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Abstract
We investigate the efficiency of orthogonal super greedy algorithm (OSGA) for sparse
recovery and approximation under the restricted isometry property (RIP). We first
show that under the RIP conditions of the measurement matrix Φ and the minimum
magnitude of the nonzero coordinates of the signal, for l2 bounded or l∞ bounded
noise vector e, with explicit stopping rules, OSGA can recover the support of an
arbitrary K-sparse signal x from y =Φx + e in at most K steps. Then, we investigate the
error performance of OSGA inm term approximation with regards to dictionaries
satisfying the RIP in a separable Hilbert space. We establish a Lebesgue-type
inequality for OSGA. Based on this inequality, we obtain the optimal rate of
convergence for the sparse class induced by such dictionaries.

Keywords: Orthogonal super greedy algorithm; Orthogonal multi matching pursuit;
Restricted isometry property; Compressed sensing;m-term approximation;
Lebesgue-type inequality

1 Introduction
Recovery and approximation by sparse linear combination of elements from a fixed re-
dundant family is frequently utilized in many application areas, such as image or signal
processing, PDE solvers and statistical learning, see [1]. In general, these problems are
N-P hard. It is well known that greedy type algorithms are efficient approaches to solve
them, see [2–5]. Among others, the orthogonal greedy algorithm (OGA) has been widely
used in practice. OGA is a simple yet powerful algorithm for highly nonlinear sparse ap-
proximation that has seen a large amount of research over its history, see [3, 6, 7] and the
reference therein.

In this paper, we consider the orthogonal super greedy algorithm (OSGA), which is more
efficient than OGA from the viewpoint of computational complexity. The performances
of (OSGA) in greedy approximation and signal recovering were analyzed in [8–12]. We
will make further study on the efficiency of the OSGA from two aspects.

In Sect. 2, we will study the efficiency of the OSGA in recovering N-dimensional sparse
signal from linear measurements. This topic is also known in the literature as compressed
sensing (CS), [13–15]. We show that OSGA can recover a K-sparse signal from noisy mea-
surements in at most K steps. We remark that in the field of signal processing, orthogo-
nal super greedy algorithm OSGA is also known as orthogonal multi matching pursuit
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(OMMP) [4]. So for the reader’s convenience, we will use the term OMMP instead of
OSGA in Sect. 2.

In Sect. 3, we study the error performance of the OSGA in the general context. We in-
vestigate the efficiency of OSGA for m-term approximation with regard to dictionaries in
a real separable Hilbert space H . Assuming that the dictionary satisfies the RIP condition,
we establish a Lebesgue inequality for OSGA which bounds the error of OSGA by the best
m-term approximation error. Based on this inequality, we derive the sharp convergence
rate of OSGA on the sparse class induced by dictionary satisfying the RIP condition.

2 The efficiency of the OMMP in CS
In this section, we analyze the efficiency of the OMMP in compressed sensing.

We consider the following model. Suppose that x ∈ R
N is an unknown N-dimensional

signal and we wish to recover it from M noisy measurements y given by inner products
with fixed vectors, that is,

y = Φx + e, (2.1)

where Φ is a known M × N measurement matrix with M � N and e ∈ R
M is a vector of

measurement errors. The error vector can either be zero, bounded, or Gaussian noise.
For x = (xj)N

j=1 ∈R
N , define

‖x‖p :=

( N∑
i=1

xp
i

)1/p

, 0 < p < ∞,

and

‖x‖∞ := sup
1≤i≤N

{|xi|
}

.

The signal x ∈ R
N is said to be K-sparse if ‖x‖0 := |supp(x)| = |{i : xi �= 0}| ≤ K < N . We

study the performance of OMMP for the recovery of the support of the K-sparse signal x
under model (2.1).

These algorithms recover the K-sparse signal by iteratively constructing the support of
it by some greedy principles.

The OMMP is a stepwise forward selection and is easy to implement, it has been used
for signal recovery. Now let us recall the definition of OMMP(s) in an algorithmic way (see
Algorithm 1).

OSGA(s) generalizes the orthogonal greedy algorithm (OGA) in the sense that it selects
multiple s indices in each iteration, it can recover the sparse signal using fewer steps and
further reduce the complexity. To investigate the efficiency of the OMMP in CS, we use
the restricted isometry property (RIP) condition of Φ which ensures the stable recovery
of x from noisy measurements. This property is introduced by Candes and Tao [16, 17] as
follows.

A matrix Φ is said to satisfy RIP of order K if there exists a constant δ ∈ (0, 1) such that,
for all K-sparse vectors x,

(1 – δ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ)‖x‖2
2. (2.2)

In particular, the minimum of all δ satisfying (2.2) is referred to as an isometry constant δK .
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Algorithm 1 Orthogonal Matching Multi Pursuit (OMMP(s))
Input: Measurement matrix Φ , vector y, and s, the stopping criterion.
Step 1: Set the residual r0 := y, a trivial initial approximation x0 := 0, the index set Λ0 := ∅,
and the iteration counter l = 0.
Step 2: Define Λl+1 := Λl ∪ {i1, . . . , is} such that

∣∣〈rl,φi1
〉∣∣ ≥ · · · ≥ ∣∣〈rl,φis

〉∣∣ ≥ sup
φ∈Φ ,φ �=φik ,k=1,...,s

∣∣〈rl,φ
〉∣∣.

Then

xl+1 := arg min
z:supp(z)∈Λl+1

‖y – Φz‖2

and update the residual

rl+1 := y – Φxl+1.

End if the stopping condition is achieved. Otherwise, we set l := l + 1 and turn to step 2.
Output: If the algorithm stops at the kth iteration, output Λk and x̂Λk = xk .

We recall some results on the efficiency of OMMP based on RIP. These results concern
the estimate of the upper bound of sK order RIP constant δsK . In the noiseless case, Liu
and Temlyakov [8] proved that δsK <

√
s

(2+
√

2)
√

K is a sufficient condition for OMMP(s) to
recover every K-sparse signal in at most K iterations successfully. Then, Wang, Kwon,
and Shim [10] relaxed the condition to δsK <

√
s

3
√

s+
√

K . The constant was further relaxed as

δsK <
√

s
2
√

s+
√

K by Satpathi, Das, and Chakraborty [18]. In [18] the authors also pointed out
the possibility of extending the results to the noisy case. On the other hand, Dan Wei [9]
defined the restricted orthogonality constant θK ,K ′ and proved that δsK–s+1 +

√
K
s θsK–s+1,s < 1

is a sufficient condition guaranteeing the perfect recovery of K-sparse signals by OMMP.
She shows that this result implies the result of [18]. Moreover in [9] the performance of
OMMP for support recovery from noisy measurements was also discussed.

Motivated by the above works, we investigate the OMMP in the general setting where
noise is presented under the RIP based conditions. We prove if the sampling matrix Φ

satisfies the RIP of order sK with the isometry constant

δsK < 1 +
1
2

√
K
s

–
1
2

√
K
s

+ 4
√

K
s

,

then OMMP can recover every K-sparse signal in at most K steps with the l2 bounded
and l∞ bounded noise. It is easy to check that

√
s

2
√

s +
√

K
< 1 +

1
2

√
K
s

–
1
2

√
K
s

+ 4
√

K
s

.

So our results improve and extend the results in [18].
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When dealing with the noisy measurements, one of the key components in OMMP is
the stopping rule which depends on the structure of the noise. In general, there are several
natural stopping rules for OMMP.

(1) Stop after a fixed number of iterations K .
(2) For l2 bounded noise case: The error vector e is bounded in l2 norm with ‖e‖2 ≤ b2,

we set the stopping rule as ‖rk‖2 ≤ b2.
(3) For l∞ bounded noise case: The error vector e is bounded in l∞ norm with

‖Φ∗e‖∞ ≤ b∞, we set the stopping rule as

∥∥Φ∗rk∥∥∞ ≤
(

1 +
√

sKδsK

1 – δsK

)
b∞,

where Φ∗ is the transpose of Φ .
Since we mainly consider l2 bounded noise and l∞ bounded noise, we use stopping

rules (2) and (3) respectively. In Sect. 2.1, some notations are introduced and some conse-
quences of restricted isometry properties are presented. In Sect. 2.2, we give the RIP based
sufficient conditions for OMMP(s) with l2 bounded noise case by using the stopping rule
(2). In Sect. 2.3, we establish the results in the l∞ bounded noise case by using the stopping
rule (3). In Sect. 2.4, we give the RIP based sufficient conditions for OMMP(s) with high
probability in the Gaussian noise case.

2.1 Preliminary
The following notations will be used in this section. For a signal x ∈R

N , let Ω = {1, . . . , N}
denote the index set of x and T = supp(x) = {i : xi �= 0} the support of it.

Suppose that φ1,φ2, . . . ,φN are the columns of the matrix Φ . We always assume ‖φi‖2 = 1,
1 ≤ i ≤ N . Suppose that Λ is a subset of Ω , let ΦΛ denote the matrix Φ restricted to the
columns indexed by Λ. We use the same way to define xΛ for the vector x ∈ R

N . Thus

ΦΛx = ΦxΛ = ΦΛxΛ. (2.3)

We recall some useful consequences of the RIP.

Lemma 2.1 ([5]) Suppose that Γ and Λ are two disjoint sets of indices. If the matrix Φ

satisfies the RIP of order |Γ ∪ Λ| with isometry constant δ|Γ ∪Λ|, then for any x ∈ R
|Λ| we

have

∥∥Φ∗
Γ ΦΛx

∥∥
2 ≤ δ|Γ ∪Λ|‖x‖2 (2.4)

and

∥∥(
Φ∗

ΛΦΛ

)–1x
∥∥

2 ≤ 1
(1 – δ|Λ|)

‖x‖2. (2.5)

Lemma 2.2 ([6]) Let x ∈ R
N be a K-sparse vector. Suppose that the matrix Φ satisfies the

RIP of order K with isometry constant δK . Then, for Λ ⊂ Ω ,

(1 – δK )‖xT\Λ‖2 ≤ ∥∥Φ∗
T\Λ

(
I – ΦΛΦ

†
Λ

)
ΦT\ΛxT\Λ

∥∥
2 ≤ (1 + δK )‖xT\Λ‖2, (2.6)

where Φ† = (Φ∗Φ)–1Φ∗ is the Moore–Penrose pseudo-inverse of Φ .
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The residual vector after k steps can be written as

rk = y – ΦΛk Φ
†
Λk y = (I – Pk)y

= (I – Pk)(Φx + e)

= (I – Pk)Φx + (I – Pk)e

= rk
1 + rk

2 ,

where Pk = ΦΛk Φ
†
Λk denotes the projection onto the linear space spanned by {φi, i ∈ Λk},

rk
1 = (I – Pk)Φx is the signal part of the residual, and rk

2 = (I – Pk)e is the noise part of the
residual.

Denote:

Tk = Λk ∩ T , Ak = T \ Λk , Bk = T ∪ Λk .

Suppose that Sk ⊆ Ω \ Bk , |Sk| = s, such that

min
i∈Sk

∣∣〈rk ,φi
〉∣∣ ≥ max

i∈(Ω\Bk )\Sk

∣∣〈rk ,φi
〉∣∣.

The difference between OMMP(s) and the standard orthogonal matching pursuit (OMP)
is that at each step of the OMMP(s), s elements are simultaneously selected from a dictio-
nary instead of one. For a sufficient condition to guarantee OMMP(s) to select at least one
correct index at each iteration, we need to give a lower bound of MSk – mSk . So we provide
the following lemma which plays an important role in our analysis.

Lemma 2.3 Let mSk := mini∈Sk {|〈rk
1,φi〉|} and MAk := maxi∈Ak {|〈rk

1 ,φi〉|}. Assume Ak �= ∅.
Then there hold

mSk ≤ δsK√
s(1 – δsK )

‖xAk ‖2 (2.7)

and

MAk ≥ 1 – δsK√|Ak| ‖xAk ‖2. (2.8)

Proof Using the fact (I – Pk)ΦΛk = ΦΛk – ΦΛk (Φ∗
Λk ΦΛk )–1Φ∗

Λk ΦΛk = 0, we express

rk
1 = (I – Pk)Φx

as

rk
1 = (I – Pk)ΦT xT = (I – Pk)(ΦTk xTk + ΦAk xAk )

= (I – Pk)ΦAk xAk =
(
I – ΦΛk Φ

†
Λk

)
ΦAk xAk

= ΦAk xAk – ΦΛk Φ
†
Λk ΦAk xAk . (2.9)
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Since Λk ∩ Ak = ∅, applying (2.5) and (2.4) of Lemma 2.1, and the fact that for any two
integers K ≤ K ′ it holds

δK ≤ δK ′ , (2.10)

it follows that

∥∥Φ
†
Λk ΦAk xAk

∥∥
2 =

∥∥(
Φ∗

Λk ΦΛk
)–1

Φ∗
Λk ΦAk xAk

∥∥
2

≤ 1
(1 – δsk)

∥∥Φ∗
Λk ΦAk xAk

∥∥
2

≤ δsk+|Ak |
(1 – δsk)

‖xAk ‖2 ≤ δsK

(1 – δsK )
‖xAk ‖2. (2.11)

By (2.9), (2.11), and Lemma 2.1, we have

∥∥Φ∗
Sk

rk
1
∥∥

2 =
∥∥Φ∗

Sk

(
ΦAk xAk – ΦΛk Φ

†
Λk ΦAk xAk

)∥∥
2

≤ ∥∥Φ∗
Sk

ΦAk xAk

∥∥
2 +

∥∥Φ∗
Sk

ΦΛk Φ
†
Λk ΦAk xAk )

∥∥
2

≤ δs+|Ak |‖xAk ‖2 + δs(k+1)
∥∥Φ

†
Λk ΦAk xAk

∥∥
2

≤ δsK‖xAk ‖2 + δsK
δsK

(1 – δsK )
‖xAk ‖2

=
δsK

(1 – δsK )
‖xAk ‖2. (2.12)

Thus

mSk ≤ 1√
s
∥∥Φ∗

Sk
rk

1
∥∥

2 ≤ δsK√
s(1 – δsK )

‖xAk ‖2.

Using (2.9) and Lemma 2.2, we obtain

∥∥Φ∗
Ak

rk
1
∥∥

2 =
∥∥Φ∗

Ak

(
I – ΦΛk Φ

†
Λk

)
ΦAk xAk )

∥∥
2

=
∥∥Φ∗

T\Λk
(
I – ΦΛk Φ

†
Λk

)
ΦT\Λk xT\Λk )

∥∥
2

≥ (1 – δsK )‖xT\Λk ‖2 = (1 – δsK )‖xAk ‖2. (2.13)

Hence

MAk ≥ 1√|Ak|
∥∥Φ∗

Ak
rk

1
∥∥

2 ≥ (1 – δsK )√|Ak| ‖xAk ‖2.

Therefore Lemma 2.3 is proved. �

2.2 l2 bounded noise
We shall discuss the performance of OMMP(s) for the l2 bounded noise case. That is,
the error vector e is bounded in l2 norm with ‖e‖2 ≤ b2 for some constant b2 > 0. With
a suitable stopping rule and a reasonable condition on the minimum magnitude of the
nonzero coordinates of the K-sparse signal of x, OMMP(s) can recover the support of x
in at most K iterations.
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Theorem 2.1 Suppose that ‖e‖2 ≤ b2 and Φ satisfies the RIP of order sK with the isometry

constant δ := δsK < 1 + 1
2

√
K
s – 1

2

√
K
s + 4

√
K
s . Then OMMP(s) with the stopping rule ‖rk‖2 ≤

b2 recovers the support of any K-sparse signal x ∈ R
N from y = Φx + e provided that all the

nonzero components xi satisfy

|xi| >
2b2

(1 – δ) –
√

K
s

δ
1–δ

. (2.14)

Proof Denote Ek = maxi∈Ω{|〈rk
2 ,φi〉|}. Recalling the definition of mSk and MAk in Lemma

2.3, there hold

min
i∈Sk

{∣∣〈rk ,φi
〉∣∣} ≤ min

i∈Sk

{∣∣〈rk
1 ,φi

〉∣∣} + max
i∈Ω

{∣∣〈rk
2 ,φi

〉∣∣} = mSk + Ek

and

max
i∈Ak

{∣∣〈rk ,φi
〉∣∣} ≥ max

i∈Ak

{∣∣〈rk
1 ,φi

〉∣∣} – max
i∈Ω

{∣∣〈rk
2 ,φi

〉∣∣} = MAk – Ek .

It is clear that in order for OMMP(s) to select at least one correct index at this step, it is
necessary to have

max
i∈Ak

{∣∣〈rk ,φi
〉∣∣} > min

i∈Sk

{∣∣〈rk ,φi
〉∣∣}.

A sufficient condition to guarantee OMMP(s) to select at least one correct index at each
iteration until all correct indices are selected is

MAk – Ek > mSk + Ek .

That is,

2Ek < MAk – mSk (2.15)

holds for k = 0, 1, . . . , K – 1. We first provide an upper bound for Ek . The assumption ‖e‖ ≤
b2 yields that

Ek = max
i∈Ω

{∣∣〈rk
2 ,φi

〉∣∣} ≤ max
i∈Ω

‖φi‖2
∥∥rk

2
∥∥

2 =
∥∥(I – Pk)e

∥∥
2 ≤ ‖e‖2 ≤ b2. (2.16)

Next we give a lower bound of MAk – mSk . Using Lemma 2.3 and assumption (2.14), we
have

MAk – mSk ≥
(

1 – δ√|Ak| –
δ√

s(1 – δ)

)
‖xAk ‖2

≥
(

1 – δ√|Ak| –
δ√

s(1 – δ)

)√|Ak| 2b2

(1 – δ) –
√

K
s

δ
1–δ

> 2b2.
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This means OMMP(s) will select at least one correct index at the k + 1-th iteration, and
OMMP(s) can recover the support of x in at most K iterations. It remains to show that
under the stopping rule ‖rk‖ ≤ b2, OMMP exactly stops when all the correct indices are
selected.

First, assume that Ak = ∅, then T ⊆ Λk and (I – Pk)Φx = 0. Thus

∥∥rk∥∥
2 =

∥∥(I – Pk)Φx + (I – Pk)e
∥∥

2 =
∥∥(I – Pk)e

∥∥
2 ≤ ‖e‖2 ≤ b2.

So when all the K correct indices are selected, the l2 norm of the residual will be less than
b2 and hence OMMP(s) stops. Now we show that OMMP(s) does not stop early. Suppose
that the OMMP(s) has run k steps for some k < K . We will verify that ‖rk‖2 > b2 and so
OMMP(s) does not stop at the current step.

Secondly, assume that Ak �= ∅, then

∥∥rk∥∥
2 =

∥∥(I – Pk)Φx + (I – Pk)e
∥∥

2

≥ ∥∥(I – Pk)Φx
∥∥

2 –
∥∥(I – Pk)e

∥∥
2

=
∥∥ΦAk xAk – ΦΛk Φ

†
Λk ΦAk xAk

∥∥
2 –

∥∥(I – Pk)e
∥∥

2

=
∥∥ΦBk x(k)∥∥

2 –
∥∥(I – Pk)e

∥∥
2

≥ ∥∥ΦBk x(k)∥∥
2 – ‖e‖2

≥ √
1 – δ|Bk |

∥∥x(k)∥∥
2 – b2

≥ √
1 – δ‖xAk ‖2 – b2

≥ √
1 – δ

√|Ak| 2b2

(1 – δ) –
√

K
s

δ
1–δ

– b2

> b2,

where x(k) = (xAk – Φ
†
Λk ΦAk xAk )∗, and to derive the third inequality, we use the RIP con-

dition. Hence OMMP(s) does not stop early, and the theorem is proved. �

2.3 l∞ bounded noise
We now give the RIP based sufficient conditions for OMMP(s) with l∞ bounded noise.
Our result is the following theorem.

Theorem 2.2 Suppose that ‖Φ∗e‖∞ ≤ b∞ and Φ satisfies the RIP of order sK with the
same isometry constant as in Theorem 2.1. Then OMMP(s) with the stopping rule

∥∥Φ∗rk∥∥∞ ≤
(

1 +
√

sKδ

1 – δ

)
b∞

finds the support of any K-sparse signal x if all the nonzero coefficients xi satisfy

|xi| >
2(1 +

√
sKδ

1–δ
)b∞

(1 – δ) –
√

K
s

δ
1–δ

. (2.17)
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Proof Denote Ek = ‖Φ∗(I – Pk)e‖∞ = maxi∈Ω |〈rk
2 ,φi〉|. We first prove that

2Ek < MAk – mSk (2.18)

holds for k = 0, 1, . . . , K – 1, where mSk and MAk are defined as in Lemma 2.3. It follows
from the proof of Theorem 2.1 that inequality (2.18) can ensure OMMP recovers the true
support of x in at most K steps.

We first provide an upper bound of Ek . The assumption ‖Φ∗e‖∞ ≤ b∞ and the fact
Φ∗

Λk (I – Pk)e = 0 yield that

Ek = max
i∈Ω

∣∣〈rk
2 ,φi

〉∣∣ = max
i∈Ω\Λk

∣∣φ∗
i (I – Pk)e

∣∣
≤ ∥∥Φ∗

Ω\Λk e
∥∥∞ +

∥∥Φ∗
Ω\Λk Pke

∥∥∞

≤ b∞ + max
i∈Ω\Λk

∥∥φ∗
i ΦΛk

(
Φ∗

Λk ΦΛk
)–1

Φ∗
Λk e

∥∥
2

≤ b∞ + δ
∥∥(

Φ∗
Λk ΦΛk

)–1
Φ∗

Λk e
∥∥

2

≤ b∞ +
δ

1 – δ

∥∥Φ∗
Λk e

∥∥
2

≤ b∞ +
δ

1 – δ

√
skb∞

≤
(

1 +
δ
√

sK
1 – δ

)
b∞. (2.19)

Here, to derive the third and fourth inequalities, we have used (2.4) and (2.5) of Lemma
2.1 respectively.

On the other hand, we can obtain a lower bound of MAk – mSk . By using Lemma 2.3 and
assumption (2.17), we have

MAk – mSk ≥
(

1 – δ√|Ak| –
δ√

s(1 – δ)

)
‖xAk ‖2

≥
(

1 – δ√|Ak| –
δ√

s(1 – δ)

)√|Ak| 2(1 +
√

sKδ
1–δ

)b∞

(1 – δ) –
√

K
s

δ
1–δ

> 2
(

1 +
√

sKδ

1 – δ

)
b∞. (2.20)

The bounds (2.19) and (2.20) imply that (2.18) holds for k = 0, 1, . . . , K – 1. It remains to
show that OMMP (s) exactly stops when all the correct indices are selected under the
stopping rule ‖Φ∗rk‖∞ ≤ (1 +

√
sKδsK

1–δsK
)b∞.

First, assume that Ak = ∅, then T ⊆ Λk and (I – Pk)Φx = 0. Thus

∥∥Φ∗rk∥∥∞ =
∥∥Φ∗(I – Pk)(Φx + e)

∥∥∞ =
∥∥Φ∗(I – Pk)e

∥∥∞ ≤
(

1 +
δ
√

sK
1 – δ

)
b∞,

where the last inequality is deduced from (2.19). Hence, OMMP(s) stops when all the cor-
rect indices are selected.
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Secondly, assume that Ak �= ∅, then

∥∥Φ∗rk∥∥∞ =
∥∥Φ∗(I – Pk)(Φx + e)

∥∥∞

≥ ∥∥Φ∗(I – Pk)Φx
∥∥∞ –

∥∥Φ∗(I – Pk)e
∥∥∞

≥ max
i∈Ak

∣∣〈(I – Pk)Φx,φi
〉∣∣ –

∥∥Φ∗(I – Pk)e
∥∥∞

≥ 1 – δ√|Ak| ‖xAk ‖ –
(

1 +
δ
√

sK
1 – δ

)
b∞

≥ 1 – δ√|Ak|
√|Ak| 2(1 +

√
sKδ

1–δ
)b∞

(1 – δ) –
√

K
s

δ
1–δ

–
(

1 +
δ
√

sK
1 – δ

)
b∞

=
(1 – δ)2(1 +

√
sKδ

1–δ
)b∞

(1 – δ) –
√

K
s

δ
1–δ

–
(

1 +
δ
√

sK
1 – δ

)
b∞

>
(

1 +
δ
√

sK
1 – δ

)
b∞.

Here, to derive the third and fourth inequalities, we have used (2.8) of Lemma 2.3 and
assumption (2.17), respectively. Hence OMMP(s) does not stop early, and the theorem is
proved. �

2.4 Gaussian noise
As an application of the above results on l2 and l∞ bounded noise cases, we shall discuss
the performance of OMMP(s) on recovering K-sparse signals with the Gaussian noise.
Gaussian noise is of particular interest in statistics since it is probably the best simulation
of real noise when the noise source is particularly complex, cf. [19, 20].

The motivation of applying the results on the l2 bounded and l∞ bounded noise cases
to the Gaussian noise case comes from the following results of Cai, Xu, and Zhang [21],
which shows that the Gaussian noise e is essentially bounded in both l2 and l∞ norms.
They have shown that if e is zero-mean white Gaussian noise with covariance σ 2IM×M ,
that is, e ∼ N(0,σ 2IM×M), then there hold

P
(
e ∈ {

e : ‖e‖2 ≤ σ

√
M + 2

√
M log M

}) ≥ 1 –
1
M

and

P
(
e ∈ {

e :
∥∥Φ∗e

∥∥∞ ≤ σ
√

2 log N
}) ≥ 1 –

1
2
√

π log N
.

Combining the above results with those of Theorem 2.1 and Theorem 2.2, we immedi-
ately obtain the following theorems.

Theorem 2.3 Suppose that e ∼ N(0,σ 2IM×M) and Φ satisfies the RIP of order sK with the
same isometry constant as in Theorem 2.1 and nonzero components xi satisfy

|xi| >
2σ

√
M + 2

√
M log M

(1 – δ) –
√

K
s

δ
1–δ

.
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Then OMMP(s) with the stopping rule ‖rk‖2 ≤ σ
√

M + 2
√

M log M finds the support of any
K-sparse signal x ∈R

N from y = Φx + e with probability at least 1 – 1
M .

Theorem 2.4 Suppose that e ∼ N(0,σ 2IM×M) and Φ satisfies the RIP of order sK with the
same isometry constant as in Theorem 2.1 and nonzero components xi satisfy

|xi| >
2(1 +

√
sKδ

1–δ
)σ

√
2 log N

(1 – δ) –
√

K
s

δ
1–δ

.

Then OMMP(s) with the stopping rule ‖Φ∗rk‖∞ ≤ (1 +
√

sKδ
1–δ

)σ
√

2 log N finds the support
of any K-sparse signal x ∈R

N from y = Φx + e with probability at least 1 – 1
2
√

π log N .

Theorem 2.3 and Theorem 2.4 show that, with a suitable stopping rule and a reasonable
condition on the minimum magnitude of the nonzero coordinates of the K-sparse signal
of x, OMMP(s) can recover the support of x in at most K iterations with high probability
from measurements with Gaussian noise.

3 Error performance of the OSGA
In this section, we study the error performance of the OSGA in the general context. Let H
be a real separable Hilbert space with an inner product 〈·, ·〉 and the norm ‖x‖ := 〈x, x〉1/2

for all x ∈ H . Recall that a set D from H is called a dictionary if

D = {φi, i ∈ I} ⊂ H , and spanD = H .

Without loss of generality we shall assume that the dictionary D is normalized, i.e.,

‖φi‖ = 1, i ∈ I.

The standard measure of approximation power of a dictionary is the error of the best
m-term approximation. Given a dictionary D, we define the m-sparse class as

Σm := Σm(D) :=
{∑

j∈Λ

cjφj : cj ∈R,φj ∈D, �(Λ) = m
}

.

The error of best m-term approximation to a function f ∈ H from the dictionary D is
defined as

σm(f ) := σm(f ,D) := inf
g∈Σm

‖f – g‖. (3.1)

Now we will use OSGA(s) to generate a m term approximant fm and estimate the error
‖f – fm‖ in terms of σm(f ).

So let us first recall the definition of the OSGA(s) (see Algorithm 2).
To investigate the error performance of SOGA, one needs to make some assumptions

on the dictionary D. A simple and useful assumption is the coherence μ of a dictionary D
defined by

μ := μ(D) := sup
φ,ψ∈D,φ �=ψ

∣∣〈φ,ψ〉∣∣.
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Algorithm 2 Orthogonal Super Greedy Algorithm (OSGA(s))
Suppose we are given an integer s and a target element r0 := f ∈ H . For each m ≥ 1, we
inductively define

(1) φi(m–1)s+1 , . . . ,φims ∈D are the elements of the dictionary D satisfying the following
inequality. Denote Im := {i(m–1)s+1, . . . , ims} and assume that

min
i∈Im

∣∣〈rm–1,φi〉
∣∣ ≥ sup

φ∈D,φ �=φi ,i∈Im

∣∣〈rm–1,φ〉∣∣.
(2) Let Hm := Hm(f ) := span(φi1 , . . . ,φims ), and let PHm denote an operator of orthogonal

projection onto Hm. Define

fm := Gm(f ) := OSGAm(f ,D) := PHm (f ).

(3) Define the residual after the mth iteration of the algorithm

rm := rs
m(f ) := f – fm.

Dictionaries with coherence μ are called μ-coherent. It was proved in [8] that for
μ-coherent dictionaries the OSGA provides the same (in the sense of order) upper bound
on the sparse class for the error as the OGA. In this paper, we will improve this results
under a weaker assumption on a dictionary. This assumption is RIP which is formulated
in a finite dimensional context in Sect. 2. Here we require the definition of RIP in terms
of the dictionary instead of the measurement matrix in a infinite dimensional context:

A dictionary D is said to satisfy RIP of order k if there exists a constant δ ∈ (0, 1) such
that, for any subset J ⊂ I with �(J) ≤ k and any scalars ai, i ∈ J , the following inequalities
hold:

(1 – δ)
(∑

i∈J

|ai|2
)

≤
∥∥∥∥∑

i∈J

aiφi

∥∥∥∥
2

≤ (1 + δ)
(∑

i∈J

|ai|2
)

. (3.2)

As before, the minimum of all δ satisfying (3.2) is referred to as an isometry constant δk .
It is known from [22] that if the dictionary D has coherence μ, then it satisfies RIP of

order k for k ≤ μ–1 + 1 with isometry constant δk ≤ μ(k – 1), but not vice versa.
Recently, under the RIP assumption, the authors in [7] proved the almost optimality of

OGA by establishing the corresponding Lebesgue-type inequality. This inequality quan-
tifies the efficiency of OGA for individual elements. It is natural to ask if we can establish
Lebesgue-type inequality for OSGA(s). We give a positive answer to this question. In fact,
we prove the following inequality for the OSGA(s) when the dictionary D satisfies RIP.
This is the first Lebesgue-type inequality for the super greedy type algorithms obtained
so far as we know.

Theorem 3.1 Given parameter s ∈N, there exist fixed constants A := 88, δ∗ := 1/10, C := 8
such that the following holds for all n ≥ 0: if D is a dictionary in a Hilbert space H satisfying
RIP of order (As + 1)n with isometry constant δ(As+1)n ≤ δ∗, then for any target function
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f ∈ H , we have

‖rAn‖ = ‖f – fAn‖ ≤ Cσn(f ,D).

In Theorem 3.1, we remark that the values of A, δ∗, C for which the above result holds
are coupled. For example, it is possible to obtain a smaller value of C at the price of a larger
value of A or of a smaller value of δ∗.

Based on this inequality, we will derive the convergence rate of OSGA on the sparse class
induced by dictionaries satisfying RIP conditions.

The rest part of this section is organized as follows. The Sects. 3.1 and 3.2 are devoted
to the proof of Theorem 3.1. In Sect. 3.3, as an application of Theorem 3.1, we study the
rate of convergence of OSGA on the sparse class induced by RIP dictionaries.

3.1 Reduction of the residual
To prove Theorem 3.1, we establish the following lemma which quantifies the reduction of
the residuals generated by the OSGA(s) under the RIP condition. When s = 1, this lemma
was proved in [7]. However, to deal with the case of s > 1, we need some new techniques.
We need to establish a new lemma (Lemma 3.1). In what follows, we denote by

Λk :=
k⋃

i=1

Ii := {i1, . . . , isk}

the set of indices selected after k iterations of the OSGA(s) applied to the target element
f ∈ H .

Lemma 3.1 Let (fk)k≥0 be the sequence of approximations generated by the OSGA(s) ap-
plied to f , and let g =

∑
i∈T ziφi, �(T) ≤ n. Then, if T is not contained in Λk , we have

‖rk+1‖2 ≤ ‖rk‖2 –
1 – δ�(T∪Λk )

(1 + δs)�(T\Λk)
(‖rk‖2 – ‖f – g‖2). (3.3)

Lemma 3.1 quantifies the reduction of ‖rk‖ at each iteration provided that T is not
contained in Λk and that ‖rk‖ ≥ ‖f – g‖. Note that in the case when T ⊆ Λk , we have
‖rk‖ ≤ ‖f – g‖.

Proof We may assume that ‖rk‖ ≥ ‖f – g‖, otherwise inequality (3.3) is trivially satisfied.
Denote

Fk+1 := span(φi, i ∈ Ik+1).

Then Hk+1 is a direct sum of Hk and Fk+1. Therefore,

rk+1 = f – fk+1 = rk + fk – fk+1

= rk + fk – PHk+1 (f )

= rk + fk – PHk+1 (rk + fk)

= rk – PHk+1 (rk).



Wei and Ye Journal of Inequalities and Applications        (2019) 2019:124 Page 14 of 21

It is clear that Fk+1 ⊂ Hk+1 implies

‖rk+1‖2 =
∥∥rk – PHk+1 (rk)

∥∥2

≤ ∥∥rk – PFk+1 (rk)
∥∥2

= ‖rk‖2 –
∥∥PFk+1 (rk)

∥∥2. (3.4)

Now we estimate ‖PFk+1 (rk)‖. Since the dictionary D satisfies RIP of order s with isom-
etry constant δs, we have

∥∥∥∥ ∑
i∈Ik+1

aiφi

∥∥∥∥
2

≤ (1 + δs)
( ∑

i∈Ik+1

|ai|2
)

. (3.5)

Thus

∥∥PFk+1 (rk)
∥∥ = sup

ψ∈Fk+1,‖ψ‖≤1

∣∣〈PFk+1 (rk),ψ
〉∣∣

= sup
(ci)i∈Ik+1 ,‖∑

i∈Ik+1 ciφi‖≤1

∣∣∣∣ ∑
i∈Ik+1

〈rk ,φi〉ci

∣∣∣∣
≥ sup

(ci)i∈Ik+1 ,
∑

i∈Ik+1 |ci|2≤(1+δs)–1

∣∣∣∣ ∑
i∈Ik+1

〈rk ,φi〉ci

∣∣∣∣
= (1 + δs)–1/2

( ∑
i∈Ik+1

∣∣〈rk ,φi〉
∣∣2

)1/2

. (3.6)

Using inequality (3.6), we can continue to estimate (3.4) as

‖rk+1‖2 ≤ ‖rk‖2 – (1 + δs)–1
( ∑

i∈Ik+1

∣∣〈rk ,φi〉
∣∣2

)

≤ ‖rk‖2 – (1 + δs)–1
(

max
i∈Ik+1

∣∣〈rk ,φi〉
∣∣2

)
.

Therefore to prove inequality (3.3), it suffices to prove that

(1 + δs)–1
(

max
i∈Ik+1

∣∣〈rk ,φi〉
∣∣2

)
≥ 1 – δ�(T∪Λk )

(1 + δs)�(T\Λk)
(‖rk‖2 – ‖f – g‖2). (3.7)

To prove this, we first note that

2
√‖rk‖2 – ‖f – g‖2‖g – fk‖ ≤ ‖rk‖2 – ‖f – g‖2 + ‖g – fk‖2

= ‖rk‖2 – ‖g – fk – rk‖2 + ‖g – fk‖2

≤ 2
∣∣〈g – fk , rk〉

∣∣ = 2
∣∣〈g, rk〉

∣∣.
This inequality can be written as

‖rk‖2 – ‖f – g‖2 ≤ |〈g, rk〉|
‖g – fk‖2 . (3.8)
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If we write fk =
∑

i∈Λk
ck

i φi, δ := δ�(T∪Λk ), then the denominator of the right-hand side of
inequality (3.8) satisfies the RIP

‖g – fk‖2 =
∥∥∥∥∑

i∈T

ziφi –
∑
i∈Λk

ck
i φi

∥∥∥∥
2

=
∥∥∥∥ ∑

i∈T\Λk

ziφi +
∑

i∈T∩Λk

(
zi – ck

i
)
φi +

∑
i∈Λk\T

(
–ck

i
)
φi

∥∥∥∥
2

≥ (1 – δ)
( ∑

i∈T\Λk

|zi|2 +
∑

i∈T∩Λk

∣∣zi – ck
i
∣∣2 +

∑
i∈Λk\T

∣∣ck
i
∣∣2

)

≥ (1 – δ)
( ∑

i∈T\Λk

|zi|2
)

.

On the other hand, the numerator of the right-hand side of inequality (3.8) satisfies

∣∣〈g, rk〉
∣∣2 =

∣∣∣∣
〈∑

i∈T

ziφi, rk

〉∣∣∣∣
2

=
∣∣∣∣
〈 ∑

i∈T\Λk

ziφi, rk

〉∣∣∣∣
2

≤
( ∑

i∈T\Λk

|zi|
∣∣〈φi, rk〉

∣∣)2

≤ max
i∈Ik+1

∣∣〈rk ,φi〉
∣∣2

( ∑
i∈T\Λk

|zi|
)2

≤ max
i∈Ik+1

∣∣〈rk ,φi〉
∣∣2

�(T\Λk)
∑

i∈T\Λk

|zi|2.

Therefore we obtain

‖rk‖2 – ‖f – g‖2 ≤ �(T\Λk)(maxi∈Ik+1 |〈rk ,φi〉|2)
1 – δ�(T∪Λk )

,

which implies (3.7). Thus we complete the proof of Lemma 3.1. �

The following proposition is an immediate consequence of Lemma 3.1.

Proposition 3.1 Assume that, for a given integer A > 0 and δ∗ < 1, a dictionary D satisfies
RIP of order (As + 1)n with δ(As+1)n ≤ δ∗. If g =

∑
i∈T ziφi, �(T) ≤ n, then for any triple of

non-negative integers (j, m, L) such that �(T ∪ Λj) ≤ m and j + mL ≤ (As + 1)n, we have

‖rj+mL‖2 ≤ e– 1–δ∗
1+δ∗ L‖rj‖2 + ‖f – g‖2. (3.9)
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Proof By Lemma 3.1, if g =
∑

i∈T ziφi, �(T) ≤ n, then for any triple of non-negative integers
(j, m, L) such that �(T ∪ Λj) ≤ m and j + mL ≤ (As + 1)n, we have

‖rj+mL‖2 – ‖f – g‖2 ≤
(

1 –
1 – δ∗

(1 + δ∗)m

)mL

max
{

0,‖rj‖2 – ‖f – g‖2}
≤ e– 1–δ∗

1+δ∗ L max
{

0,‖rj‖2 – ‖f – g‖2},

where we have used the fact that �(T ∪ Λl) ≤ m for all l ≥ j. This implies inequality (3.9).
Thus we complete the proof of Proposition 3.1. �

3.2 Lebesgue-type inequality for SOGA
We are in a position to prove Theorem 3.1. Fix f ∈ H , we first observe that the assertion
of the theorem can be derived from the following lemma.

Lemma 3.2 If 0 ≤ k < n satisfies

‖rAk‖ ≤ 2σk(f ), σk(f ) > 4σn(f ), (3.10)

then there exists k < k̃ ≤ n such that

‖rAk̃‖ ≤ 2σk̃(f ), σk̃(f ) ≤ 4σn(f ). (3.11)

Indeed, assuming that Lemma 3.2 holds, we complete the proof of Theorem 3.1 as fol-
lows. We let k̃ be the largest integer in {0, 1, . . . , n} for which ‖rAk̃‖ ≤ 2σk̃(f ). Since

‖r0‖ = σ0 = ‖f ‖,

such k̃ exists. If k̃ < n, then we must have σk̃(f ) ≤ 4σn(f ), and therefore

‖rAn‖ ≤ ‖rAk̃‖ ≤ 2σk̃(f ) ≤ 8σn(f ). (3.12)

We are therefore left with proving Lemma 3.2. For this, we fix

δ∗ =
1

10
, (3.13)

and 0 ≤ k < n such that (3.10) holds. Let k < K ≤ n be the first integer such that σk > 4σK .
By the definition of σK (f ), for any B > 1, there exists g =

∑
j∈T zjψj, �(T) = K such that

‖f – g‖ ≤ BσK (f ).

The significance of K is that on the one hand

‖f – g‖ ≤ BσK (f ) <
B
4

σk(f ), (3.14)

while on the other hand

σk(f ) ≤ 4σK–1(f ). (3.15)
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To apply Proposition 3.1 for the above g and j = Ak, we need to bound �(T ∪ ΛAk) with
A yet to be specified. To this end, we write K = k + M, with M > 0, and notice that if S ⊂ T
is any set with �(S) = M and gS :=

∑
j∈S zjψj, then

‖gS‖ ≥ ∥∥f – (g – gS)
∥∥ – ‖f – g‖

≥ σk(f ) – BσK (f )

≥
(

1 –
B
4

)
σk(f ), (3.16)

where we have used the fact that g – gS ∈ Σk . Using the RIP, we obtain the following lower
bound for the coefficients of g : for any set S ⊂ T with �(S) = M,

(
1 –

B
4

)2

σ 2
k (f ) ≤ ‖gS‖2 ≤ (

1 + δ∗)∑
j∈S

|zj|2 =
11
10

∑
j∈S

|zj|2. (3.17)

Take for S the set Sg of the M smallest coefficients of g and note that then, for any more
general S ⊂ T with �(S) ≥ M, one has

(∑
j∈S

|zj|2
)/(∑

j∈Sg

|zj|2
)

≥ �(S)/M,

and hence

10
11

(
1 –

B
4

)2
�(S)
M

σ 2
k (f ) ≤

∑
j∈S

|zj|2. (3.18)

Now we consider the particular set S := T\ΛAk satisfying �(S) ≥ M. Combining the above
bound with the RIP, we obtain

10
11

(
1 –

B
4

)2
�(S)
M

σ 2
k (f )

(
1 – δ∗) ≤ ‖gS‖2 ≤ ‖g – fAk‖2

≤ (‖g – f ‖ + ‖rAk‖
)2

≤ (
BσK (f ) + 2σk(f )

)2

≤
(

B
4

+ 2
)2

σ 2
k (f ).

Since δ∗ = 1
10 this gives the bound

�(T\ΛAk) ≤ 9
11

( B
4 + 2)2

(1 – B
4 )2

M ≤ 11M, (3.19)

where the second inequality is obtained by taking B sufficiently close to 1.
We proceed now to verifying Lemma 3.2 with k̃ = K – 1 when K – 1 > k and with k̃ = k + 1

otherwise. In the first we can use the estimate in Proposition 3.1 with j = Ak in combina-
tion with (3.15) to deal with the term ‖rAk‖ in (3.9). When K = k + 1, however, we cannot
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bound ‖rAk‖ directly in terms of σl(f ) for some l > k. Accordingly, we use Proposition 3.1
in different ways for the two cases.

In the case where K – 1 > k, i.e., M ≥ 2, we apply (3.9) with j = Ak, m = 11M, and L = 4.
Indeed Ak + Lm = Ak + 44M ≤ An holds for k + M ≤ n whenever A ≥ 44. Moreover, notice
that for such A

A(K – 1) = Ak + A(M – 1)

≥ Ak +
1
2

AM

= Ak +
Am
22

= Ak + Lm,

whenever

A ≥ 88. (3.20)

This gives

‖rA(K–1)‖2 ≤ ‖rAk+mL‖2

≤ e– 36
11 ‖rAk‖2 + ‖f – g‖2

≤ e– 36
11 4σ 2

k (f ) + B2σ 2
K (f )

≤ e– 36
11 64σ 2

K–1(f ) + B2σ 2
K–1(f )

≤ 4σ 2
K–1(f ),

where we have used (3.15) in the fourth inequality, and the last inequality follows by taking
B sufficiently close to 1. We thus obtain (3.11) for the value k̃ = K – 1 > k.

In the case where K – 1 = k, i.e., M = 1, we apply (3.9) with j = Ak, m = 11, and L = 8.
From (3.19), we know that �(T ∪ ΛAk) ≤ 11 and An ≥ A(k + 1) ≥ Ak + mL for A satisfying
(3.20). This yields

‖rA(k+1)‖2 ≤ ‖rAk+mL‖2

≤ e– 72
11 ‖rAk‖2 + ‖f – g‖2

≤ e– 72
11 4σ 2

k (f ) + B2σ 2
k+1(f )

≤
(

4e– 72
11 +

B2

16

)
σ 2

k (f ).

This implies that ΛA(k+1) contains T . In fact, if it missed one of the indices i ∈ T , then we
derive from the RIP condition

(
1 – δ∗)|zi|2 ≤ ‖g – fA(k+1)‖2

≤ (‖f – g‖ + ‖rA(k+1)‖
)2
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≤
(

BσK (f ) +
√

4e– 72
11 +

B2

16
σk(f )

)2

≤
(

B
4

+
√

4e– 72
11 +

B2

16

)
σ 2

k (f ).

On the other hand, we know from (3.18) that

10
11

(
1 –

B
4

)2

σ 2
k (f ) ≤ |zi|2, (3.21)

which for B sufficiently close to 1 is a contradiction since

10
11

(
1 –

B
4

)2

>
10
9

(
B
4

+
√

4e– 72
11 +

B2

16

)
.

This implies that ‖rA(k+1)‖ ≤ σk+1(f ), and therefore inequality (3.11) holds for the value
k̃ = k + 1. This verifies Lemma 3.2 and hence completes the proof of Theorem 3.1.

3.3 Convergence rate on sparse class
As an application of Theorem 3.1, we will derive the convergence rate of SOGA on the
sparse class induced by a dictionary. Firstly, we recall the definitions of these classes. For
a general dictionary D in H , we define the class of functions

A0
1(D) :=

{
f ∈ H : f =

∑
i∈Λ

ci(f )φi,φi ∈D, �Λ < ∞,
∑
i∈Λ

∣∣ci(f )
∣∣ ≤ 1

}

and we define A1(D) to be the closure of A0
1(D) in H . It is well known that the class A1(D)

plays an important role in the study of greedy approximation with respect to dictionar-
ies. In [23], DeVore and Temlyakov proved that, for an arbitrary dictionary D in H , the
OGA provides, after m iterations, an approximation of f ∈ A1(D) with the following up-
per bound of the convergence rate:

rOGA
m (f ) ≤ m–1/2.

Note that the rate m–1/2 is sharp since when D is an ortho-normal basis of H , it is easy to
find f0 ∈ A1(D) such that

rOGA
m (f0) = c · m–1/2.

Unlike OGA, to get the same convergence rate on A1(D) for SOGA, one must make
some extra assumptions on the dictionary D. A specific feature of a dictionary, μ-
coherence, allows us to build OSGA with the same rate of convergence. Assuming that
the dictionary D is μ-coherent, Liu and Temlyakov in [8] proved the following theorem.

Theorem 3.2 If D is a dictionary in a Hilbert space H with coherence parameter μ. Then,
for s ≤ (2μ)–1, OSGA(s) provides, after m iterations, an approximation of f ∈ A1(D) with
the following upper bound on the error:

‖rm‖2 = ‖f – fm‖2 ≤ 40.5(sm)–1.
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Now we present our results. By an immediate consequence of Theorem 3.1, we get the
following theorem.

Theorem 3.3 Given parameter s ∈ N, for all n ≥ 0, if D is a dictionary in a Hilbert space
H satisfying RIP of order (88s + 1)n with isometry constant δ(88s+1)n ≤ 1/10, then OSGA(s)
provides, after m iterations, an approximation of f ∈ A1(D), with the following error bound:

‖r88n‖ = ‖f – f88n‖ ≤ Cn– 1
2 .

Proof As the discussion above, the results of DeVore and Temlyakov [8] imply the follow-
ing estimate for the best m term approximation error of functions f ∈ A1(D):

σn(f ,D) ≤ n– 1
2 , n = 1, 2, . . . . (3.22)

Combining (3.22) with Theorem 3.1, we complete the proof of Theorem 3.3. �
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