
Simsek and So Journal of Inequalities and Applications         (2019) 2019:62 
https://doi.org/10.1186/s13660-019-2006-x

R E S E A R C H Open Access

Identities, inequalities for Boole-type
polynomials: approach to generating
functions and infinite series
Yilmaz Simsek1 and Ji Suk So2*

*Correspondence:
goleta961@jbnu.ac.kr
2Department of Mathematics and
Institute of Pure and Applied
Mathematics, Chonbuk National
University, Chonju, South Korea
Full list of author information is
available at the end of the article

Abstract
The main purpose and motivation of this work is to investigate and provide some
new identities, inequalities and relations for combinatorial numbers and polynomials,
and for Peters type polynomials with the help of their generating functions. The
results of this paper involve some special numbers and polynomials such as Stirling
numbers, the Apostol–Euler numbers and polynomials, Peters polynomials, Boole
polynomials, Changhee numbers and the other well-known combinatorial numbers
and polynomials. Finally, in the light of Boole’s inequality (Bonferroni’s inequalities)
and bounds of the Stirling numbers of the second kind, some inequalities for a
combinatorial finite sum are derived. We mention an open problem including
bounds for our numbers. Some remarks and observations are presented.
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1 Introduction
Some well-known notations and definitions are given first: N = {1, 2, 3, . . . }, N0 = {0, 1, 2,
3, . . . }. Z,R,C and Zp denote the set of integers, the set of real numbers, the set of complex
numbers, and the set of p-adic integers, respectively. 0n = 1 if n = 0 and 0n = 0 if n ∈ N. For
v ∈N0 we have

(x)v = x(x – 1) · · · (x – v + 1),

(x)0 = 1 and
(

x
v

)
=

x(x – 1) · · · (x – v + 1)
v!

=
(x)v

v!

(cf. [1–22] and the references cited therein).
The Apostol–Euler polynomials En(x,λ) are defined by

Fp1(t, x;λ) =
2etx

λet + 1
=

∞∑
n=0

En(x,λ)
tn

n!
.
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When x = 0, the above equation reduces to the following Apostol–Euler numbers:

En(λ) = En(0,λ).

Similarly when λ = 1, the above equation reduces to the following Euler numbers:

En = E (1)
n (1)

(cf. [1–20] and the references cited therein).
Let k ∈N0. The Stirling numbers of the first kind, S1(n, k), are by

FS1 (t, k) =
(log(1 + t)k

k!
=

∞∑
n=0

S1(n, k)
tn

n!
(1)

and

(x)k =
k∑

j=0

xjS1(k, j). (2)

By the above generating function, we have

S1(0, 0) = 1.

The other properties are given as follows:
S1(0, k) = 0 if k > 0. S1(n, 0) = 0 if n > 0 and S1(n, k) = 0 if k > n (cf. [1–23] and the refer-

ences therein).
The Stirling numbers of the second kind, S2(n, k), are defined as follows:

FS(t, k) =
(et – 1)k

k!
=

∞∑
n=0

S2(n, k)
tn

n!
. (3)

By using (1), an explicit formula for the numbers S2(n, k) is given by

S2(n, k) =
1
k!

k∑
j=0

(–1)k–j
(

k
j

)
jn.

From the above equation, we also have

S2(0, 0) = 1.

If k > n, then

S2(n, k) = 0.

S2(n, 0) = 0 if n > 0 and also

S2(n + 1, k) = S2(n, k – 1) + kS2(n, k)

(cf. [1–23] and the references cited therein).
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The Peters polynomials are defined by

FP(t, x;λ,μ) =
(1 + t)x

(1 + (1 + t)λ)μ
=

∞∑
n=0

sn(x;λ,μ)
tn

n!
, (4)

where x, y ∈C (cf. [6, 13]).
We now give some special values of this polynomials as follows:
When x = 0, we have the Peters numbers [15, 20]:

sn(λ,μ) = sn(0;λ,μ).

When μ = 1, we have the Boole polynomials [6, 13]:

ξ (x,λ) = sn(x;λ, 1).

If λ = μ = 1, we get the Changhee polynomials [7, 9]:

Chn(x) = 2sn(x; 1, 1).

The combinatorial numbers Yn(λ) and the combinatorial polynomials Yn(x;λ) are de-
fined, respectively, by [16]

F(t,λ) =
2

λ(1 + λt) – 1
=

∞∑
n=0

Yn(λ)
tn

n!

and

F(t, x,λ) =
2(1 + λt)x

λ(1 + λt) – 1
=

∞∑
n=0

Yn(x;λ)
tn

n!
.

The motivation of this paper as regards generating functions for combinatorial numbers
is related to the work of Simsek [16]. Let d be an odd integer. If χ is the Dirichlet character
with conductor d, then we have the following equation [16]:

∫
X

λx(1 + λt)xχ (x) dμ–q(x) =
[2]

(λq)d(1 + λt)d + 1

d–1∑
j=0

(–1)jχ (j)(λq)j(1 + λt)j.

By using the above integral equation, the first author gave the generalized Apostol–
Changhee numbers and polynomials by means of the following generating functions, re-
spectively:

FC(t;λ, q,χ ) =
[2]q

∑d–1
j=0 (–1)jχ (j)(λq)j(1 + λt)j

(λq)d(1 + λt)d + 1
=

∞∑
n=0

Chn,χ (λ, q)
tn

n!
, (5)

where [x]q = 1–qx

1–q , limq→1[x]q = x and χ (x + d) = χ (x).
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Also

FC(t, z;λ, q,χ ) = FC(t;λ, q,χ )(1 + λt)z =
∞∑

n=0

Chn,χ (z;λ, q)
tn

n!
.

We summarize our paper as follows:
In Sect. 2, we give generating functions for Peters type combinatorial numbers and poly-

nomials. We investigate and provide some fundamental properties of these numbers and
polynomials.

In Sect. 3, we derive some inequalities including Stirling’s numbers of the second kind
and finite combinatorial sums. We also mention an open problem for a Peters type com-
binatorial number.

2 Generating functions for Peters type combinatorial numbers and
polynomials

In this section, by (5), we give a generating function for combinatorial numbers and poly-
nomials and investigate properties for the function. By using these functions, we derive
identities and relations.

From the above equation, we derive the following generating function:

Kd(t, x;λ, q) =
[2]q(1 + λt)x

(λq)d(1 + λt)d + 1
=

∞∑
n=0

y7,n(x;λ, q, d)
tn

n!
. (6)

If x = 0, then we get

Kd(t, 0;λ, q) =
[2]q

(λq)d(1 + λt)d + 1
=

∞∑
n=0

y7,n(λ, q, d)
tn

n!
. (7)

Remark 1 Substituting d = 1 into (6), we have

y7,n(x;λ, q) = y7,n(x;λ, q, 1),

which was defined by the first author (cf. [17]).

Substituting μ = 1 into (4) after combining with (6), we have

FP(λt, x; d, 1) =
(1 + t)x

1 + (1 + t)d =
∞∑

n=0

sn(x; d, 1)
tn

n!

and

Kd(t, x;λ, q) =
[2]q(1 + λt)x

(λq)d(1 + λt)d + 1
=

∞∑
n=0

y7,n(x;λ, q, d)
tn

n!
.

Having λ = 1
q in (6), we have the following functional equation:

Kd

(
t, x;

1
q

, q
)

= [2]qFP

(
1
q

t, x; d, 1
)

.
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By using the above equation, we have

y7,n

(
x;

1
q

, q, d
)

= [2]qq–nsn(x; d, 1).

Setting d = 1 and λ = 1
q in (6), we have

K1

(
t, x;

1
q

, q
)

=
[2]q(1 + 1

q t)x

(1 + 1
q t) + 1

=
[2]q(1 + 1

q t)x

1
q t + 2

=
∞∑

n=0

[2]q

2
q–nChn(x)

tn

n!
.

Thus we have

y7,n

(
x;

1
q

, q, 1
)

=
[2]q

2
q–nChn(x).

2.1 Peters type combinatorial numbers y7,n(λ, q, d)
Here, by (7), we derive some formulas, indentities and relations.

We assume |1 + λq| < 1
|λq| , by (7), we get

Kd(t, 0,λ, q) = [2]q

∞∑
n=0

(–1)n(λq)nd(1 + λt)nd.

By using the above equation, we also assume that |λt| < 1, after that we have

∞∑
v=0

y7,v(λ, q, d)
tv

v!
= [2]q

∞∑
n=0

(–1)n(λq)nd
∞∑

v=0

(
nd
v

)
λvtv.

Comparing the coefficients of tv on both sides of the above equation, we get the following
theorem.

Theorem 1 Let |λq| < 1. Then we have

y7,v(λ, q, d) = [2]q

∞∑
n=0

(–1)n
(

nd
v

)
v!qndλv+nd.

By Remark 4 in [21], we have the following formula:

(
xy
k

)
=

k∑
l,m=1

(
x
l

)(
y
m

)(
l!m!
k!

) k∑
j=1

(–1)k–jS1(k, j)S2(j, l)S2(j, m). (8)

Combining (8) with Theorem 1, we can obtain another version of the recurrence formula
for the numbers y7,n(λ, q, d).
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Theorem 2 Let

y7,0(λ, q, d) =
[2]q

1 + (λq)d .

For v ≥ 1, we have

y7,v(λ, q, d) = [2]qλ
v

v∑
l=1

v∑
m=1

(–1)m
(

d
l

)
l!m!(λq)dm

(1 + λdqd)m+1

×
v∑

j=0

(–1)v–jS1(v, j)S2(j, l)S2(j, m).

Proof Combining Theorem 1 and (8), we obtain

y7,v(λ, q, d) = [2]qλ
vv!

∞∑
n=0

(–1)n(λq)nd
v∑

l=1

v∑
m=1

(
n
m

)(
d
l

)
l!m!
v!

×
v∑

j=0

(–1)v–jS1(v, j)S2(j, l)S2(j, m)

= [2]qλ
vv!

v∑
l=1

v∑
m=1

(
d
l

)
l!m!
v!

v∑
j=0

(–1)v–jS1(v, j)S2(j, l)S2(j, m)

×
∞∑

n=0

(–1)n
(

n
m

)(
λdqd)n

= [2]qλ
vv!

v∑
l=1

v∑
m=1

(
d
l

)
l!m!
v!

v∑
j=0

(–1)v–jS1(v, j)S2(j, l)S2(j, m)

× (–1)m (λdqd)m

(1 + λdqd)m+1 . �

By using (7), we have

∞∑
n=0

y7,n(λ, q, d)
tn

n!
=

[2]q

2

∞∑
n=0

En
(
λdqd)dn ln (1 + λt)n

n!
.

Combining the above equation with (1), we get

∞∑
n=0

y7,n(λ, q, d)
tn

n!
=

[2]q

2

∞∑
m=0

m∑
j=0

dnλmEn
(
λdqd)S1(m, n)

tm

m!
.

Since S1(m, n) = 0 if m > n, by some calculation we derive the following theorem.

Theorem 3 Let m ∈N0. Then we have

y7,m(λ, q, d) =
1 + q

2

m∑
j=0

dnλmEn
(
λdqd)S1(m, n).
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By (7), we obtain

[2]q =
(
(λq)d(1 + λt)d + 1

) ∞∑
n=0

y7,n(λ, q, d)
tn

n!
.

From the above equation, we get

[2]q = (λq)d
∞∑

n=0

n∑
j=0

(
n
j

)
(d)jλ

jy7,n–j(λ, q, d)
tn

n!
+

∞∑
n=0

y7,n(λ, q, d)
tn

n!
.

After some elementary calculations and comparing coefficients tn

n! on both sides of the
above equation, we arrive at the following recurrence formula:

Theorem 4 Let

y7,0(λ, q, d) =
1 + q

(λq)d + 1
.

For n ≥ 1, we have

y7,n(λ, q, d) = –(λq)d
n∑

j=0

(
n
j

)
(d)jλ

jy7,n–j(λ, q, d). (9)

By substituting (2) into (1), we derive the following corollary.

Corollary 1

y7,n(λ, q, d) = –(λq)d
n∑

j=0

j∑
k=0

(
n
j

)
dkλjS1(j, k)y7,n–j(λ, q, d).

2.2 Peters type combinatorial polynomials y7,n(x;λ, q, d)
Here, by (6), we derive some formulas, identities and relations for the polynomials
y7,n(x;λ, q, d) and the numbers y7,n(λ, q, d).

Theorem 5

y7,n(x,λ, q, d) =
n∑

j=0

(
n
j

)
(x)jλ

jy7,n–j(λ, q, d).

Proof Substituting (7) into (6) and assume |λt| < 1, we have

∞∑
n=0

y7,n(x,λ, q, d)
tn

n!
=

∞∑
n=0

(
x
n

)
(λt)n

∞∑
n=0

y7,n(λ, q, d)
tn

n!

=
∞∑

n=0

n∑
j=0

(
n
j

)
(x)jλ

jy7,n–j(λ, q, d)
tn

n!
.

�
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Theorem 6 Let χ be the Dirichlet character with conductor d. Then we have

Chn,χ (λ, q) =
d–1∑
j=0

(–1)jχ (j)(λq)jy7,n(j;λ, q, d).

Proof By combining (5) with (6), we get the following functional equation:

FC(t;λ, q,χ ) =
d–1∑
j=0

(–1)jχ (j)(λq)jKd(t, j;λ, q).

From the above equation, we get

∞∑
n=0

Chn,χ (λ, q)
tn

n!
=

∞∑
n=0

d–1∑
j=0

(–1)jχ (j)(λq)jy7,n(j;λ, q, d)
tn

n!
.

Comparing coefficients tn

n! on both sides of the above equation, we get the derived result. �

In [11], Kucukoglu and Simsek defined

Fd(t;λ, q) =
ln(1 + λt)

(λq)d(1 + λt)d – 1
=

∞∑
n=0

In,d(λ, q)
tn

n!
,

Gd(t, x;λ, q) = (1 + λt)xFd(t;λ, q) =
∞∑

n=0

In,d(x;λ, q)
tn

n!
.

(10)

By combining (6) and the above equation, we get the following functional equation:

G2d(t, 2x;λ, q) =
1

[2]q
Gd(t, x;λ, q)Kd(t, x;λ, q).

Using the above equation, we derive

∞∑
n=0

In,2d(2x;λ, q)
tn

n!
=

1
[2]q

∞∑
n=0

y7,n(x;λ, q, d)
tn

n!

∞∑
n=0

In,d(x;λ, q)
tn

n!
.

Therefore,

∞∑
n=0

In,2d(2x;λ, q)
tn

n!
=

∞∑
n=0

1
[2]q

n∑
j=0

(
n
j

)
y7,j(x;λ, q, d)In–j,d(x;λ, q)

tn

n!
.

Comparing coefficients tn

n! on both sides of the above equation, we arrive at the following
theorem.

Theorem 7

In,2d(2x;λ, q) =
1

[2]q

n∑
j=0

(
n
j

)
y7,j(x;λ, q, d)In–j,d(x;λ, q).
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Theorem 8

(x)n =
(n)d

[2]q

n–d∑
j=0

(
n – d

j

)
(d)jλ

d+jy7,n+d–j(x;λ, q, d) + y7,n(x;λ, q, d),

where (d)j = d(d – 1) · · · (d – j + 1).

Proof By definition of y7,n(x;λ, q, d), we have

[2]q(1 + λt)x = td
∞∑

n=0

(d)n

n!
λd+ntn

∞∑
n=o

y7,n(x;λ, q, d)
tn

n!
.

After some calculation in the above equation, we get

[2]q

∞∑
n=0

λn(x)n
tn

n!
= td

∞∑
n=0

n∑
j=0

(
n
j

)
(d)jλ

d+jy7,n–j(x;λ, q, d)
tn

n!

+
∞∑

n=o
y7,n(x;λ, q, d)

tn

n!

=
∞∑

n=o
(n)d

n–d∑
j=0

(
n – d

j

)
(d)jλ

d+jy7,n+d–j(x;λ, q, d)
tn

n!

+
∞∑

n=o
y7,n(x;λ, q, d)

tn

n!
. �

3 Inequalities for Stirling numbers of the second kind and finite combinatorial
sums

Bonferroni’s inequalities, also known as Boole’s inequality, are dependent on probability
and also associated with the principle of inclusion and exclusion; for detailed information
as regards these inequalities see the work of Comtet and Wagner [4, 23].

We mention an open question for bounds for y7,n(λ, q, d).
By using (3), we also have the following well-known explicit Stirling numbers of the

second kind:

S∗(n, k; m) =
m∑

j=1

(–1)j–1
(

k
j

)
(k – j)n (11)

for n, m, k ∈N.
By using Bonferroni’s inequalities the above finite sum satisfies the following well-known

inequalities:
If m = k – 1, S∗(n, k; m) = kn – k!S2(n, k).
If m is an odd integer and m < k – 1 we have S∗(n, k; m) > kn – k!S2(n, k).
If m is an even integer and m < k – 1 we have S∗(n, k; m) < kn – k!S2(n, k).
Wagner [23] gave proofs of the above results.

Lemma 1 If m = k – 1, we have

S∗(n, k; k – 1) ≥ kn
(

1 –
k!
n

(
n
k

)
k1–k

)
. (12)
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Proof Upper bound for the S2(n, k) is given as follows [4]:

S2(n, k) ≤
(

n – 1
k – 1

)
kn–k .

Since

S∗(n, k; k – 1) = kn – k!S2(n, k)

if m = k – 1, we obtain

S∗(n, k; k – 1) ≥ knk!
(

n – 1
k – 1

)
kn–k .

After some elementary calculation, we complete proof of Lemma 1. �

Lemma 2 If m = k – 1, we have

S∗(n, k; k – 1) ≤ kn
(

1 –
k!
kk

)
. (13)

Proof The lower bound for the S2(n, k) is given as follows:

S2(n, k) ≥ kn–k

(cf. [4]).
Since

S∗(n, k; k – 1) = kn – k!S2(n, k)

if m = k – 1, we obtain

S∗(n, k; k – 1) ≤ kn – k!kn–k .

After some elementary calculation, we complete proof of Lemma 2. �

Combining (12) and (13), we get bounds for S∗(n, k; m) by the following theorem.

Theorem 9

kn
(

1 –
k!
n

(
n
k

)
k1–k

)
≤ S∗(n, k; k – 1) ≤ kn

(
1 –

k!
kk

)
. (14)

Open Problem. By using (12) and (13), is it possible to find bounds for y7,n(λ, q, d) with
the help of Theorem 2?
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