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1 Introduction
Bernstein polynomials were first used by Bernstein in a constructive proof for the Stone–
Weierstrass approximation theorem (see [2, 6, 21]). With the advent of computer graphics,
Bernstein polynomials, restricted to the interval [0, 1], became important in the form of
Bézier curves (see [6]). The Bernstein polynomials are the mathematical basis for Bézier
curves, which are frequently used in the mathematical field of numerical analysis (see [6,
24]). The study of degenerate versions of special numbers and polynomials began with the
papers by Carlitz (see [3, 4]). Kim and his research colleagues have been studying various
degenerate numbers and polynomials by means of generating functions, Fourier series,
combinatorial methods, umbral calculus, p-adic analysis, and differential equations (see
[10, 11, 13, 17–19]).

As a degenerate version of Bernstein polynomials, the degenerate Bernstein polynomi-
als were introduced recently (see (1.9)). Here we will study for the degenerate Bernstein
polynomials some fundamental properties and identities associated with special numbers
and polynomials including degenerate Bernoulli polynomials and central factorial num-
bers of the second kind. Also, in the last section we will consider a matrix representation
for those polynomials. For some recent works related to the present paper, the reader may
want to see [14, 20, 22, 25, 27, 29]. The rest of this section is devoted to reviewing what
we need in the following sections.

For k, n ∈ Z≥0, the Bernstein polynomials of degree n are defined by

Bk,n(x) =
(

n
k

)
xk(1 – x)n–k (see [1, 2, 6, 21, 26, 28]), (1.1)

where x ∈ [0, 1].
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For λ ∈ R, the degenerate Bernoulli polynomials of order r are defined by the generating
function

(
t

(1 + λt)
1
λ – 1

)r

(1 + λt)
x
λ =

∞∑
n=0

β
(r)
n,λ(x)

tn

n!
. (1.2)

When r = 1, βn,λ(x) = β
(1)
n,λ(x) (n ≥ 0) are called the degenerate Bernoulli polynomials (see

[3, 4]). Further, βn,λ = βn,λ(0) are called the degenerate Bernoulli numbers.
The falling factorial sequences are defined by

(x)0 = 1, (x)n = x(x – 1)(x – 2) · · · (x – n + 1) (n ≥ 1) (see [15, 23]). (1.3)

The λ-analogue of the falling factorial sequences are given by

(x)0,λ = 1, (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ
)

(n ≥ 1) (see [7, 15, 16]).

(1.4)

Note that limλ→1(x)n,λ = (x)n, limλ→0(x)n,λ = xn.
It is known that the degenerate exponential function is defined by

(1 + λt)
x
λ =

∞∑
n=0

(x)n,λ
tn

n!
(see [16]). (1.5)

The λ-binomial coefficients are given by

(
x
n

)
λ

=
(x)n,λ

n!
=

x(x – λ)(x – 2λ) · · · (x – (n – 1)λ)
n!

(see [8, 16]). (1.6)

From (1.6), we have

(
x + y

n

)
λ

=
n∑

l=0

(
x
l

)
λ

(
y

n – l

)
λ

(see [8, 12]), (1.7)

which is equivalent to

(x + y)n,λ =
n∑

l=0

(
n
l

)
(x)l,λ(y)n–l,λ (see [12, 14]). (1.8)

Recently, Kim and Kim [12, 14] introduced the degenerate Bernstein polynomials of
degree n, Bk,n(x|λ) (n, k ≥ 0), which are given by

(x)k,λ

k!
tk(1 + λt)

1–x
λ =

∞∑
n=k

Bk,n(x|λ)
tn

n!
(see [12]), (1.9)

where k is a nonnegative integer.
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From (1.9), we note that

Bk,n(x|λ) =
(

n
k

)
(x)k,λ(1 – x)n–k,λ (n ≥ k ≥ 0) (see [12]). (1.10)

Thus, by (1.10), we easily get

(x)i,λ =
1

(1 – λi)n–i,λ

n∑
k=i

(k
i
)

(n
i
)Bk,n(x|λ) (see [12]), (1.11)

where i, n ∈ N with i ≤ n, x ∈ [0, 1].
As is well known, the Stirling numbers of the second kind are defined by

xn =
n∑

l=0

S2(n, l)(x)l (n ≥ 0) (see [7, 12]). (1.12)

In [8], the degenerate Stirling numbers of the second kind are given by

(x)n,λ =
n∑

l=0

S2,λ(n, l)(x)l (n ≥ 0). (1.13)

Note that limλ→0 S2,λ(n, l) = S2(n, l).
The degenerate Bernstein polynomials have been introduced recently by Kim and Kim.

In this paper, we investigate some properties and identities for the degenerate Bernstein
polynomials associated with special numbers and polynomials including degenerate Bern-
stein polynomials and central factorial numbers of the second kind.

2 Some fundamental properties of the degenerate Bernstein polynomials
First, we observe that

(
1 – x – (n – k – 1)λ

)
Bk,n–1(x|λ) +

(
x – (k – 1)λ

)
Bk–1,n–1(x|λ)

=
(

n – 1
k

)
(x)k,λ(1 – x)n–k,λ +

(
n – 1
k – 1

)
(x)k,λ(1 – x)n–k,λ

=
[(

n – 1
k

)
+

(
n – 1
k – 1

)]
(x)k,λ(1 – x)n–k,λ

=
(

n
k

)
(x)k,λ(1 – x)n–k,λ = Bk,n(x|λ) (n, k ∈ N). (2.1)

Thus, by (2.1), we get the next theorem which already appeared in [12].

Theorem 2.1 For n, k ∈N, we have

(
1 – x – (n – k – 1)λ

)
Bk,n–1(x|λ) +

(
x – (k – 1)λ

)
Bk–1,n–1(x|λ)

= Bk,n(x|λ). (2.2)

By (1.8) and (1.10), we easily get

k∑
i=0

Bi,k(x|λ) =
k∑

i=0

(
k
i

)
(x)i,λ(1 – x)k–i,λ = (x + 1 – x)k,λ = (1)k,λ, (2.3)
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where k is a nonnegative integer.
From (1.10), we have

(x – iλ)Bi,n(x|λ) = (x – iλ)
(

n
i

)
(x)i,λ(1 – x)n–i,λ

=
(

n
i

)
(x)i+1,λ(1 – x)n–i,λ

=
(n

i
)

(n+1
i+1

)
(

n + 1
i + 1

)
(x)i+1,λ(1 – x)n+1–(i+1),λ

=
(n

i
)

(n+1
i+1

)Bi+1,n+1(x|λ). (2.4)

Hence, by (2.2) and (2.4), we get the following theorem.

Theorem 2.2 For k ≥ 0, we have

k∑
i=0

Bi,k(x|λ) =
k∑

i=0

(
k
i

)
(x)i,λ(1 – x)k–i,λ = (x + 1 – x)k,λ = (1)k,λ,

(x – iλ)Bi,n(x|λ) =
i + 1
n + 1

Bi+1,n+1(x|λ).

On the other hand, we have

(
1 – x – (n – i)λ

)
Bi,n(x|λ)

=
(

n
i

)
(x)i,λ(1 – x)n–i,λ

(
1 – x – (n – i)λ

)

=
(

n
i

)
(x)i,λ(1 – x)n+1–i,λ =

(n
i
)

(n+1
i

)
(

n + 1
i

)
(x)i,λ(1 – x)n+1–i,λ

=
(n

i
)

(n+1
i

)Bi,n+1(x|λ) (i, n ∈ N). (2.5)

Thus, by (2.5), we get the next result.

Theorem 2.3 For 0 ≤ i ≤ n + 1, we have

(
1 – x – (n – i)λ

)
Bi,n(x|λ) =

n + 1 – i
n + 1

Bi,n+1(x|λ).



Kim et al. Journal of Inequalities and Applications        (2019) 2019:129 Page 5 of 12

We observe that

1(n
i
)Bi,n(x|λ) +

1( n
i+1

)Bi+1,n(x|λ)

= (x)i,λ(1 – x)n–i,λ + (x)i+1,λ(1 – x)n–i–1,λ

= (x)i,λ(1 – x)n–i–1,λ
(
1 – x – (n – i – 1)λ + x – iλ

)
= (x)i,λ(1 – x)n–i–1,λ

(
1 – (n – 1)λ

)

=
1 – (n – 1)λ(n–1

i
)

(
n – 1

i

)
(x)i,λ(1 – x)n–i–1,λ

=
1 – (n – 1)λ(n–1

i
) Bi,n–1(x|λ). (2.6)

Hence, by (2.6), we obtain the following identity which appeared already in [12].

(
1 – (n – 1)λ

)
Bi,n–1(x|λ) =

(
n – 1

i

)[
Bi,n(x|λ)(n

i
) +

Bi+1,n(x|λ)( n
i+1

)
]

=
n – i

n
Bi,n(x|λ) +

i + 1
n

Bi+1,n(x|λ) (n ∈N, i ≥ 0). (2.7)

Also, from (1.1) and (1.10), we have

Bk,n(x|λ)
Bk,n(x)

=
k–1∏
l=0

(
1 – λ

l
x

) n–k–1∏
l=0

(
1 – λ

l
1 – x

)
. (2.8)

Hence, by (2.7) and (2.8), we get the following theorem.

Theorem 2.4 For n, k, i ∈ N with i ≤ n and k ≤ n, we have

(
1 – (n – 1)λ

)
Bi,n–1(x|λ) =

n – i
n

Bi,n(x|λ) +
i + 1

n
Bi+1,n(x|λ),

Bk,n(x|λ)
Bk,n(x)

=
k–1∏
l=0

(
1 – λ

l
x

) n–k–1∏
l=0

(
1 – λ

l
1 – x

)
.

3 Some identities for degenerate Bernstein polynomials associated with
special numbers and polynomials

Here in this section, we are going to derive some identities associated with special num-
bers and polynomials including the degenerate Bernoulli polynomials and central factorial
numbers of the second kind.

From (1.2), we note that

t

(1 + λt)
1
λ – 1

=
∞∑

n=0

βn,λ
tn

n! (3.1)

and

βn,λ(x) =
n∑

l=0

(
n
l

)
(x)n–l,λβl,λ (see [3, 4]).
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Thus, by (3.1), we get

t =

( ∞∑
l=0

βl,λ
tl

l!

)( ∞∑
m=0

(1)m,λ
tm

m!
– 1

)

=
∞∑

n=0

( n∑
l=0

(
n
l

)
(1)n–l,λβl,λ – βn,λ

)
tn

n!
. (3.2)

By comparing the coefficients on both sides of (3.2), we get

n∑
l=0

(
n
l

)
(1)n–l,λβl,λ – βn,λ =

⎧⎨
⎩

1, if n = 1,

0, if n > 1,
β0,λ = 1 (see [3, 4]). (3.3)

When n = 1, we have

β1,λ(1) =
1∑

l=0

(
1
l

)
(1)1–l,λβl,λ = 1 + β1,λ.

By (1.2), we easily get

∞∑
n=0

βn,λ(1 – x)
tn

n!
=

t

(1 + λt)
1
λ – 1

(1 + λt)
1–x
λ

=
–t

(1 + (–λ)(–t))– 1
λ – 1

(
1 + (–λ)(–t)

)– x
λ

=
∞∑

n=0

βn,–λ(x)(–1)n tn

n!
. (3.4)

Comparing the coefficients on both sides of (3.4), we have

βn,λ(1 – x) = (–1)nβn,–λ(x) (n ≥ 0).

Taking x = –1, βn,λ(2) = (–1)nβn,–λ(–1) (n ≥ 0). We observe that

∞∑
n=0

βn,λ(2)
tn

n!
=

t

(1 + λt)
1
λ – 1

(1 + λt)
2
λ

=
t

(1 + λt)
1
λ – 1

(
(1 + λt)

1
λ – 1 + 1

)
(1 + λt)

1
λ

= t(1 + λt)
1
λ +

t

(1 + λt)
1
λ – 1

(1 + λt)
1
λ

= t
∞∑

n=0

(1)n,λ
tn

n!
+

∞∑
n=0

βn,λ(1)
tn

n!

=
∞∑

n=0

(
n(1)n–1,λ + βn,λ(1)

) tn

n!
. (3.5)
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By (3.5), we get

βn,λ(2) = n(1)n–1,λ + βn,λ(1) (n ≥ 1). (3.6)

It is not difficult to show that

t

(1 + λt) 1
λ – 1

(1 + λt)
x
λ

=
t

(1 + λt)
1
λ – 1

(1 + λt)
x–1
λ

(
(1 + λt)

1
λ – 1 + 1

)

= t(1 + λt)
x–1
λ +

t

(1 + λt) 1
λ – 1

(1 + λt)
x–1
λ

= t(1 + λt)
x–1
λ + t(1 + λt)

x–2
λ +

t

(1 + λt)
1
λ – 1

(1 + λt)
x–2
λ

= t(1 + λt)
x–1
λ + t(1 + λt)

x–2
λ + t(1 + λt)

x–3
λ +

t

(1 + λt)
1
λ – 1

× (1 + λt)
x–3
λ . (3.7)

Continuing this process, we have

∞∑
n=0

βn,λ(x)
tn

n!
= t

k∑
i=1

(1 + λt)
x–i
λ +

t

(1 + λt)
1
λ – 1

(1 + λt)
x–k
λ

= t
k∑

i=1

∞∑
n=0

(x – i)n,λ
tn

n!
+

∞∑
n=0

βn,λ(x – k)
tn

n!

=
∞∑

n=1

( k∑
i=1

n(x – i)n–1,λ

)
tn

n!
+

∞∑
n=0

βn,λ(x – k)
tn

n!
. (3.8)

Therefore, by comparing the coefficients on both sides of (3.8), we obtain the following
proposition.

Proposition 1 For k ∈N and n ≥ 0, we have

βn,λ(x) =
k∑

i=1

n(x – i)n–1,λ + βn,λ(x – k).

In particular,

βn,λ(k) =
k∑

i=1

n(k – i)n–1,λ + βn,λ.
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From (1.9), we have

(x)k,λ(1 + λt)
1–x
λ =

k!
tk

1
k!

(x)k,λtk(1 + λt)
1–x
λ

=
k!
tk

∞∑
n=k

Bk,n(x|λ)
tn

n!
= k!

∞∑
n=0

Bk,n+k(x|λ)
n!

(n + k)!
tn

n!

=
∞∑

n=0

1(n+k
k

)Bk,n+k(x|λ)
tn

n!
. (3.9)

On the other hand,

(x)k,λ(1 + λt)
1–x
λ =

∞∑
n=0

(x)k,λ(1 – x)n,λ
tn

n!
. (3.10)

From (3.9) and (3.10), we have

(x)k,λ(1 – x)n,λ =
1(n+k
k

)Bk,n+k(x|λ) (n, k ≥ 0). (3.11)

Note here that (3.11) also follows from (1.10) by replacing n by n + k.
From (1.2), we note that

(x)k,λ(1 + λt)
1–x
λ =

(x)k,λ

t
t

(1 + λt)
1
λ – 1

(1 + λt)
1–x
λ

(
(1 + λt)

1
λ – 1

)

=
(x)k,λ

t

{
t

(1 + λt)
1
λ – 1

(1 + λt)
2–x
λ –

t

(1 + λt)
1
λ – 1

(1 + λt)
1–x
λ

}

=
(x)k,λ

t

{ ∞∑
n=1

βn,λ(2 – x) – βn,λ(1 – x)

}
tn

n!

= (x)k,λ

∞∑
n=0

(
βn+1,λ(2 – x) – βn+1,λ(1 – x)

n + 1

)
tn

n!
. (3.12)

By (3.12), we get

(x)k,λ(1 – x)n,λ = (x)k,λ
βn+1,λ(2 – x) – βn+1,λ(1 – x)

n + 1
, (3.13)

where k ∈N and n ≥ 0.
From (1.10) and (3.13), we have

Bk,n+k(x|λ) =
(

n + k
k

)
(x)k,λ

βn+1,λ(2 – x) – βn+1,λ(1 – x)
n + 1

.

Theorem 3.1 For k ∈N and n ≥ 0, we have

Bk,n+k(x|λ) =
(

n + k
k

)
(x)k,λ

βn+1,λ(2 – x) – βn+1,λ(1 – x)
n + 1

.
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As is well known, the central factorial numbers of the second kind are defined by the
generating function

1
k!

(
e

1
2 t – e– 1

2 t)k =
∞∑

n=k

T(n, k)
tn

n!
(k ≥ 0) (see [5, 9]). (3.14)

Recently, the degenerate central factorial numbers Tλ(n, k) of the second kind were in-
troduced by the generating function

1
k!

(
(1 + λt)

1
2λ – (1 + λt)– 1

2λ
)k =

∞∑
n=k

Tλ(n, k)
tn

n!
(see [16]). (3.15)

By (3.15), we get

∞∑
n=k

lim
λ→0

Tλ(n, k)
tn

n!
= lim

λ→0

1
k!

(
(1 + λt)

1
2λ – (1 + λt)– 1

2λ
)k

=
1
k!

(
e

1
2 t – e– 1

2 t)k =
∞∑

n=k

T(n, k)
tn

n!
. (3.16)

Thus, by (3.16), we get

lim
λ→0

Tλ(n, k) = T(n, k) (n, k ≥ 0) (see [9]).

Now, we observe that

(x)k,λ

k!
tk(1 + λt)

1–x
λ =

(x)k,λ

k!
(
(1 + λt)

1
2λ – (1 + λt)– 1

2λ
)k

×
(

t

(1 + λt)
1
λ – 1

)k

(1 + λt)
1–x+ k

2
λ

= (x)k,λ

( ∞∑
m=k

Tλ(m, k)
tm

m!

)( ∞∑
l=0

β
(k)
l,λ

(
1 – x +

k
2

)
tl

l!

)

=
∞∑

n=k

(x)k,λ

n∑
m=k

(
n
m

)
Tλ(m, k)β (k)

n–m,λ

(
1 – x +

k
2

)
tn

n!
. (3.17)

By combining the right-hand side of (1.9) with (3.17), we obtain the following theorem.

Theorem 3.2 For n, k ∈N∪ {0} with n ≥ k, we have

Bk,n(x|λ) = (x)k,λ

n∑
m=k

(
n
m

)
Tλ(m, k)β (k)

n–m,λ

(
1 – x +

k
2

)
.

4 A matrix representation for degenerate Bernstein polynomials
For λ ∈R, let

Pn,λ =

{
pλ(x)|pλ(x) =

n∑
i=0

(x)i,λCi,λ ∈R[x]

}
.

Then Pn,λ is the n + 1-dimensional vector space over R.
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For Bλ(x) ∈ Pn,λ, we note that Bλ(x) can be written as a linear combination of degenerate
Bernstein basis functions:

Bλ(x) = C0,λB0,n(x|λ) + C1,λB1,n(x|λ) + C2,λB2,n(x|λ) + · · ·
+ Cn,λBn,n(x|λ), (4.1)

where the constants Ci,λ depend on λ for i = 0, 1, 2, . . . , n.
Equation (4.1) can be written as the dot product of two vectors in the following:

Bλ(x) =
(

B0,n(x|λ) B1,n(x|λ) · · · Bn,n(x|λ)
)

⎛
⎜⎜⎜⎜⎝

C0,λ

C1,λ
...

Cn,λ

⎞
⎟⎟⎟⎟⎠ . (4.2)

Now, we can convert (4.2) to

Bλ(x) =
(

1 x · · · xn
)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0,0(λ) 0 0 0 · · · 0 0
b1,0(λ) b1,1(λ) b1,2(λ) b1,3(λ) · · · b1,n–1(λ) b1,n(λ)
b2,0(λ) b2,1(λ) b2,2(λ) b2,3(λ) · · · b2,n–1(λ) b2,n(λ)

...
...

bn–1,0(λ) bn–1,1(λ) bn–1,2(λ) bn–1,3(λ) · · · bn–1,n–1(λ) bn–1,n(λ)
bn,0(λ) bn,1(λ) bn,2(λ) bn,3(λ) · · · bn,n–1(λ) bn,n(λ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

C0,λ

C1,λ
...

Cn,λ

⎞
⎟⎟⎟⎟⎠ ,

where bi,j(λ) are the coefficients of the power basis that are used to determine the respec-
tive degenerate Bernstein polynomials.

For example, by (1.1), we get

B0,2(x|λ) =

(
2
0

)
(x)0,λ(1 – x)2,λ = (1 – x)(1 – x – λ) = (1 – x)2 – λ(1 – x)

= x2 + (λ – 2)x + 1 – λ,

B1,2(x|λ) =

(
2
1

)
(x)1,λ(1 – x)1,λ = 2x(1 – x) = 2x – 2x2,

B2,2(x|λ) =

(
2
2

)
(x)2,λ(1 – x)0,λ = x(x – λ) = x2 – λx.
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In the quadratic case (n = 2), Bλ(x) can be represented in terms of matrices by

Bλ(x) =
(

1 x x2
)

⎛
⎜⎝

1 – λ 0 0
λ – 2 2 –λ

1 –2 1

⎞
⎟⎠

⎛
⎜⎝

C0,λ

C1,λ

C2,λ

⎞
⎟⎠ .

5 Conclusions
In Sect. 2, we investigated some fundamental properties for the degenerate Bernstein poly-
nomials. In Sect. 3, we derived some identities for the degenerate Bernstein polynomials
associated with special numbers and polynomials including degenerate Bernoulli poly-
nomials and central factorial numbers of the second kind. In many applications, a matrix
formulation for the Bernstein polynomials is useful. So, in Sect. 4, we studied some further
properties of the matrix representation for degenerate Bernstein polynomials.
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