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Abstract
In this note, we first prove an inequality for sector matrices. This complements a result
due to Kittaneh and Sakkijha (Linear Multilinear Algebra, 2018,
https://doi.org/10.1080/03081087.2018.1441800) concerning accretive–dissipative
matrices. And then we present two singular value inequalities for sector matrices
which are similar to Yang and Lu’s inequalities (J. Inequal. Appl. 2018:183, 2018).
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1 Introduction
We denote by Mn(C) the set of n × n complex matrices. For A ∈ Mn(C), the conjugate
transpose of A is denoted by A∗, and the matrices RA = 1

2 (A + A∗) and IA = 1
2i (A – A∗) are

called the real part and imaginary part of A, respectively (e.g., [1, p. 6] and [6, p. 7]). Recall
that a norm ‖ · ‖ on Mn(C) is unitarily invariant if ‖UAV‖ = ‖A‖ for any A ∈ Mn(C) and
unitarily matrices U , V ∈Mn(C). For p ≥ 1, the Schatten p-norm of A ∈Mn(C) is defined
as ‖A‖p = (

∑n
j=1 σ

p
j (A))

1
p . If the eigenvalues of a square matrix A ∈Mn(C) are all real, then

we denote λj(A) the jth largest eigenvalue of A. The singular values of a complex matrix
A ∈ Mn are the eigenvalues of |A| := (A∗A) 1

2 , and we denote σj(A) := λj(|A|) the jth largest
singular value of A. A positive semidefinite matrix A will be expressed as A ≥ 0. Likewise,
we write A > 0 to refer that A is a positive definite matrix.

A ∈Mn(C) is an accretive-dissipative matrix ifRA and IA are both positive semidefinite.
This class of matrices has recently been considered by Lin [9] and Lin and Zhou [11].

Let H ∈Mn(C) be a Hermitian matrix and let f be a real-valued function defined on an
interval containing all the eigenvalues of H . Then f (H) is well defined through spectral
decomposition. f is called matrix concave if f (αA + (1 – α)B) ≥ αf (A) + (1 – α)f (B) for any
two Hermitian matrices A, B ∈Mn(C) and all α ∈ [0, 1].

The numerical range of A ∈Mn(C) is defined by

W (A) =
{

x∗Ax|x ∈ C
n, x∗x = 1

}
.

For α ∈ [0,π/2), let

Sα =
{

z ∈C|Rz ≥ 0, |Iz| ≤ (Rz) tan(α)
}
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be a sector region on the complex plane. A matrix whose numerical range is contained in
a sector region Sα is called a sector matrix [10]. Recent research interest in this class of
matrices starts with a resolution of a problem from numerical analysis [3]. Some research
results on sector matrices can be found in [3, 7, 8, 10, 13].

Kittaneh and Sakkijha [7] proved the following Schatten-p norm inequalities.

Theorem 1.1 (see [7, Theorem 2.7]) Let S, T ∈Mn(C) be accretive-dissipative. Then

2
–p
2
(‖S‖p

p + ‖T‖p
p
) ≤ ‖S + T‖p

p ≤ 2
3p
2 –1(‖S‖p

p + ‖T‖p
p
)

for p ≥ 1.

Recently, Yang and Lu [12] gave a generalization of Theorem 1.1.

Theorem 1.2 (see [12, Theorem 2.3]) Let A1, . . . , An ∈ Mn(C) be accretive-dissipative.
Then

2
–p
2

n∑

j=1

‖Aj‖p
p ≤

∥
∥
∥
∥
∥

n∑

j=1

Aj

∥
∥
∥
∥
∥

p

p

≤ (2n2)
p
2

n

n∑

j=1

‖Aj‖p
p for p ≥ 1.

In [5], Garg and Aujla presented the following inequalities:

k∏

j=1

σj
(|A + B|r)

≤
k∏

j=1

σj
(
In + |A|r)

k∏

j=1

σj
(
In + |B|r) for 1 ≤ k ≤ n, 1 ≤ r ≤ 2; (1)

k∏

j=1

σj
(
In + f

(|A + B|))

≤
k∏

j=1

σj
(
In + f

(|A|))
k∏

j=1

σj
(
In + f

(|B|)) for 1 ≤ k ≤ n, (2)

where A, B ∈Mn(C) and f : [0,∞) → [0,∞) is a matrix concave function.
If A, B ≥ 0, r = 1 and f (X) = X for any X ∈ Mn(C) in (1) and (2), then

k∏

j=1

σj(A + B) ≤
k∏

j=1

σj(In + A)
k∏

j=1

σj(In + B) for 1 ≤ k ≤ n

and

k∏

j=1

σj(In + A + B) ≤
k∏

j=1

σj(In + A)
k∏

j=1

σj(In + B) for 1 ≤ k ≤ n. (3)

Based on the above inequalities, Yang and Lu (see [12, Theorem 2.7]) gave the inequal-
ities for sector matrices which removed the absolute values in (1) and (2) from the right
sides as follows.
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Theorem 1.3 (see [12, Theorem 2.7]) Let A, B ∈ Mn(C) be such that W (A), W (B) ⊆ Sα .
Then, for 1 ≤ k ≤ n,

k∏

j=1

σj(A + B) ≤ sec2k(α)
k∏

j=1

σj(In + A)
k∏

j=1

σj(In + B) (4)

and

k∏

j=1

σj(In + A + B) ≤ sec2k(α)
k∏

j=1

σj(In + A)
k∏

j=1

σj(In + B). (5)

By Fan’s dominance principle [1, p. 93], the theorem below follows from (4) and (5).

Theorem 1.4 (see [12, Corollary 2.8]) Let A, B ∈ Mn(C) be such that W (A), W (B) ⊆ Sα .
Then

‖A + B‖ ≤ sec2(α)‖In + A‖‖In + B‖ (6)

and

‖In + A + B‖ ≤ sec2(α)‖In + A‖‖In + B‖. (7)

In this paper, we will extend Theorem 1.2 to sector matrices. Furthermore, we present
some inequalities for sector matrices which are similar to the inequalities (4) and (5). How-
ever, in some cases, our results are stronger than (4) and (5), respectively.

2 Main results
We begin this section with some lemmas which are useful to establish our main results.

Lemma 2.1 (see [1, p. 73]) Let A ∈Mn(C). Then

λj(RA) ≤ σj(A), j = 1, 2, . . . , n. (8)

Consequently,

‖RA‖ ≤ ‖A‖. (9)

Lemma 2.2 (see [13, Lemma 3.1]) Let A ∈ Mn(C) be such that W (A) ⊆ Sα for some α ∈
[0,π/2). Then

‖A‖ ≤ sec(α)‖RA‖. (10)

Lemma 2.3 (see [2, (4)]) Let A1, . . . , An ∈Mn(C) be positive semidefinite. Then, for p ≥ 1,

n∑

j=1

‖Aj‖p
p ≤

∥
∥
∥
∥
∥

n∑

j=1

Aj

∥
∥
∥
∥
∥

p

p

≤ np–1
n∑

j=1

‖Aj‖p
p. (11)
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Lemma 2.4 (see [4, Theorem 4.1]) Let A ∈Mn(C) be such that W (A) ⊆ Sα . Then

σj(A) ≤ sec2(α)λj(RA), j = 1, 2, . . . , n.

The above inequality implies that there exists a unitary matrix U ∈Mn(C) such that

|A| ≤ sec2(α)URAU∗. (12)

Lemma 2.5 (see [1, Theorem III.5.6]) Let A, B ∈Mn(C). Then there exist unitary matrices
U , V ∈ Mn(C) such that

|A + B| ≤ U|A|U∗ + V |B|V ∗. (13)

For the above preparation, we present the first main result which is an extension of The-
orem 1.1.

Theorem 2.6 Let A1, . . . , An ∈Mn(C) be sector matrices. Then

cosp(α)
n∑

j=1

‖Aj‖p
p ≤

∥
∥
∥
∥
∥

n∑

j=1

Aj

∥
∥
∥
∥
∥

p

p

≤ secp(α)np–1
n∑

j=1

‖Aj‖p
p for p ≥ 1. (14)

Proof Let Aj = Bj + iCj be the Cartesian decompositions of Aj, j = 1, . . . , n. Then we have

∥
∥
∥
∥
∥

n∑

j=1

Aj

∥
∥
∥
∥
∥

p

p

=

∥
∥
∥
∥
∥

n∑

j=1

(Bj + iCj)

∥
∥
∥
∥
∥

p

p

=

∥
∥
∥
∥
∥

n∑

j=1

Bj + i
n∑

j=1

Cj

∥
∥
∥
∥
∥

p

p

≥
∥
∥
∥
∥
∥

n∑

j=1

Bj

∥
∥
∥
∥
∥

p

p

(by (9))

≥
n∑

j=1

‖Bj‖p
p (by (11))

≥ cosp(α)
n∑

j=1

‖Aj‖p
p (by (10)),

which proves the first inequality.
To prove the second inequality, compute

∥
∥
∥
∥
∥

n∑

j=1

Aj

∥
∥
∥
∥
∥

p

p

=

∥
∥
∥
∥
∥

n∑

j=1

(Bj + iCj)

∥
∥
∥
∥
∥

p

p

=

∥
∥
∥
∥
∥

n∑

j=1

Bj + i
n∑

j=1

Cj

∥
∥
∥
∥
∥

p

p

≤ secp(α)

∥
∥
∥
∥
∥

n∑

j=1

Bj

∥
∥
∥
∥
∥

p

p

(by (10))
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≤ secp(α)np–1
n∑

j=1

‖Bj‖p
p (by (11))

≤ secp(α)np–1
n∑

j=1

‖Aj‖p
p (by (9)),

which completes the proof. �

Remark 2.7 Theorem 1.2 is immediate by setting α = π
4 in (14). Moreover, when n = 2 and

α = π
4 in Theorem 2.6, our result is Theorem 1.1.

Next, we end this section with a generalization of singular value inequality for two pos-
itive semidefinite matrices to sector matrices.

Theorem 2.8 Let A, B ∈ Mn(C) be such that W (A), W (B) ⊆ Sα . Then, for 1 ≤ k ≤ n, the
following assertions hold:

k∏

j=1

σj(A + B) ≤
k∏

j=1

σj
(
In + sec2(α)A

) k∏

j=1

σj
(
In + sec2(α)B

)
(15)

and

k∏

j=1

σj(In + A + B) ≤
k∏

j=1

σj
(
In + sec2(α)A

) k∏

j=1

σj
(
In + sec2(α)B

)
. (16)

Proof Compute

k∏

j=1

σj(A + B) ≤
k∏

j=1

σj
(
In + |A|)

k∏

j=1

σj
(
In + |B|) (by (1))

≤
k∏

j=1

σj
(
In + sec2(α)URAU∗)

k∏

j=1

σj
(
In + sec2(α)VRBV ∗)

(by (12))

≤
k∏

j=1

σj
(
In + sec2(α)A

) k∏

j=1

σj
(
In + sec2(α)B

)
(by (8)),

where U , V are unitary matrices.
To prove (16), compute

k∏

j=1

σj
(|In + A + B|) ≤

k∏

j=1

σj
(
U1|In|U∗

1 + V1|A + B|V ∗
1
)

(by (13))

=
k∏

j=1

σj
(
In + |A + B|)

≤
k∏

j=1

σj
(
In + U2|A|U∗

2 + V2|B|V ∗
2
)

(by (13))



Lin and Fu Journal of Inequalities and Applications        (2019) 2019:118 Page 6 of 9

≤
k∏

j=1

σj
(
In + sec2(α)U3RAU∗

3 + sec2(α)V3RBV ∗
3
)

(by (12))

≤
k∏

j=1

σj
(
In + sec2(α)RA

) k∏

j=1

sj
(
In + sec2(α)RB

)

(by (3))

≤
k∏

j=1

σj
(
In + sec2(α)A

) k∏

j=1

σj
(
In + sec2(α)B

)
,

(by (8)),

where Uj and Vj, j = 1, 2, 3, are unitary matrices.
Thus

k∏

j=1

σj(In + A + B) ≤
k∏

j=1

σj
(
In + sec2(α)A

) k∏

j=1

σj
(
In + sec2(α)B

)
.

This completes the proof. �

The following examples show that neither (4) nor (15) is uniformly better than the other.

Example 2.9 Let

A = e– π i
4

(
1
8 0
0 1

8

)

=

(√
2

16 –
√

2
16 i 0

0
√

2
16 –

√
2

16 i

)

and

B = e– π i
4

(
1

16 0
0 1

16

)

=

(√
2

32 –
√

2
32 i 0

0
√

2
32 –

√
2

32 i

)

be such that W (A), W (B) ⊆ S π
4

.
For the right side of the inequality (4),

sec4(α)
2∏

j=1

σj(I2 + A)
2∏

j=1

σj(I2 + B) = 5.2098.

When k = 2, for the right side of the inequality (15),

2∏

j=1

σj
(
I2 + sec2(α)A

) 2∏

j=1

σj
(
I2 + sec2(α)B

)
= 1.6886.

This shows that (15) is stronger than (4).
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Example 2.10 If

A = e– π i
4

(
1 + 1

2 i 0
0 1 + 1

2 i

)

=

(
3
√

2
4 –

√
2

4 i 0
0 3

√
2

4 –
√

2
4 i

)

and

B = e– π i
4

(
1 + 1

3 i 0
0 1 + 1

3 i

)

=

(
2
√

2
3 –

√
2

3 i 0
0 2

√
2

3 –
√

2
3 i

)

are such that W (A), W (B) ⊆ S π
4

, we also suppose k = 2.
For the right side of the inequality (4),

sec4(α)
2∏

j=1

σj(I2 + A)
2∏

j=1

σj(I2 + B) = 69.8872.

For the right side of the inequality (15),

2∏

j=1

σj
(
I2 + sec2(α)A

) 2∏

j=1

σj
(
I2 + sec2(α)B

)
= 94.3901.

The example implies that the bound in (15) is weaker than that in (4).

Remark 2.11 Actually, the above examples also show that the inequalities (5) and (16) are
not comparable.

Corollary 2.12 Let A, B ∈ Mn(C) be such that W (A), W (B) ⊆ Sα . Then, for all unitarily
invariant norms ‖ · ‖ on Mn(C),

‖A + B‖ ≤ ∥
∥In + sec2(α)A

∥
∥
∥
∥In + sec2(α)B

∥
∥ (17)

and

‖In + A + B‖ ≤ ∥
∥In + sec2(α)A

∥
∥
∥
∥In + sec2(α)B

∥
∥. (18)

Proof From (15) and (16), we obtain for 1 ≤ k ≤ n

k∏

j=1

σ
1
2

j (A + B) ≤
k∏

j=1

σ
1
2

j
(
In + sec2(α)A

)
σ

1
2

j
(
In + sec2(α)B

)

and

k∏

j=1

σ
1
2

j (In + A + B) ≤
k∏

j=1

σ
1
2

j
(
In + sec2(α)A

)
σ

1
2

j
(
In + sec2(α)B

)
.
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By the property that weak log-majorization implies weak majorization, we have for 1 ≤
k ≤ n

k∑

j=1

σ
1
2

j (A + B) ≤
k∑

j=1

σ
1
2

j
(
In + sec2(α)A

)
σ

1
2

j
(
In + sec2(α)B

)

and

k∑

j=1

σ
1
2

j (In + A + B) ≤
k∑

j=1

σ
1
2

j
(
In + sec2(α)A

)
σ

1
2

j
(
In + sec2(α)B

)
.

Then, by the Cauchy–Schwarz inequality, for 1 ≤ k ≤ n

k∑

j=1

σ
1
2

j (A + B) ≤
( k∑

j=1

σj
(
In + sec2(α)A

)
) 1

2
( k∑

j=1

σj
(
In + sec2(α)B

)
) 1

2

and

k∑

j=1

σ
1
2

j (In + A + B) ≤
( k∑

j=1

σj
(
In + sec2(α)A

)
) 1

2
( k∑

j=1

σj
(
In + sec2(α)B

)
) 1

2

.

By Fan’s dominance principle [1, p. 93], we have

∥
∥|A + B| 1

2
∥
∥2 ≤ ∥

∥In + sec2(α)A
∥
∥
∥
∥In + sec2(α)B

∥
∥ (19)

and

∥
∥|In + A + B| 1

2
∥
∥2 ≤ ∥

∥In + sec2(α)A
∥
∥
∥
∥In + sec2(α)B

∥
∥. (20)

Let A + B = U|A + B|, In + A + B = V |In + A + B| be the polar decomposition of A + B and
In + A + B, respectively, where U and V are unitary matrices. Thus, by (19), we have

∥
∥|A + B|∥∥ =

∥
∥U|A + B|∥∥

=
∥
∥
(|A + B| 1

2
)2∥∥

≤ ∥
∥|A + B| 1

2
∥
∥2

≤ ∥
∥In + sec2(α)A

∥
∥
∥
∥In + sec2(α)B

∥
∥.

Similarly, by (20) we have

‖In + A + B‖ ≤ ∥
∥In + sec2(α)A

∥
∥
∥
∥In + sec2(α)B

∥
∥,

which completes the proof. �

Remark 2.13 By computing Examples 2.9 and 2.10, it should be noticed here that neither
(6) nor (17) is uniformly better than the other. When comparing the inequality (7) with
(18), the same conclusion can be drawn.
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Taking k = n in Theorem 2.8, we get the following corollary.

Corollary 2.14 Let A, B ∈Mn(C) be such that W (A), W (B) ⊆ Sα . Then

∣
∣det(A + B)

∣
∣ ≤ ∣

∣det
(
In + sec2(α)A

)∣
∣
∣
∣det

(
In + sec2(α)B

)∣
∣

and

∣
∣det(In + A + B)

∣
∣ ≤ ∣

∣det
(
In + sec2(α)A

)∣
∣
∣
∣det

(
In + sec2(α)B

)∣
∣.
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