uK̃∥
∥ –

∥
∥um+1 – um∥

∥

+
c̃
δ

(
φ
(
HK̃+1,α – Hα

(
x∗, w∗)) – φ

(
Hm+1,α – Hα

(
x∗, w∗))).

Notice that φ(Hm+1,α – Hα(x∗, w∗)) > 0 and ‖um+1 – um‖ ≥ 0, we get

m∑

k=K̃+1

∥
∥uk+1 – uk∥∥ ≤ ∥

∥uK̃+1 – uK̃∥
∥ +

c̃
δ
φ
(
HK̃+1,α – Hα

(
x∗, w∗)).

Letting m → +∞ in the above inequality, we obtain

+∞∑

k=K̃+1

∥
∥uk+1 – uk∥∥ ≤ ∥

∥uK̃+1 – uK̃∥
∥ +

c̃
δ
φ
(
HK̃+1,α – Hα

(
x∗, w∗)), (17)

which implies that

+∞∑

k=0

∥
∥uk+1 – uk∥∥ ≤ +∞.

Due to uk := (xk , wk),∀k > 0, we know that

+∞∑

k=0

∥
∥xk+1 – xk∥∥ ≤ +∞ and

+∞∑

k=0

∥
∥wk+1 – wk∥∥ ≤ +∞.

Therefore, {uk := (xk , wk)} is a Cauchy sequence and thus is convergent. The assertion then
follows immediately from Lemma 3.4. �

We now give another main result about the convergence rate for Algorithm 1. Consider
the KL property has been applied to analyzing local convergence rate of various first-order
methods by many researchers [10, 23, 24].

Theorem 3.6 (Convergence rate) Let {xk} be the sequence generated by Algorithm 1 and
converging to x∗, and {wk|wk := xk–1}. Suppose that Hα has the KL property at (x∗, w∗) with
φ(s) = cs1–θ , θ ∈ [0, 1), c > 0. Then the following results hold:
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(i) If θ = 0, then the sequence {xk , wk} converges finitely.
(ii) If θ ∈ (0, 1

2 ], then there exist μ > 0 and τ ∈ [0, 1) such that

∥
∥
(
xk , wk) –

(
x∗, w∗)∥∥ ≤ μτ k .

(iii) If θ ∈ ( 1
2 , 1), then there exists μ > 0 such that

∥
∥
(
xk , wk) –

(
x∗, w∗)∥∥ ≤ μk(θ–1)/(2θ–1).

Proof We first consider the case of θ = 0. In this case, φ(s) = cs and φ′(s) = c. If {(xk , wk)}
does not converge in a finite number of iterations, then the KL property at (x∗, w∗) yields,
for any k sufficiently large, c · dist(0, ∂Hα(xk , wk)) ≥ 1, a contradiction to Lemma 3.3.

Now, we consider the case of θ > 0. Here we set �k =
∑+∞

i=k ‖ui+1 – ui‖, k ≥ 0, then in-
equality (17) becomes

�K̃+1 ≤ (�K̃ – �K̃+1) +
c̃
δ
φ
(
Hα

(
xK̃+1, wK̃+1) – Hα

(
x∗, w∗)). (18)

Together with the KL property at (x∗, w∗), we get

φ′(Hα

(
xK̃+1, wK̃+1) – Hα

(
x∗, w∗))dist

(
0, ∂Hα

(
xK̃+1, wK̃+1)) ≥ 1,

which is equivalent to

(
Hα

(
xK̃+1, wK̃+1) – Hα

(
x∗, w∗))θ ≤ c(1 – θ ) dist

(
0, ∂Hα

(
xK̃+1, wK̃+1)). (19)

Using Lemma 3.3, we deduce

dist
(
0, ∂Hα

(
xK̃+1, wK̃+1)) ≤ c̃

∥
∥uK̃+1 – uK̃∥

∥ = c̃(�K̃ – �K̃+1). (20)

Combining (19) and (20), we obtain that there exists γ > 0 such that

φ
(
Hα

(
xK̃+1, wK̃+1) – Hα

(
x∗, w∗)) = c

(
Hα

(
xK̃+1, wK̃+1) – Hα

(
x∗, w∗))1–θ

≤ γ (�K̃–1 – �K̃+1)
1–θ
θ ,

where γ = c
1
θ (c̃(1 – θ ))

1–θ
θ . Then inequality (18) becomes

�K̃+1 ≤ (�K̃ – �K̃+1) +
c̃
δ
γ (�K̃–1 – �K̃+1)

1–θ
θ .

Sequences satisfying the above inequality have been considered in [9]. Therefore, as the
proof in [9], it follows that if θ ∈ (0, 1

2 ], there exist μ > 0 and τ ∈ [0, 1) such that

∥
∥
(
xk , wk) –

(
x∗, w∗)∥∥ ≤ μτ k ,

and if θ ∈ ( 1
2 , 1), there exist μ > 0 and τ ∈ [0, 1) such that

∥
∥
(
xk , wk) –

(
x∗, w∗)∥∥ ≤ μk(θ–1)/(2θ–1). �
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Figure 1 Evolutions of the value of ‖xk+1 – x∗‖ and the objective function value with respect to the number
of iterations for n = 500 and n = 1000

4 Numerical experiment
In this section, we apply the proposed method to solve a nonconvex optimization problem
which arises in portfolio selection [25], neural network [26, 27], and compressed sensing
[28]. Some preliminary numerical results are reported to demonstrate the feasibility and
advantage of the method. All numerical experiments are performed in MATLAB 2014b
on a 64-bit PC with an Intel Core i7-7500U CPU (2.70 GHz) and 16 GB of RAM.

We consider the following optimization problem:

min
1
2

xTAx – bTx + ‖x‖1

s.t. x ∈ S,
(21)

where A ∈Rn×n is a symmetric matrix that is not necessarily positive semidefinite, b ∈Rn

is a vector, S is a polyhedral set in Rn. Problem (21) is obviously nonconvex. We also
assume that the optimal value of (21) is finite and can be attained. Notice that one can
write (21) equivalently as the following separable optimization problem:

minf (x) + g(x) (22)

by setting f (x) := 1
2 xTAx – bTx and g(x) := ‖x‖1 + δ(x|S). In this setting, f is a possibly non-

convex function and ∇f is Lipschitz continuous with modulus L > 0, g is a proper closed
convex function, and f + g is level bounded. The parameter L = max{λmax(A), |λmin(A)|},
where λmax(A) and λmin(A) are the largest and smallest eigenvalues of A respectively. Fur-
thermore, the objective function in (21) satisfies the KL property as discussed in [14].
Therefore, we can apply the inexact proximal gradient algorithm with extrapolation in
Algorithm (1) to solve the equivalent model (22).

In the numerical experiments, the test data of problem (21) is generated by the following
way. We set the symmetric matrix A = D + DT ∈Rn×n, where D is a matrix generated with
i.i.d. standard Gaussian entries; the polyhedral set S = [0, 1]n; the vector b generated with
i.i.d. standard Gaussian entries. We initialize the x0 ∈ dom g randomly and set x–1 = x0.
Besides, the test method is terminated when ‖xk+1 – xk‖ ≤ 10–4 and the maximal iteration
number is set as 5000.

For this nonconvex problem, we apply the inexact proximal gradient algorithm with ex-
trapolation to solve it. In Fig. 1, we first plot the evolution curves of the value ‖xk+1 – x∗‖
and the objective function value with respect to the iteration number, where the sequence
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Table 1 Iteration number and CPU computing time of Algorithm 1 with different dimensions

n 100 300 500 700 900 1000 1500

Iter. 57 110 245 317 357 368 564
Initer. 936 1110 2074 2243 2320 2391 2434
Time (s) 0.04 0.08 0.29 0.64 1.07 1.80 4.59

{xk} is generated by the proposed inexact algorithm and x∗ denotes the approximate so-
lution obtained at termination of the algorithm. From Fig. 1, we can see that the sequence
‖xk+1 – x∗‖ converges to zero, and the objective function value decreases as the iteration
increases, which conforms with our theory. Furthermore, the number of iterations, inner
iterations (the iteration needed to calculate the subproblem in the algorithm inexactly),
and the cpu time (in seconds) required by the algorithm are reported in Table 1 for differ-
ent dimensions of the problem, and are denoted as “Iter.”, “Initer.”, and “Time (s)” respec-
tively. The results also indicate the feasibility and effectiveness of the proposed method.

5 Conclusions
In this paper, we proposed an inexact proximal gradient algorithm with extrapolation for
solving a class of nonconvex optimization problems. The convergence of this inexact al-
gorithm was established under the assumption that an auxiliary function satisfies the KL
property. We proved that the iterative sequence generated by the proposed method con-
verges to a stationary point of the problem. Furthermore, the convergence rate result was
obtained by the means of KL exponent.
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