
Wang Journal of Inequalities and Applications        (2019) 2019:119 
https://doi.org/10.1186/s13660-019-2068-9

R E S E A R C H Open Access

Statistical inference for the new INAR(2)
models with random coefficient
Xu Wang1,2*

*Correspondence:
wangxu9696@163.com
1College of Mathematics, Jilin
University, Changchun, P.R. China
2Harbin University of Commerce,
Harbin, P.R. China

Abstract
In this paper, we investigate a random coefficient INAR(2) process which may model
the number of traded stocks, the number of infected people, the number of birds in
some area, etc. We show that this process is a stationary and ergodic process under
some mild conditions. Adopting the two-step conditional least-square estimation
method, we give consistent estimations of the unknown parameters. Furthermore,
the asymptotic distributions of the estimators are obtained and a simulation study is
conducted for the evaluation of the developed approach.
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1 Introduction
Integer-valued time series data have been studied a lot in the past three decades because its
many applications in different fields. The integer-valued autoregressive models (INARs)
defined through the thinning operator are the most popular model for describing such
count data and have been extensively investigated by McKenzie [1], and investigated in
detail by Al-Osh and Alzaid [2], Alzaid and Al-Osh [3], among others.

The classical INAR(1) model is defined as

Xt = α ◦ Xt–1 + εt , t ∈ Z, (1.1)

where α ∈ (0, 1) is a constant, α ◦ Xt–1 =
∑Xt–1

i=1 Bi, {Bi} is an i.i.d. Bernoulli random se-
quence with P(Bi = 1) = 1 – P(Bi = 0) = α, and is independent of {Xt–1}, {εt} is a sequence
of i.i.d. nonnegative integer-valued random variables with mean λ and variance σ 2

ε , and
is independent of {Xt–1}. Zheng et al. [4] extend the INAR(1) model to the random coef-
ficient INAR(1) model, i.e. suppose that a random variable with cumulative distribution
function (CDF) Pφ on (0, 1). Since then, there were many authors to consider the INAR
models with random coefficient. For example, Zheng et al. [5] consider statistical inference
for the INAR(p) model with random coefficient, Zhang et al. [6, 7] investigate the INAR(1)
and INAR(p) models using empirical likelihood method, Zhang and Wang [8] obtain some
inference for random coefficient INAR(1) process based on frequency domain analysis;
Nedényi and Pap [9] establish the iterated scaling limits for the aggregation of random co-
efficient INAR(1) processes, Ding and Wang [10] suppose that the random coefficient is
incorporate with explanatory variables, Nastić and Ristić [11]) introduce some geometric
mixed INAR models.
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In this paper we will study the new INAR(2) model with random coefficient (NINAR(2))
which is defined as follows:

Xt =

⎧
⎪⎪⎨

⎪⎪⎩

α1 ◦ Xt–1 + εt with probability p1;

α2 ◦ Xt–2 + εt with probability p2;

εt with probability 1 – p1 – p2,

(1.2)

where α1,α2 ∈ (0, 1) are constant, {εt} is a sequence of i.i.d. nonnegative integer-valued
random variables with mean λ and variance σ 2

ε , and it is independent of {Xt–1}. It is easy
to check that {Xt} can be rewritten as

Xt = θ1 ◦ Xt–1 + θ2 ◦ Xt–2 + εt ,

where the random vector (θ1, θ2) is i.i.d. for different t and we have the joint distribution
given by

P(θ1 = α1, θ2 = α2) = 0, P(θ1 = α1, θ2 = 0) = p1,

P(θ1 = 0, θ2 = α2) = p2, P(θ1 = 0, θ2 = 0) = 1 – p1 – p2.
(1.3)

Here p1 + p2 < 1. That is why we call this model the INAR(2) model with random coeffi-
cient.

Lawrance and Lewis [12] investigate NEAR(2) models which are the nonlinear autore-
gressive time series in exponential variables, Dewald and Lewis [13] study the new Laplace
second order autoregressive time series model, i.e. the NLAR(2) model, later, Karlsen and
Tjøstheim [14] give the consistent estimates of the unknown parameters of the NEAR(2)
and the NLAR(2) models. Inspired by the study of them we consider the NINAR(2) model
defined by (1.2). There are many results about the inference of INAR(p) model with ran-
dom coefficients; see [7] and [5] for more details. In general, one may assume that all
the random coefficients are independent random variables. In this paper, we allow the
dependence between random coefficients. Therefore, this model can be applied when we
consider the dependence between random coefficients. Furthermore, the advantage of the
proposed model over the general random coefficient INAR(2) model is that the unknown
parameters can be estimated directly, therefore it can be applied easily.

The outline of this paper is as follows. In Sect. 2, we investigate the stationary and ergodic
properties, present the estimations of parameters and give their asymptotic properties. In
Sect. 3, we present some simulation results. In Sect. 4, we make conclusions. All proofs
are postponed to Sect. 5.

2 Main results
The stationarity and ergodicity are important for time series, therefore we first consider
the existence of unique stationary and ergodic solution of the random coefficient INAR(2)
given in (1.2).

Theorem 2.1 Suppose that α1,α2 ∈ (0, 1) and p1, p2 ∈ (0, 1), then there exists a strict sta-
tionary and ergodic integer-value random series satisfying model (1.2).
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Use the stationarity and ergodicity properties of the process, we can obtain the estima-
tion of the unknown parameters. We use two-step condition least-square estimation to
estimate the unknown parameters. Let Ft be the σ -field generated by {Xs, s ≤ t}. Note
that E[Xt|Ft–1] = p1α1Xt–1 + p2α2Xt–2 + λ = β1Xt–1 + β2Xt–2 + λ with β1 = p1α1,β2 = p2α2.
Use

S(η) =
n∑

t=3

(Xt – β1Xt–1 – β2Xt–2 – λ)2, (2.1)

denote the CLS criterion function, where η = (β1,β2,λ)T . Then the CLS estimator of η is
given by

η̂CLS = arg min
η

S(η).

Denote En(η) = (En1(η), En1(η), En1(η)) the derivatives of ∂S(η)/∂η, that is, En(η) = ∂S(η)/∂η.
By solving the equations En(η) = 0, i.e.,

En1(η) =
∂S(η)
∂β1

=
n∑

t=3

(Xt – β1Xt–1 – β2Xt–2 – λ)Xt–1 = 0,

En2(η) =
∂S(η)
∂β2

=
n∑

t=3

(Xt – β1Xt–1 – β2Xt–2 – λ)Xt–2 = 0,

En3(η) =
∂S(η)
∂λ

=
n∑

t=3

(Xt – β1Xt–1 – β2Xt–2 – λ) = 0,

(2.2)

we obtain the estimator of η, which is as follows:

η̂ = M–1b,

where b = (
∑n

t=3 XtXt–1,
∑n

t=3 XtXt–2,
∑n

t=3 Xt)T and

M =

⎛

⎜
⎝

∑n
t=3 X2

t–1
∑n

t=3 Xt–1Xt–2
∑n

t=3 Xt–1
∑n

t=3 Xt–1Xt–2
∑n

t=3 X2
t–2

∑n
t=3 Xt–2

∑n
t=3 Xt–1

∑n
t=3 Xt–2 n – 2

⎞

⎟
⎠ .

In order to estimate the parameters α1,α2, p1, p2, we consider the conditional least-square
estimation of the process Vt = (Xt – E(Xt|Ft–1))2. It is easy to verify that

E(Vt|Ft–1)

= E
(
X2

t |Ft–1
)

–
(
E(Xt|Ft–1)

)2

=
(
α1β1 – β2

1
)
X2

t–1 +
(
α2β2 – β2

2
)
X2

t–2 + (β1 – α1β1)Xt–1 + (β2 – α2β2)Xt–2

– 2β1β2Xt–1Xt–2 + σ 2
ε .
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Then the CLS (conditional least-square) criterion function for θ = (α1β1 – β2
1 ,α2β2 –

β2
2 ,β1 – α1β1,β2 – α2β2, 2β1β2,σ 2

ε )T is given by

S(θ ) =
n∑

t=3

(
Vt – E(Vt|Ft–1)

)2.

The CLS estimator of θ is given by

θ̂CLS = arg min
θ

S(θ ).

Let Zt = (X2
t–1, X2

t–2, Xt–1, Xt–2, –Xt–1Xt–2, 1)T , thus by solving the equations ∂S(θ )/∂θ = 0,
we obtain the estimator of θ , which is as follows:

θ̂ (η) =

(
1

n – 2

n∑

t=3

ZtZT
t

)–1(
1

n – 2

n∑

t=3

VtZt

)

.

Let θ̄ (η̂) be the estimator θ̂ (η) with η replaced by η̂. Define η̂1, η̂2 as components of η̂ and
θ̄1(η̂), θ̄2(η̂) as components of θ̄ (η̂). We obtain the estimators of α1,α2, p1, p2 as follows:

α̂1 =
θ̄1(η̂) + η̂2

1
η̂1

, α̂2 =
θ̄2(η̂) + η̂2

2
η̂2

, p̂1 =
η̂2

1

θ̄1(η̂) + η̂2
1

, p̂2 =
η̂2

2

θ̄2(η̂) + η̂2
2

.

About the consistency and asymptotic property of the estimators, we have the following
theorems.

Theorem 2.2 Assume that the process {Xt} is a stationary ergodic process and E|Xt|8 < ∞,
then we see that (

√
n(θ̄ (η̂) – θ ),

√
n(η̂ – η)) converges to a normal distribution with mean

zero and covariance matrix

Ω = (ωij)9×9 =

(
Γ –1WΓ –1 Γ –1ΠV –1

V –1ΠΓ –1 V –1ΣV –1

)

,

where V = limn→∞(1/n)M,Σ = E(Xt – ηT Dt)2DtDT
t ,Γ = EZtZT

t , W = E((Vt – ZT
t θ )2ZtZT

t ),
Π = E((Vt – ZT

t θ )(Xt – ηT Dt)ZtDT
t ), Dt = (Xt–1, Xt–2, 1)T .

Theorem 2.3 Assume that the process {Xt} is a stationary ergodic process and E|Xt|8 < ∞,
then the estimators α̂1, α̂2, p̂1, p̂1 are consistent estimators and have an asymptotic normal
distribution with mean zero and variance given by (5.2) and (5.3), respectively.

If α2 = 0, the model (1.2) is a specific first order INAR model with random coefficient.
Zhao and Hu [15] give the estimators of the unknown parameters by using the least-square
method. Therefore, we need to consider the following hypotheses:

H0 : α2 = 0 vs. H1 : α2 > 0.

Based on the asymptotical normality of the α̂2 given by Theorem 2.3, we know that√
n(α̂2 – α2)/ Var(α̂2) converges weakly to N(0, 1), where Var(α̂2) is given by (5.2). There-
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fore, we need to find an estimator of Var(α̂2). By Theorem 2.3, we know that

Var(α̂2) =
β2

2ω22 + (β2
2 – θ2)2ω88 + β2(β2

2 – θ2)ω28

β4
2

.

In order to test this hypothesis, we need to estimate the unknown parameters in the above
variance. Based on Theorem 2.3, we know that the estimators of β2, θ2 can be given by
β̂2 = η̂2, θ̄2(η̂). From the stationary and ergodic properties, we can use the estimators

V̂ =
1

n – 2
M, Γ̂ =

1
n – 2

n∑

t=3

ZtZT
t (2.3)

to estimate V ,Γ . We use the following estimators to estimate Σ , W ,Π , respectively:

Σ̂ =
1

n – 2

n∑

t=3

(
Xt – η̂T Dt

)2DtDT
t ,

Ŵ =
1

n – 2

n∑

t=3

(
Vt(η̂) – ZT

t θ̄2(η̂)
)2ZtZT

t ,

Π̂ =
1

n – 2

n∑

t=3

(
Xt – η̂T Dt

)(
Vt(η̂) – ZT

t θ̄2(η̂)
)
ZtDT

t ).

Corollary 2.4 Under the condition of Theorem 2.2, we conclude that

Σ̂
P−→ Σ , Ŵ

P−→ W , Π̂
P−→ Π .

Thus we use the following statistic to test H0:

√
n(α̂2 – α2)

Υ
, here Υ =

β̂2
2 ω̂22 + (β̂2

2 – θ̂2)2ω̂88 + β̂2(β̂2
2 – θ̂2)ω̂28

β̂4
2

.

Next we consider the one-step conditional expectation prediction of this process. Note
that E[Xt|Ft–1] = β1Xt–1 + β2Xt–2 + λ, we can use

X̂t–1 = β̂1Xt–1 + β̂2Xt–2 + λ̂

as the prediction value of Xt . From the asymptotic normality given in Theorem 2.2, we

know
√

n(η̂ – η)
d−→ N(0, V –1ΣV –1). Thus we have

√
n
(
X̂t–1 – E[Xt|Ft–1]

)|Xt–1, Xt–2
d−→ N

(
0, AT

t V –1ΣV –1At
)
,

where AT
t = (Xt–1, Xt–2, 1). Then, by (2.3), we can obtain the confidence interval for the

prediction value of Xt ,

[

X̂t–1 –

√

AT
t V̂ –1Σ̂V̂ –1At

n
u ν

2
, X̂t–1 +

√

AT
t V̂ –1Σ̂V̂ –1At

n
u ν

2

]

,

where uν/2 is the upper ν-quantile of the standard normal distribution.
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Table 1 Bias and SE of the parameters in Models I with λ = 1

Sample size α̂1 α̂2 p̂1 p̂2

50 (0.0236, 1.9775) (0.3464, 1.5224) (0.2219, 1.8419) (0.0827, 0.9487)
100 (–0.0727, 0.8381) (0.1041, 0.4088) (0.0362, 0.6182) (–0.0462, 0.9545)
200 (0.0344, 0.3609) (0.0794, 0.2350) (–0.03262, 0.9745) (–0.1367, 0.2902)
500 (0.0181, 0.2290) (0.0548, 0.1612) (–0.1604, 0.8419) (–0.0477, 0.1436)

Table 2 Bias and SE of the parameters in Models I with λ = 2

Sample size α̂1 α̂2 p̂1 p̂2

50 (0.1352, 2.5840) (0.3216, 3.4862) (0.1786, 3.9142) (–0.0954, 2.0482)
100 (0.0292, 1.7485) (–0.0842, 1.6980) (–0.0701, 1.1221) (0.0716, 1.8540)
200 (–0.1227, 0.8058) (0.0583, 0.2757) (–0.0290, 1.5073) (–0.0824, 0.3254)
500 (–0.0356, 0.2659) (–0.0200, 0.1691) (–0.0347, 0.4000) (0.0131, 0.1199)

Table 3 Bias and SE of the parameters in Models II with λ = 1

Sample size α̂1 α̂2 p̂1 p̂2

50 (0.1758, 1.5514) (0.0972, 1.4666) (–0.0179, 3.8898) (0.0639, 1.7230)
100 (0.0902, 0.5844) (0.0115, 1.3228) (0.1757, 2.5644) (–0.0125, 1.5973)
200 (0.0215, 0.5722) (0.0361, 0.4129) (0.0602, 0.5640) (–0.0982, 0.7852)
500 (0.0416, 0.4463) (0.0485, 0.2199) (–0.0025, 0.8419) (–0.0402, 0.1436)

Table 4 Bias and SE of the parameters in Models II with λ = 2

Sample size α̂1 α̂2 p̂1 p̂2

50 (–0.0898, 1.7002) (0.2452, 1.7146) (0.0572, 1.2197) (–0.1446, 2.2698)
100 (0.0773, 1.3076) (0.05041, 1.3555) (0.0303, 0.7952) (0.0696, 1.9334)
200 (0.0570, 1.7427) (0.0363, 0.3787) (–0.0580, 1.5712) (0.0172, 0.8405)
500 (–0.0443, 0.3132) (0.0336, 0.1920) (0.0409, 0.3914) (–0.0248, 0.3106)

3 Simulation studies
In this section we present some simulation study.

3.1 Empirical results for unknown parameters
We consider the following two models:

Model I: α1 = 0.6, α2 = 0.8, p1 = 0.4, p2 = 0.5 with λ = 1 and λ = 2.
Model II: α1 = 0.7, α2 = 0.5, p1 = 0.3, p2 = 0.6 with λ = 1 and λ = 2.
For both models, we obtain the empirical bias (Bias) and the standard error (SE) based

on 500 replications for each parameter combination. These simulation studies are given
in Table 1, 2, 3 and 4, respectively, where the format (Bias, SE) is used; for example,
(–0.02130.0389) means that the bias is –0.0213, and SE is 0.0389.

From the simulation results, we can see that the bias and standard errors are getting
smaller when the sample size increasing. For smaller sample size, the standard errors are a
little bigger, this may be because the true values of parameters are small and may disappear
in their own stand error.

In order to obtain a visualization of some of the distributional properties, we present
the Box plot of estimated parameters in Figs. 1 and 2.
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Figure 1 The two figures in first line are the Boxplot of estimated parameter α1,α2, respectively, for Model I
with λ = 1. The two figures in second line are the Boxplot of estimated parameter p1,p2, respectively, for
Model I with λ = 1. All Boxplots are obtained with sample size n = 500

3.2 Test for parameters
In this subsection, we consider to test the following hypotheses for Model I and II, given
in Sect. 3.1:

H0 : α2 = 0 vs. H1 : α2 > 0.

We report the empirical sizes for Model III and IV at a significance level 0.05 with sample
size n = 50, 100, 200, 500, respectively:

Model III: α1 = 0.6, α2 = 0, p1 = 0.2, p2 = 0.7 with λ = 1 and λ = 2.
Model IV: α1 = 0.3, α2 = 0, p1 = 0.2, p2 = 0.7 with λ = 1 and λ = 2.

The results are presented in Table 5. From Table 5, we can see that the empirical sizes is
closed to 0.05 when n increases.

In order to investigate the power of the test, we consider the alternative hypothesis with
parameter α2 = 0.2, 0.6, 0.8 for Model III and IV, respectively. We report the empirical
power at a significance level 0.05 with sample size n = 50, 100, 200, 500. The simulation
results are given by Tables 6–9. From these tables, we can see that the power increases
monotonically when the parameter α2 increases.

4 Conclusion
In this paper we study the new INAR(2) model with random coefficient, this model is
more practical then the classical INAR(2) model with random coefficient because the pa-
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Figure 2 The two figures in first line are the Boxplot of estimated parameter α1,α2, respectively, for Model II
with λ = 1. The two figures in second line are the Boxplot of estimated parameter p1,p2, respectively, for
Model II with λ = 1. All Boxplots are obtained with sample size n = 500

Table 5 Empirical sizes

Sample size λ = 1 (III) λ = 2 (III) λ = 1 (IV) λ = 2 (IV)

50 0.076 0.076 0.084 0.09
100 0.066 0.08 0.08 0.056
200 0.058 0.046 0.056 0.074
500 0.052 0.056 0.044 0.056

Table 6 Empirical powers for Model III with λ = 1

α2\ sample size 50 100 200 500

α2 = 0.2 0.59 0.608 0.706 0.842
α2 = 0.4 0.818 0.93 0.984 0.997
α2 = 0.6 0.808 0.942 0.996 0.999
α2 = 0.8 0.998 0.998 0.999 1

rameters can by estimated by the usual estimation method while for the classical INAR(2)
model with random coefficient only the mean of the random coefficient can be estimated.
We use the two-step conditional least squares estimate to estimate the unknown parame-
ters. Also the stationary and ergodic properties of this model are established which guar-
antee the estimation method can be applied. The asymptotic properties of the estimators
are investigated. The efficiency of our estimation method is illustrated by the simulation
study.
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Table 7 Empirical powers for Model III with λ = 2

α2\ sample size 50 100 200 500

α2 = 0.2 0.684 0.686 0.682 0.846
α2 = 0.4 0.864 0.936 0.976 0.999
α2 = 0.6 0.905 0.954 0.998 1
α2 = 0.8 0.978 0.997 0.999 1

Table 8 Empirical powers for Model IV with λ = 1

α2\ sample size 50 100 200 500

α2 = 0.2 0.636 0.604 0.696 0.824
α2 = 0.4 0.856 0.884 0.994 0.998
α2 = 0.6 0.964 0.996 0.999 0.998
α2 = 0.8 0.994 0.997 1 1

Table 9 Empirical powers for Model IV with λ = 2

α2\ sample size 50 100 200 500

α2 = 0.2 0.512 0.648 0.646 0.808
α2 = 0.4 0.816 0.916 0.992 0.999
α2 = 0.6 0.942 0.949 0.999 0.999
α2 = 0.8 0.994 0.997 1 1

5 The proofs of main results

Proof of Theorem 2.1 Define a random sequence {X(n)
t }n∈Z as follows:

X(n)
t =

⎧
⎪⎪⎨

⎪⎪⎩

0, n < 0;

εt , n = 0;

θ1 ◦ Xn–1
t–1 + θ2 ◦ Xn–1

t–2 + εt , n > 0.

(5.1)

The random vector (θ1, θ2) has a joint distribution given by (1.3) and is independent of
{εt}, the random sequences used in the operator θ1◦ and θ1◦ are the same for fixed t. We
first prove that the first two moments of {X(n)

t } are finite. It is easy to verify that

EX(0)
t = λ, EX(1)

t = (β1 + β2)λ + λ,

where β1 = α1p1,β2 = α2p2. Using the method of induction, we conclude that

EX(n)
t =

n∑

i=0

(β1 + β2)iλ < ∞.

We have

E
(
X(0)

t
)2 = Eε2

t , E
(
X(1)

t
)2

= (α1β1 + α2β2)Eε2
t + Eε2

t + λ
[
β1(1 – α1) + β2(1 – α2)

]
+ 2λ2(β1 + β2).
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For convenience, let A = β1(1 – α1) + β2(1 – α2) + 2λ(β1 + β2)]. Then using the method of
induction, we conclude that

E
(
X(n)

t
)2 = Eε2

t

n∑

i=0

(α1β1 + α2β2)i + Aλ

( n–1∑

k=1

(α1β1 + α2β2)n–k
k–1∑

i=0

(β1 + β2)i

)

< ∞.

The last inequality is obtained by the fact that

α1β1 + α2β2 = α2
1p1 + α2

2p2 < p1 + p1 < 1, β1 + β2 = α1p1 + α2p2 < p1 + p1 < 1.

Next we consider the convergence of the sequence {X(n)
t }. By the definition of the sequence

{Xn
t }, we have

E
∣
∣X(n)

t – X(n–1)
t

∣
∣

= E
∣
∣θ1 ◦ X(n–1)

t–1 + θ2 ◦ X(n–1)
t–2 – θ1 ◦ X(n–2)

t–1 – θ2 ◦ X(n–2)
t–2

∣
∣

≤ E
∣
∣θ1 ◦ X(n–1)

t–1 – θ1 ◦ X(n–2)
t–1

∣
∣ + E

∣
∣θ2 ◦ X(n–1)

t–2 – θ2 ◦ X(n–2)
t–2

∣
∣

= β1E
∣
∣X(n–1)

t–1 – X(n–2)
t–1

∣
∣ + β2E

∣
∣X(n–1)

t–2 – X(n–2)
t–2

∣
∣,

where the last equality is because the operator θt1◦ is the same for fixed t. Repeat the
deduction and notice that E|X(1)

t–1 – X(0)
t–1| = Eεt , we conclude that

E
∣
∣X(n)

t – X(n–1)
t

∣
∣ ≤ (β1 + β2)nEεt .

Then, by the triangle inequality, we obtain, for any integers n > m,

E
∣
∣X(n)

t – X(m)
t

∣
∣ ≤ Eεt(n – m)

n∑

j=m+1

(β1 + β2)j,

which tends to zero as n, m → ∞. Note that

E
∣
∣X(n)

t – X(n–1)
t

∣
∣2

= E
∣
∣θ1 ◦ X(n–1)

t–1 + θ2 ◦ X(n–1)
t–2 – θ1 ◦ X(n–2)

t–1 – θ2 ◦ X(n–2)
t–2

∣
∣2

= E
∣
∣θ1 ◦ X(n–1)

t–1 – θ1 ◦ X(n–2)
t–1

∣
∣2 + E

∣
∣θ2 ◦ X(n–1)

t–2 – θ2 ◦ X(n–2)
t–2

∣
∣2

+ 2E
∣
∣θ1 ◦ X(n–1)

t–1 – θ1 ◦ X(n–2)
t–1

∣
∣
∣
∣θ2 ◦ X(n–1)

t–2 – θ2 ◦ X(n–2)
t–2

∣
∣

≤ [
β1(1 – α1) + 2β1

]
E
∣
∣X(n–1)

t–1 – X(n–2)
t–1

∣
∣ + α1β1E

∣
∣X(n–1)

t–1 – Xt–1t(n–2)∣∣2

+
[
β2(1 – α2) + 2β2

]
E
∣
∣X(n–1)

t–2 – X(n–2)
t–2

∣
∣ + α2β2E

∣
∣X(n–1)

t–2 – Xt–2t(n–2)∣∣2

≤ · · ·

≤ (α1β1 + α2β2)nEε2
t + BEεt

n–1∑

k=1

(α1β1 + α2β2)k–1(β1 + β2)n–k ,

≤ (α1β1 + α2β2)nEε2
t + BEεtn(β1 + β2)n,
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where B = β1(1 – α1) + 2β1 + β2(1 – α2) + 2β2. Then we get, for any integers n > m,

E
∣
∣X(n)

t – X(m)
t

∣
∣2 ≤ [

Eε2
t + BEεt

]
(n – m)

n∑

j=m+1

[
(α1β1 + α2β2)j + j(β1 + β2)j],

which tends to zero as n, m → ∞. This implies that {X(n)
t } is a Cauchy sequence. Let {Xt}

be the limit process of {X(n)
t }, then the first two moments of Xt exist. Now we verify that

{Xt} satisfies (1.2). Since X(n)
t

L2−→ Xt , we have, for any t,

E
∣
∣θ1 ◦ X(n)

t – θ1 ◦ Xt
∣
∣2 = β1(1 – α1)E

∣
∣X(n)

t – Xt
∣
∣ + α1β1E

∣
∣X(n)

t – Xt
∣
∣2 → 0.

Similarly, we can prove that for any t

E
∣
∣θ2 ◦ X(n)

t – θ2 ◦ Xt
∣
∣2 → 0.

By the uniqueness of the convergence in L2, we conclude that {Xt} satisfies (1.2).
Notice that X(1)

t = εt , we know that {X(1)
t } is a strict stationary process, then, by the in-

duction method and the definition (5.1), we can see that, for each n, the process {X(n)
t } is

strict stationary. The ergodicity can be obtained similarly as in Zhang et al. [16], we omit
the details here. �

Proof of Theorem 2.2 By the strict stationarity and ergodicity of the process {Xt}, adopting
the standard martingale central limit theorem, we obtain

√
n(η̂ – η) =

(
1
n

M
)–1 1√

n
En(η)

d−→ N
(
0, V –1ΣV –1),

where V = limn→∞(1/n)M, En(η) = (En1(η), En2(η), En3(η))T , Σ = (σij) is a symmetric ma-
trix with

σ11 = E(Xt – β1Xt–1 – β2Xt–2 – λ)2X2
t–1, σ22 = E(Xt – β1Xt–1 – β2Xt–2 – λ)2X2

t–2,

σ33 = E(Xt – β1Xt–1 – β2Xt–2 – λ)2, σ21 = E(Xt – β1Xt–1 – β2Xt–2 – λ)2Xt–1Xt–2,

σ23 = E(Xt – β1Xt–1 – β2Xt–2 – λ)2Xt–2, σ31 = E(Xt – β1Xt–1 – β2Xt–2 – λ)2Xt–1.

Note that

√
n – 2

(
θ̂ (η) – θ

)
=

(
1

n – 2

n∑

t=3

ZtZT
t

)–1(
1√

n – 2

n∑

t=3

Zt
(
Vt – ZT

t θ
)
)

.

By simple calculation, we see that Zt(Vt – ZT
t θ ) is a martingale. Then, by the condition

E|Xt|8 < ∞, stationarity and ergodicity of the process {Xt}, using the martingale central
limit theorem as above, we have

√
n
(
θ̂ (η) – θ

) d−→ N
(
0,Γ –1WΓ

)
,
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where Γ = E(ZtZT
t ), W = E((Vt – ZT

t θ )2ZtZT
t ). Observe that

√
n – 2

(
θ̄ (η̂) – θ

)
=

√
n – 2

(
θ̄ (η̂) – θ̂ (η)

)
+

√
n – 2

(
θ̂ (η) – θ

)

and

√
n
(
θ̄ (η̂) – θ̂ (η)

)
=

(
1
n

n∑

t=1

ZtZT
t

)–1(
1√
n

n∑

t=1

Zt
(
Vt(η̂) – Vt(η)

)
)

,

where Vt(η̂) is the Vt(η) replaced by η with η̂. By a Taylor expansion, we have

Vt(η̂) – Vt(η) = –2
(
Xt – E[Xt|Ft–1]

)[
Xt–1(β̂1 – β1) + Xt–2(β̂2 – β2) + (λ̂ – λ)

]

+ oP
(‖η̂ – η‖).

Note that

1√
n

n∑

t=1

ZtXt–1
(
Xt – E[Xt|Ft–1]

)
(β̂1 – β1)

=
√

n(β̂1 – β1)
1
n

n∑

t=1

ZtXt–1
(
Xt – E[Xt|Ft–1]

)
.

Notice that E[ZtXt–1(Xt – E[Xt|Ft–1])] = 0, then, by the ergodicity of the process {Xt}, we
conclude that

1
n

n∑

t=1

ZtXt–1
(
Xt – E[Xt|Ft–1]

) → 0, a.s.

Combining with the fact that
√

n(β̂1 – β1) converges in distribution, we have

1√
n

n∑

t=1

ZtXt–1
(
Xt – E[Xt|Ft–1]

)
(β̂1 – β1) = oP(1).

Similarly, we can prove that

1√
n

n∑

t=1

ZtXt–2
(
Xt – E[Xt|Ft–1]

)
(β̂2 – β2) = oP(1),

1√
n

n∑

t=1

Zt
(
Xt – E[Xt|Ft–1]

)
(λ̂ – λ) = oP(1).

Therefore, we get

1√
n

n∑

t=1

Zt
(
Vt(η̂) – Vt(η)

)
= oP(1).
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Again, by the ergodicity of the process {Xt}, we have

1
n

n∑

t=1

ZtZT
t → Γ , a.s.

Thus, we can obtain the conclusion that

√
n
(
θ̄ (η̂) – θ̂ (η)

)
= oP(1).

Then, by the Slutsky theorem, we have

√
n
(
θ̄ (η̂) – θ

)
=

√
n
(
θ̄ (η̂) – θ̄ (η)

)
+

√
n
(
θ̂ (η) – θ

) −→ N
(
0,Γ –1WΓ –1).

Therefore, we conclude that the vector (
√

n(θ̄ (η̂) – θ ),
√

n(η̂ – η)) converges to a normal
distribution with mean zero and covariance matrix

Ω = (ωij)9×9 =

(
Γ –1WΓ –1 Γ –1ΠV –1

V –1ΠΓ –1 V –1ΣV –1

)

,

where Π = E((Vt – ZT
t θ )(Xt – ηT Dt)ZtDT

t ), Dt = (Xt , Xt–1, 1)T . �

Proof of Theorem 2.3 We can see that the estimators α̂1, α̂2, p̂1, p̂1 are consistent and have
asymptotic normal distribution.

Specially,
√

n(α̂1 – α1),
√

n(α̂2 – α2) converge to normal distribution with mean zero and
variance

β2
1ω11 + (β2

1 – θ1)2ω77 + β1(β2
1 – θ1)ω17

β4
1

,

β2
2ω22 + (β2

2 – θ2)2ω88 + β2(β2
2 – θ2)ω28

β4
2

.
(5.2)

And
√

n(p̂1 –p1),
√

n(p̂2 –p2) converge to normal distribution with mean zero and variance

β2
1 (2θ2

1 + β1)2ω77 + 4β4
1θ1ω11 – 4β3

1θ1(2θ2
1 + β1)ω17

(θ2
1 + β1)4 ,

β2
2 (2θ2

2 + β2)2ω88 + 4β4
2θ2ω22 – 4β3

2θ2(2θ2
2 + β2)ω28

(θ2
2 + β2)4 .

(5.3)

�

Proof of Corollary 2.4 Observe that

Ŵ – W =
1

n – 2

n∑

t=3

[(
Vt(η̂) – ZT

t θ̄2(η̂)
)2 –

(
Vt – ZT

t θ2
)2]ZtZT

t

=
1

n – 2

n∑

t=3

[
Vt(η̂)2 – V 2

t
]
ZtZT

t +
1

n – 2

n∑

t=3

[(
ZT

t θ̄2(η̂)
)2 –

(
ZT

t θ2
)2]ZtZT

t

+
1

n – 2

n∑

t=3

[
2VtZT

t θ2 – 2Vt(η̂)ZT
t θ̄2(η̂)

]
ZtZT

t
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:= T1 + T2 + T3.

Note that

T1 =
1

n – 2

n∑

t=3

(
η̂T – ηT)

FtZtZT
t where Ft = (Xt–1, Xt–2, 1).

We have

|T1| ≤
∥
∥η̂T – ηT∥

∥ 1
n – 2

n∑

t=3

‖Ft‖
∥
∥ZtZT

t
∥
∥ where Ft = (Xt–1, Xt–2, 1).

By ergodicity of the process {Xt} and the fact that η̂T P−→ η, we have

T1 = oP(1).

Similarly, we have

T2 = oP(1), T3 = oP(1).

Similarly, we can prove that Σ̂
P−→ Σ , Π̂

P−→ Π . The conclusion of this corollary fol-
lows. �
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