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1 Introduction
A set K ⊂R is said to be convex if ∀x, y ∈K, t ∈ [0, 1], we have

(1 – t)x + ty ∈K.

A function f : K →R is said to be convex in the classical sense, if ∀x, y ∈K, t ∈ [0, 1], we
have

f
(
(1 – t)x + ty

) ≤ (1 – t)f (x) + tf (y).

The theory of convexity plays a vital role in different fields of pure and applied sciences.
Consequently the classical concepts of convex sets and convex functions have been gen-
eralized in different directions. For more information, see [1–3]. Another aspect due to
which the convexity theory has attracted many researchers is its close relation with the-
ory of inequalities. Many famous inequalities can be obtained using the concept of convex
functions. For details, interested readers are referred to [4–14]. Among these inequalities,
Hermite–Hadamard’s inequality, which provides us a necessary and sufficient condition
for a function to be convex, is one of the most studied results. This result of Hermite and
Hadamard reads as follows:

Theorem 1.1 Let f : [a, b] ⊂R →R be an integrable convex function. Then

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
.
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The main motivation of this paper is to introduce the notions of σ -convex sets and σ -
convex functions by using the quasi-arithmetic means which can bring together all the
power means Mp for p ∈ R. More specifically, we define the σ -convex functions via the
formula

M[σ ](x, y) := σ –1[(1 – t)σ (x) + tσ (y)
]
,

which is associated with the strictly monotonic continuous function σ . As applications of
the σ -convex functions, we derive some new Hermite–Hadamard-like inequalities. In the
meantime some important special cases will also be discussed in detail.

2 σ -convex functions
Let us now introduce new classes of σ -convex sets and σ -convex functions.

Definition 2.1 A set Q⊂R is said to be σ -convex set with respect to strictly monotonic
continuous function σ if

M[σ ](x, y) := σ –1((1 – t)σ (x) + tσ (y)
) ∈Q, ∀x, y ∈Q, t ∈ [0, 1].

Definition 2.2 A function f : Q → R is said to be σ -convex function with respect to
strictly monotonic continuous function σ if

f
(
M[σ ](x, y)

) ≤ (1 – t)f (x) + tf (y), ∀x, y ∈Q, t ∈ [0, 1]. (2.1)

Note that the function f is called strictly σ -convex on Q if the above inequality is true
as a strict inequality for each distinct x and y ∈Q and for each t ∈ (0, 1).

The function f : Q→R is called σ -concave (strictly σ -concave) on Q, if –f is σ -convex
(strictly σ -convex) on Q.

If we take t = 1
2 in (2.1), then we have

f
(

σ –1
(

σ (x) + σ (y)
2

))
≤ f (x) + f (y)

2
, ∀x, y ∈Q. (2.2)

The function f is called σ -Jensen (or mid)-convex function.
We now discuss some special cases of Definition 2.2.
Case I. If we take σ (x) = ln x, then condition (2.1) becomes

f
(
x1–tyt) ≤ (1 – t)f (x) + tf (y), ∀x, y ∈ [a, b] ⊂ (0,∞), t ∈ [0, 1],

which is the concept of geometric convexity as considered in [1].
Case II. If we take σ (x) = 1

x , then condition (2.1) becomes

f
(

xy
tx + (1 – t)y

)
≤ (1 – t)f (x) + tf (y), ∀x, y ∈ [a, b] ⊂ (0,∞), t ∈ [0, 1],

which is the concept of harmonic convexity as considered in [15].



Wu et al. Journal of Inequalities and Applications        (2019) 2019:131 Page 3 of 14

Case III. If we take σ (x) = xp (p > 0), then condition (2.1) becomes

f
((

(1 – t)xp + typ) 1
p
) ≤ (1 – t)f (x) + tf (y), ∀x, y ∈ [a, b] ⊂ (0,∞), t ∈ [0, 1],

which is the concept of p-convexity as considered in [16].
Case IV. If we take σ (x) = ex, then condition (2.1) becomes

f
(
ln

(
(1 – t)ex + tey)) ≤ (1 – t)f (x) + tf (y), ∀x, y ∈ [a, b], t ∈ [0, 1],

which is the concept of log-exponential convex functions on [a, b].

3 Applications of σ -convex functions to integral inequalities
In this section, we show a representative application of σ -convex functions. We will estab-
lish some new integral inequalities of Hermite–Hadamard type via σ -convex functions.

Let I = [a, b] unless otherwise specified and σ be a continuous differentiable and strictly
monotonic function in its domain. We denote by R

+ the set of positive real numbers.

Theorem 3.1 Suppose that f : I → R is an integrable σ -convex function with respect to
the function σ , then we have the following inequalities:

f
(

σ –1
(

σ (a) + σ (b)
2

))
≤ 1

σ (b) – σ (a)

∫ b

a
f (x)σ ′(x) dx

≤ f (a) + f (b)
2

. (3.1)

Proof Since f is a σ -convex function, we have

f
(

σ –1
(

σ (x) + σ (y)
2

))
≤ f (x) + f (y)

2
.

Substituting x = σ –1((1 – t)σ (a) + tσ (b)) and y = σ –1(tσ (a) + (1 – t)σ (b)) in the above
inequality, we have

f
(

σ –1
(

σ (a) + σ (b)
2

))

≤ f (σ –1((1 – t)σ (a) + tσ (b))) + f (σ –1(tσ (a) + (1 – t)σ (b)))
2

. (3.2)

Integrating both sides of (3.2) with respect to t on [0, 1], we get

f
(

σ –1
(

σ (a) + σ (b)
2

))
≤ 1

σ (b) – σ (a)

∫ b

a
f (x)σ ′(x) dx. (3.3)

Similarly, in light of the assumption in Theorem 3.1 that f is the σ -convex function, we
have

f
(
σ –1((1 – t)σ (a) + tσ (b)

)) ≤ (1 – t)f (a) + tf (b).
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Integrating both sides of the above inequality with respect to t on [0, 1], we obtain

1
σ (b) – σ (a)

∫ b

a
f (x)σ ′(x) dx ≤ f (a) + f (b)

2
. (3.4)

Combining (3.3) and (3.4) completes the proof of Theorem 3.1. �

Theorem 3.2 Let f : I → R
+ be an integrable σ -convex function with respect to the func-

tion σ . Then

2f (a)
σ (b) – σ (a)

∫ b

a

(
σ (b) – σ (x)
σ (b) – σ (a)

)
f (x)σ ′(x) dx

+
2f (b)

σ (b) – σ (a)

∫ b

a

(
σ (x) – σ (a)
σ (b) – σ (a)

)
f (x)σ ′(x) dx

≤ 1
σ (b) – σ (a)

∫ b

a
f 2(x)σ ′(x) dx +

f 2(a) + f (a)f (b) + f 2(b)
3

≤ 2[f 2(a) + f (a)f (b) + f 2(b)]
3

. (3.5)

Proof Using the arithmetic-geometric means inequality gives

2f
(
σ –1((1 – t)σ (a) + tσ (b)

))(
(1 – t)f (a) + tf (b)

)

≤ (
f
(
σ –1((1 – t)σ (a) + tσ (b)

)))2 +
(
(1 – t)f (a) + tf (b)

)2

=
(
f
(
σ –1((1 – t)σ (a) + tσ (b)

)))2 + (1 – t)2f 2(a) + t2f 2(b) + 2t(1 – t)f (a)f (b).

Integrating both sides of the above inequality with respect to t on [0, 1], we obtain

2f (a)
∫ 1

0
(1 – t)f

(
σ –1((1 – t)σ (a) + tσ (b)

))
dt

+ 2f (b)
∫ 1

0
tf

(
σ –1((1 – t)σ (a) + tσ (b)

))
dt

≤
∫ 1

0
f 2(σ –1((1 – t)σ (a) + tσ (b)

))
dt + f 2(a)

∫ 1

0
(1 – t)2 dt + f 2(b)

∫ 1

0
t2 dt

+ 2f (a)f (b)
∫ 1

0
t(1 – t) dt. (3.6)

By making the change of variable, inequality (3.6) can be rewritten as

2f (a) · 1
σ (b) – σ (a)

∫ b

a

(
σ (b) – σ (x)
σ (b) – σ (a)

)
f (x)σ ′(x) dx

+ 2f (b) · 1
σ (b) – σ (a)

∫ b

a

(
σ (x) – σ (a)
σ (b) – σ (a)

)
f (x)σ ′(x) dx

≤ 1
σ (b) – σ (a)

∫ b

a
f 2(x)σ ′(x) dx +

f 2(a) + f (a)f (b) + f 2(b)
3

. (3.7)
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On the other hand, since f is a σ -convex function, we have

f
(
σ –1((1 – t)σ (a) + tσ (b)

)) ≤ (1 – t)f (a) + tf (b), ∀t ∈ [0, 1],

therefore

1
σ (b) – σ (a)

∫ b

a
f 2(x)σ ′(x) dx

=
∫ 1

0
f 2(σ –1((1 – t)σ (a) + tσ (b)

))
dt

≤
∫ 1

0

[
(1 – t)f (a) + tf (b)

]2 dt =
f 2(a) + f (a)f (b) + f 2(b)

3
. (3.8)

Combining (3.7) and (3.8) leads to the inequalities described in Theorem 3.2. �

Theorem 3.3 Let f : I → R
+ be an integrable σ -convex function with respect to the func-

tion σ . Then

1
σ (b) – σ (a)

∫ b

a
f (x)σ ′(x) dx

≤ 1
2

f
(

σ –1
(

σ (a) + σ (b)
2

))

+
1

4(σ (b) – σ (a))f (σ –1( σ (a)+σ (b)
2 ))

∫ b

a
f 2(x)σ ′(x) dx

+
1

24f (σ –1( σ (a)+σ (b)
2 ))

(
f 2(a) + f 2(b) + 4f (a)f (b)

)
. (3.9)

Proof Using the arithmetic-geometric means inequality and the σ convexity of f , it follows
that

f
(

σ –1
(

σ (a) + σ (b)
2

))
[
f
(
σ –1((1 – t)σ (a) + tσ (b)

))
+ f

(
σ –1(tσ (a) + (1 – t)σ (b)

))]

≤ f 2
(

σ –1
(

σ (a) + σ (b)
2

))

+
1
4
[
f
(
σ –1((1 – t)σ (a) + tσ (b)

))
+ f

(
σ –1(tσ (a) + (1 – t)σ (b)

))]2

= f 2
(

σ –1
(

σ (a) + σ (b)
2

))

+
1
4
[
f 2(σ –1((1 – t)σ (a) + tσ (b)

))
+ f 2(σ –1(tσ (a) + (1 – t)σ (b)

))

+ 2f
(
σ –1((1 – t)σ (a) + tσ (b)

))
f
(
σ –1(tσ (a) + (1 – t)σ (b)

))]

≤ f 2
(

σ –1
(

σ (a) + σ (b)
2

))

+
1
4
[
f 2(σ –1((1 – t)σ (a) + tσ (b)

))
+ f 2(σ –1(tσ (a) + (1 – t)σ (b)

))

+ 2
(
(1 – t)f (a) + tf (b)

)(
tf (a) + (1 – t)f (b)

)]
.
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Integrating both sides of the above inequality with respect to t on [0, 1], we obtain

f
(

σ –1
(

σ (a) + σ (b)
2

))[∫ 1

0
f
(
σ –1((1 – t)σ (a) + tσ (b)

))
dt

+
∫ 1

0
f
(
σ –1(tσ (a) + (1 – t)σ (b)

))
dt

]

≤ f 2
(

σ –1
(

σ (a) + σ (b)
2

))∫ 1

0
dt

+
1
4

[∫ 1

0
f 2(σ –1((1 – t)σ (a) + tσ (b)

))
dt

+
∫ 1

0
f 2(σ –1(tσ (a) + (1 – t)σ (b)

))
dt

+ 2
(
f 2(a) + f 2(b)

)∫ 1

0
t(1 – t) dt + 2f (a)f (b)

∫ 1

0

(
t2 + (1 – t)2)dt

]
.

Performing the change of variable, we get

f
(

σ –1
(

σ (a) + σ (b)
2

))
2

σ (b) – σ (a)

∫ b

a
f (x)σ ′(x) dx

≤ f 2
(

σ –1
(

σ (a) + σ (b)
2

))

+
1

2(σ (b) – σ (a))

∫ b

a
f 2(x)σ ′(x) dx

+
f 2(a) + f 2(b) + 4f (a)f (b)

12
.

After a simple computation, one can transform the above inequality to the required
inequality of Theorem 3.3. �

Theorem 3.4 Suppose that f , h : I → R
+ are two similarly ordered integrable σ -convex

functions with respect to the function σ , then hf is also the σ -convex function with respect
to the function σ .

Proof Since f , h : I → R
+ are two similarly ordered integrable σ -convex functions, for

∀x, y ∈ I , t ∈ [0, 1], we have

f
(
σ –1((1 – t)σ (x) + tσ (y)

))
h
(
σ –1((1 – t)σ (x) + tσ (y)

))

≤ [
(1 – t)f (x) + tf (y)

][
(1 – t)h(x) + th(y)

]

= (1 – t)2f (x)h(x) + t(1 – t)
[
f (x)h(y) + f (y)h(x)

]
+ t2f (y)h(y)

= (1 – t)f (x)h(x) + tf (y)h(y) + (1 – t)2f (x)h(x)

+ t(1 – t)
[
f (x)h(y) + f (y)h(x)

]
+ t2f (y)h(y) – (1 – t)f (x)h(x) – tf (y)h(y)

= (1 – t)f (x)h(x) + tf (y)h(y) – t(1 – t)
[(

f (x) – f (y)
)(

h(x) – h(y)
)]

≤ (1 – t)f (x)h(x) + tf (y)h(y).
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Thus

f
(
σ –1((1 – t)σ (x) + tσ (y)

))
h
(
σ –1((1 – t)σ (x) + tσ (y)

))

≤ (1 – t)f (x)h(x) + tf (y)h(y). (3.10)

Using the definition of σ -convex function (Definition 2.2), we conclude that hf is the σ -
convex function with respect to the function σ . The proof of Theorem 3.4 is complete. �

Theorem 3.5 Let f , h : I → R
+ be integrable σ -convex functions with respect to the func-

tion σ . Then

1
σ (b) – σ (a)

∫ b

a
f (x)h(x)σ ′(x) dx

≤ 1
3
M2(a, b) +

1
6
N2(a, b)

≤ 1
6
[[
M1(a, b)

]2 +
[
N1(a, b)

]2 –
[
f (a)f (b) + h(a)h(b)

]]
,

where

M1(a, b) = f (a) + f (b),

N1(a, b) = h(a) + h(b),

M2(a, b) = f (a)h(a) + f (b)h(b),

N2(a, b) = f (a)h(b) + f (b)h(a).

Proof Since f , h : I →R
+ are integrable σ -convex functions, we have

1
σ (b) – σ (a)

∫ b

a
f (x)h(x)σ ′(x) dx

=
∫ 1

0
f
(
σ –1[(1 – t)σ (a) + tσ (b)

])
h
(
σ –1[(1 – t)σ (a) + tσ (b)

])
dt

≤
∫ 1

0

[
(1 – t)f (a) + tf (b)

][
(1 – t)h(a) + th(b)

]
dt

= f (a)h(a)
∫ 1

0
(1 – t)2 dt +

[
f (a)h(b) + f (b)h(a)

]∫ 1

0
t(1 – t) dt + f (b)h(b)

∫ 1

0
t2 dt

=
1
3
[
f (a)h(a) + f (b)h(b)

]
+

1
6
[
f (a)h(b) + f (b)h(a)

]

=
1
3
M2(a, b) +

1
6
N2(a, b).

On the other hand, we have

1
σ (b) – σ (a)

∫ b

a
f (x)h(x)σ ′(x) dx

≤
∫ 1

0

[
(1 – t)f (a) + tf (b)

][
(1 – t)h(a) + th(b)

]
dt
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≤
∫ 1

0

[
[(1 – t)f (a) + tf (b)]2 + [(1 – t)h(a) + th(b)]2

2

]
dt

=
1
2

∫ 1

0

[
(1 – t)2[f 2(a) + h2(a)

]
+ t2[f 2(b) + h2(b)

]

+ 2t(1 – t)
[
f (a)f (b) + h(a)h(b)

]]
dt

=
1
6
[[

f (a) + f (b)
]2 +

[
h(a) + h(b)

]2 –
[
f (a)f (b) + h(a)h(b)

]]

=
1
6
[[
M1(a, b)

]2 +
[
N1(a, b)

]2 –
[
f (a)f (b) + h(a)h(b)

]]
.

This completes the proof of Theorem 3.5. �

Theorem 3.6 Let f , h : I → R
+ be two similarly ordered integrable σ -convex functions

with respect to the function σ . Then

1
σ (b) – σ (a)

∫ b

a
f (x)h(x)σ ′(x) dx ≤ 1

2
M2(a, b), (3.11)

where M2(a, b) = f (a)h(a) + f (b)h(b).

Proof Using inequality (3.10) gives

f
(
σ –1((1 – t)σ (a) + tσ (b)

))
h
(
σ –1((1 – t)σ (a) + tσ (b)

))

≤ (1 – t)f (a)h(a) + tf (b)h(b).

Integrating both sides of the above inequality with respect to t on [0, 1] yields the in-
equality asserted by Theorem 3.6. �

Theorem 3.7 Let f , h : I → R
+ be two integrable σ -convex functions with respect to the

function σ . Then

2f
(

σ –1
(

σ (a) + σ (b)
2

))
h
(

σ –1
(

σ (a) + σ (b)
2

))

–
1

σ (b) – σ (a)

∫ b

a
f (x)h(x)σ ′(x) dx ≤ 1

6
M2(a, b) +

1
3
N2(a, b), (3.12)

where M2(a, b) = f (a)h(a) + f (b)h(b), N2(a, b) = f (a)h(b) + f (b)h(a).

Proof Since f and h are both integrable σ -convex functions, by the same way as in the
proof of Theorem 3.1, we deduce that

f
(

σ –1
(

σ (a) + σ (b)
2

))

≤ f (σ –1((1 – t)σ (a) + tσ (b))) + f (σ –1(tσ (a) + (1 – t)σ (b)))
2

,

h
(

σ –1
(

σ (a) + σ (b)
2

))

≤ h(σ –1((1 – t)σ (a) + tσ (b))) + h(σ –1(tσ (a) + (1 – t)σ (b)))
2

.
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Hence, we have

f
(

σ –1
(

σ (a) + σ (b)
2

))
h
(

σ –1
(

σ (a) + σ (b)
2

))

≤ 1
4
[
f
(
σ –1[(1 – t)σ (a) + tσ (b)

])
+ f

(
σ –1[tσ (a) + (1 – t)σ (b)

])]

× [
h
(
σ –1[(1 – t)σ (a) + tσ (b)

])
+ h

(
σ –1[tσ (a) + (1 – t)σ (b)

])]

=
1
4
[
f
(
σ –1((1 – t)σ (a) + tσ (b)

))
h
(
σ –1((1 – t)σ (a) + tσ (b)

))

+ f
(
σ –1(tσ (a) + (1 – t)σ (b)

))
h
(
σ –1(tσ (a) + (1 – t)σ (b)

))

+ f
(
σ –1((1 – t)σ (a) + tσ (b)

))
h
(
σ –1(tσ (a) + (1 – t)σ (b)

))

+ f
(
σ –1(tσ (a) + (1 – t)σ (b)

))
h
(
σ –1((1 – t)σ (a) + tσ (b)

))]

≤ 1
4
[
f
(
σ –1((1 – t)σ (a) + tσ (b)

))
h
(
σ –1((1 – t)σ (a) + tσ (b)

))

+ f
(
σ –1(tσ (a) + (1 – t)σ (b)

))
h
(
σ –1(tσ (a) + (1 – t)σ (b)

))

+
(
(1 – t)f (a) + tf (b)

)(
th(a) + (1 – t)h(b)

)

+
(
tf (a) + (1 – t)f (b)

)(
(1 – t)h(a) + th(b)

)]
.

Integrating both sides of the above inequality with respect to t on [0, 1] gives

f
(

σ –1
(

σ (a) + σ (b)
2

))
h
(

σ –1
(

σ (a) + σ (b)
2

))

≤ 1
4

[∫ 1

0
f
(
σ –1((1 – t)σ (a) + tσ (b)

))
h
(
σ –1((1 – t)σ (a) + tσ (b)

))
dt

+
∫ 1

0
f
(
σ –1(tσ (a) + (1 – t)σ (b)

))
h
(
σ –1(tσ (a) + (1 – t)σ (b)

))
dt

+ 2
(
f (a)h(a) + f (b)h(b)

)∫ 1

0
t(1 – t) dt

+
(
f (a)h(b) + f (b)h(a)

)∫ 1

0

(
t2 + (1 – t)2)dt

]

=
1
4

[∫ 1

0
f
(
σ –1((1 – t)σ (a) + tσ (b)

))
h
(
σ –1((1 – t)σ (a) + tσ (b)

))
dt

+
∫ 1

0
f
(
σ –1(tσ (a) + (1 – t)σ (b)

))
h
(
σ –1(tσ (a) + (1 – t)σ (b)

))
dt

+
1
3
(
f (a)h(a) + f (b)h(b)

)
+

2
3
(
f (a)h(b) + f (b)h(a)

)
]

=
1
2

[
1

σ (b) – σ (a)

∫ b

a
f (x)h(x)σ ′(x) dx +

1
6
M2(a, b) +

1
3
N2(a, b)

]
.

Theorem 3.7 is proved. �
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Theorem 3.8 Let f , h : I → R
+ be two integrable σ -convex functions with respect to the

function σ . Then

f
(

σ –1
(

σ (a) + σ (b)
2

))
h
(

σ –1
(

σ (a) + σ (b)
2

))
≤ M2(a, b) + N2(a, b)

4
, (3.13)

where M2(a, b) = f (a)h(a) + f (b)h(b), N2(a, b) = f (a)h(b) + f (b)h(a).

Proof From Theorem 3.6 and Theorem 3.7, one can obtain the required result. �

Theorem 3.9 Let f , h : I → R
+ be two integrable σ -convex functions with respect to the

strictly increasing function σ . Then

∫ b

a

∫ b

a

∫ 1

0
f
(
σ –1[(1 – t)σ (x) + tσ (y)

])
h
(
σ –1[(1 – t)h(x) + th(y)

])
σ ′(x)σ ′(y) dt dy dx

≤ 2(σ (b) – σ (a))
3

∫ b

a
f (x)h(x)σ ′(x) dx +

(σ (b) – σ (a))2

12
[
M2(a, b) + N2(a, b)

]
, (3.14)

where M2(a, b) = f (a)h(a) + f (b)h(b), N2(a, b) = f (a)h(b) + f (b)h(a).

Proof Since f and h are σ -convex functions, then for ∀x, y ∈ I , t ∈ [0, 1] we have

f
(
σ –1((1 – t)σ (x) + tσ (y)

))
h
(
σ –1((1 – t)σ (x) + tσ (y)

))

≤ [
(1 – t)f (x) + tf (y)

][
(1 – t)h(x) + th(y)

]

= (1 – t)2f (x)h(x) + t(1 – t)
[
f (x)h(y) + h(x)f (y)

]
+ t2f (y)h(y).

Integrating both sides of the above inequality with respect to t on [0, 1], we have

∫ 1

0
f
(
σ –1((1 – t)σ (x) + tσ (y)

))
h
(
σ –1((1 – t)σ (x) + tσ (y)

))
dt

≤ f (x)h(x)
∫ 1

0
(1 – t)2 dt + f (y)h(y)

∫ 1

0
t2 dt

+
[
f (x)h(y) + h(x)f (y)

] ∫ 1

0
t(1 – t) dt

=
1
3
[
f (x)h(x) + f (y)h(y)

]
+

1
6
[
f (x)h(y) + h(x)f (y)

]
.

Again, integrating both sides of the above inequality over the plane domain {(x, y) : x ∈
[a, b], y ∈ [a, b]} and then using the right-hand side of the Hermite–Hadamard inequality
(3.1), we deduce that

∫ b

a

∫ b

a

∫ 1

0
f
(
σ –1((1 – t)σ (x) + tσ (y)

))
h
(
σ –1((1 – t)σ (x) + tσ (y)

))
σ ′(x)σ ′(y) dt dy dx

≤ 2(σ (b) – σ (a))
3

∫ b

a
f (x)h(x)σ ′(x) dx +

1
6

∫ b

a
h(y)σ ′(y) dy

∫ b

a
f (x)σ ′(x) dx

+
1
6

∫ b

a
f (y)σ ′(y) dy

∫ b

a
h(x)σ ′(x) dx
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≤ 2(σ (b) – σ (a))
3

∫ b

a
f (x)h(x)σ ′(x) dx

+
(σ (b) – σ (a))2

6

[(
h(a) + h(b)

2

)(
f (a) + f (b)

2

)

+
(

f (a) + f (b)
2

)(
h(a) + h(b)

2

)]

=
2(σ (b) – σ (a))

3

∫ b

a
f (x)h(x)σ ′(x) dx +

(σ (b) – σ (a))2

12
[(

f (a) + f (b)
)(

h(a) + h(b)
)]

=
2(σ (b) – σ (a))

3

∫ b

a
f (x)h(x)σ ′(x) dx +

(σ (b) – σ (a))2

12
[
M2(a, b) + N2(a, b)

]
,

which is the required result. The proof of Theorem 3.9 is complete. �

Theorem 3.10 Let f , h : I → R be two integrable σ -convex functions with respect to the
function σ . Then

1
σ (b) – σ (a)

∫ b

a

(
σ (b) – σ (x)
σ (b) – σ (a)

)(
f (a)h(x) + h(a)f (x)

)
σ ′(x) dx

+
1

σ (b) – σ (a)

∫ b

a

(
σ (x) – σ (a)
σ (b) – σ (a)

)(
f (b)h(x) + h(b)f (x)

)
σ ′(x) dx

≤ 1
σ (b) – σ (a)

∫ b

a
f (x)h(x)σ ′(x) dx +

M2(a, b)
3

+
N2(a, b)

6
, (3.15)

where M2(a, b) = f (a)h(a) + f (b)h(b), N2(a, b) = f (a)h(b) + f (b)h(a).

Proof Since f and h are σ -convex functions, then for ∀t ∈ [0, 1] we have

f
(
σ –1((1 – t)σ (a) + tσ (b)

)) ≤ (1 – t)f (a) + tf (b),

h
(
σ –1((1 – t)σ (a) + tσ (b)

)) ≤ (1 – t)h(a) + th(b).

Utilizing the rearrangement inequality, we obtain

f
(
σ –1((1 – t)σ (a) + tσ (b)

))(
(1 – t)h(a) + th(b)

)

+ h
(
σ –1((1 – t)σ (a) + tσ (b)

))(
(1 – t)f (a) + tf (b)

)

≤ (
(1 – t)f (a) + tf (b)

)(
(1 – t)h(a) + th(b)

)

+ f
(
σ –1((1 – t)σ (a) + tσ (b)

))
h
(
σ –1((1 – t)σ (a) + tσ (b)

))
.

Integrating both sides of the above inequality over the interval [0, 1], we find

h(a)
∫ 1

0
(1 – t)f

(
σ –1((1 – t)σ (a) + tσ (b)

))
dt + h(b)

∫ 1

0
tf

(
σ –1((1 – t)σ (a) + tσ (b)

))
dt

+ f (a)
∫ 1

0
(1 – t)h

(
σ –1((1 – t)σ (a) + tσ (b)

))
dt

+ f (b)
∫ 1

0
th

(
σ –1((1 – t)σ (a) + tσ (b)

))
dt
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≤ f (a)h(a)
∫ 1

0
(1 – t)2 dt + f (b)h(b)

∫ 1

0
t2 dt +

(
f (a)h(b) + f (b)h(a)

)∫ 1

0
t(1 – t) dt

+
∫ 1

0
f
(
σ –1((1 – t)σ (a) + tσ (b)

))
h
(
σ –1((1 – t)σ (a) + tσ (b)

))
dt.

Applying the change of variable to the integrations, we obtain the required result of The-
orem 3.10. �

Theorem 3.11 Let f , h : I → R
+ be two integrable σ -convex functions with respect to the

function σ . Then

1
σ (b) – σ (a)

∫ b

a

[
f
(

σ –1
(

σ (a) + σ (b)
2

))
h(x) + h

(
σ –1

(
σ (a) + σ (b)

2

))
f (x)

]
σ ′(x) dx

≤ 1
2(σ (b) – σ (a))

∫ b

a
f (x)h(x)σ ′(x) dx

+ f
(

σ –1
(

σ (a) + σ (b)
2

))
h
(

σ –1
(

σ (a) + σ (b)
2

))

+
1

12
M2(a, b) +

1
6
N2(a, b),

where M2(a, b) = f (a)h(a) + f (b)h(b), N2(a, b) = f (a)h(b) + f (b)h(a).

Proof Note that f and h are integrable σ -convex functions. Taking t = 1
2 in (2.1) and letting

x = σ –1((1 – t)σ (a) + tσ (b)), y = σ –1(tσ (a) + (1 – t)σ (b)), we have

f
(

σ –1
(

σ (a) + σ (b)
2

))

≤ f (σ –1((1 – t)σ (a) + tσ (b))) + f (σ –1(tσ (a) + (1 – t)σ (b)))
2

,

h
(

σ –1
(

σ (a) + σ (b)
2

))

≤ h(σ –1((1 – t)σ (a) + tσ (b))) + h(σ –1(tσ (a) + (1 – t)σ (b)))
2

.

Utilizing the rearrangement inequality, we obtain

1
2

f
(

σ –1
(

σ (a) + σ (b)
2

))
[
h
(
σ –1((1 – t)σ (a) + tσ (b)

))
+ h

(
σ –1(tσ (a) + (1 – t)σ (b)

))]

+
1
2

h
(

σ –1
(

σ (a) + σ (b)
2

))[
f
(
σ –1((1 – t)σ (a) + tσ (b)

))

+ f
(
σ –1(tσ (a) + (1 – t)σ (b)

))]

≤ 1
4
[
f
(
σ –1((1 – t)σ (a) + tσ (b)

))
+ f

(
σ –1(tσ (a) + (1 – t)σ (b)

))]

× [
h
(
σ –1((1 – t)σ (a) + tσ (b)

))
+ h

(
σ –1(tσ (a) + (1 – t)σ (b)

))]

+ f
(

σ –1
(

σ (a) + σ (b)
2

))
h
(

σ –1
(

σ (a) + σ (b)
2

))
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=
1
4
[
f
(
σ –1((1 – t)σ (a) + tσ (b)

))
h
(
σ –1((1 – t)σ (a) + tσ (b)

))

+ f
(
σ –1(tσ (a) + (1 – t)σ (b)

))
h
(
σ –1(tσ (a) + (1 – t)σ (b)

))

+ f
(
σ –1((1 – t)σ (a) + tσ (b)

))
h
(
σ –1(tσ (a) + (1 – t)σ (b)

))

+ f
(
σ –1(tσ (a) + (1 – t)σ (b)

))
h
(
σ –1((1 – t)σ (a) + tσ (b)

))]

+ f
(

σ –1
(

σ (a) + σ (b)
2

))
h
(

σ –1
(

σ (a) + σ (b)
2

))

≤ 1
4
[
f
(
σ –1((1 – t)σ (a) + tσ (b)

))
h
(
σ –1((1 – t)σ (a) + tσ (b)

))

+ f
(
σ –1(tσ (a) + (1 – t)σ (b)

))
h
(
σ –1(tσ (a) + (1 – t)σ (b)

))

+
(
(1 – t)f (a) + tf (b)

)(
th(a) + (1 – t)h(b)

)

+
(
tf (a) + (1 – t)f (b)

)(
(1 – t)h(a) + th(b)

)]

+ f
(

σ –1
(

σ (a) + σ (b)
2

))
h
(

σ –1
(

σ (a) + σ (b)
2

))
.

Integrating the first and last expressions among the above inequalities over the interval
[0, 1], we have

1
2

f
(

σ –1
(

σ (a) + σ (b)
2

))∫ 1

0

[
h
(
σ –1((1 – t)σ (a) + tσ (b)

))

+ h
(
σ –1(tσ (a) + (1 – t)σ (b)

))]
dt

+
1
2

h
(

σ –1
(

σ (a) + σ (b)
2

))∫ 1

0

[
f
(
σ –1((1 – t)σ (a) + tσ (b)

))

+ f
(
σ –1(tσ (a) + (1 – t)σ (b)

))]
dt

≤ 1
4

[∫ 1

0
f
(
σ –1((1 – t)σ (a) + tσ (b)

))
h
(
σ –1((1 – t)σ (a) + tσ (b)

))
dt

+
∫ 1

0
f
(
σ –1(tσ (a) + (1 – t)σ (b)

))
h
(
σ –1(tσ (a) + (1 – t)σ (b)

))
dt

+
1
3
(
f (a)h(a) + f (b)h(b)

)
+

2
3
(
f (a)h(b) + f (b)h(a)

)]

+ f
(

σ –1
(

σ (a) + σ (b)
2

))
h
(

σ –1
(

σ (a) + σ (b)
2

))
.

From the above inequality, by simple computation and arrangement, we obtain the in-
equality asserted by Theorem 3.11. �

4 Conclusion
We have introduced the notions of σ -convex sets and σ -convex functions. Also, we have
shown that the class of σ convexity includes several other classes of classical convexity. In
fact, the σ -convex function is a unified generalization of convex functions related to var-
ious power means. Moreover, using the notion of σ convexity, we have derived some new
integral inequalities of Hermite–Hadamard type. We expect that the ideas and techniques
of the paper may stimulate further research in this field.
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