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Abstract
In the present paper, we prove that the probabilities of the Pólya urn distribution
(with negative replacement) satisfy a monotonicity property similar to that of the
binomial distribution. As a consequence, we show that the corresponding random
variables are stochastically ordered with respect to the parameter giving the initial
distribution of the urn. An equivalent formulation of this result shows that the new
Bernstein–Stancu-type operator introduced in (Pascu et al. in Proc. Rom. Acad., Ser. A:
Math. Phys. Tech. Sci. Inf. Sci. 2019, in press) is a monotone operator.
The proofs are probabilistic in spirit and rely on various inequalities, some of which

are of independent interest (e.g., a refined version of the reversed
Cauchy–Bunyakovsky–Schwarz inequality or estimates of the error of approximating
an integral by the trapezoidal rule).
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1 Introduction
The Pólya urn model (also known as the Pólya–Eggenberger urn model; see [5, 9]) is an
experiment in which we observe the number of white balls extracted from an urn contain-
ing initially a white balls and b black balls when the extracted ball is replaced in the urn
together with c balls of the same color before the next extraction.

Denoting by Xa,b,c
n the random variable representing the number of white balls obtained

in n ≥ 1 extractions from the urn, it can be shown (e.g., [6]) that the model is well defined
(defines a distribution) for a, b ≥ 0 and c ∈ R satisfying (n – 1)c ≥ – min{a, b}, and the
distribution is given by

pa,b,c
n,k = P

(
Xa,b,c

n = k
)

= Ck
n

a(k,c)b(n–k,c)

1(n,c) , k ∈ {0, 1, . . . , n}, (1)

where x(0,h) = 1, and x(k,h) = x(x + h) · . . . · (x + (k – 1)h) for k ≥ 1 denote the rising factorial
with increment h.
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In the present paper, we focus on the case a = x ∈ [0, 1], b = 1 – x, and the minimal choice
of the replacement parameter c = – min{x, 1 – x}/(n – 1), n > 1. The reason for this choice is
twofold. The first is that the limiting (negative) value of c is an interesting problem of study
from the probabilistic point of view, with applications in statistics (reliability theory). The
second reason relates to the newly introduced operator Rn [7, 8] defined by

Rn(f , x) = P– min{x,1–x}/(n–1)
n (f , x) = Ef

(
1
n

Xx,1–x,– min{x,1–x}/(n–1)
n

)
, (2)

where Pα
n denotes the classical Bernstein–Stancu operator (see [11] or [3] for a survey on

Bernstein–Stancu operators).
The structure of the paper is the following. Section 2 contains some auxiliary results of

independent interest, needed in the sequel. In Lemma 1, we prove an interesting inequal-
ity, which may be seen as a refined version of a reversed Cauchy–Bunyakovsky–Schwarz
inequality (see Remark 2). In Lemma 3, we give bounds for the error of approximation
of an integral by trapezoidal rule in terms of the first derivative for the function (which
complements the asymptotic error estimates, valid just for large values of the parameter),
a useful practical result in numerical analysis. Lemma 4 is a technical result concerning
the sign of a certain function, essential for proving our main results.

In Sect. 3, we first prove that the Pólya urn probabilities satisfy a certain monotonicity
property with respect to the initial urn distribution (Theorem 5). Using this, in Theorem 7,
we show that the Pólya random variables satisfy a natural stochastic ordering (in terms of
reliability theory, this shows that the corresponding survival function is increasing with
respect to the parameter). In Theorem 8, we give an equivalent formulation of this re-
sult, which shows that the operator Rn is a monotone operator, a property of the classical
Bernstein operator (see, e.g., [2]).

2 Auxiliary results
We begin with the following auxiliary result of independent interest.

Lemma 1 For integers n ≥ 2 and k ∈ {1, . . . , n – 1} and positive real numbers a1, . . . , an,
b1, . . . , bn–k with max1≤i≤n ai ≤ min1≤j≤n–k bj and

∑n
i=1 ai =

∑n–k
j=1 bj, we have

n∑

i=1

a2
i <

n–k∑

j=1

b2
j . (3)

Proof Without loss of generality, we may assume that a1 ≤ · · · ≤ an ≤ b1 ≤ · · · ≤ bn–k .

Note that
∑n

i=1 ai
n–k =

∑n–k
j=1 bj
n–k ≥ b1 ≥ ai for i ∈ {1, . . . , n}. Moreover, since k ≥ 1 and

a1, . . . , an > 0, there exists i ∈ {1, . . . , n} for which ai <
∑n

j=1 aj
n–k is a strict inequality (other-

wise, summing over i ∈ {1, . . . , n}, we would obtain k = 0).
We obtain

n∑

i=1

a2
i =

n∑

i=1

(ai · ai) <
1

n – k

n∑

i=1

(

ai

n∑

j=1

aj

)

=
1

n – k

( n∑

i=1

ai

)2

, (4)
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and using the Cauchy–Bunyakovsky–Schwarz inequality, we conclude that

n∑

i=1

a2
i <

1
n – k

( n∑

i=1

ai

)2

=
1

n – k

( n–k∑

j=1

bj

)2

≤
n–k∑

j=1

b2
j .

�

Remark 2 From inequality (3) we can obtain a reversed Cauchy–Bunyakovsky–Schwarz
inequality (see, e.g., [4]) as follows. In the notation of the previous lemma, taking bi =
1
n
∑n

i=1 ai, i ∈ {1, . . . , n – k}, we obtain

∑n
i=1 a2

i
(
∑n

i=1 ai)2 ≤ 1
n – k

, (5)

which is especially useful when k ≥ 1 is small. For example, we can take k = 1 if an ≤
1

n–1
∑n

i=1 ai, the condition which holds in particular if p ∈ {1, . . . , [
√

A/(A – a)]} of the num-
bers a1, . . . , an are equal to a > 0 and q = n – p ≥ 1 of them are equal to A > a.

The Pólya–Szegö inequality (see, e.g., [4, Theorem 5.5]) is the following reversed
Cauchy–Bunyakovsky–Schwarz inequality:

∑n
i=1 a2

i
∑n

i=1 b2
i

(
∑n

i=1 aibi)2 ≤ 1
4

(√
AB
ab

+
√

ab
AB

)2

, (6)

where 0 < a ≤ ai ≤ A < ∞ and 0 < b ≤ bi ≤ B < ∞, i ∈ {1, . . . , n}. Taking b1 = · · · = bn = 1
(thus b = B = 1), it becomes

∑n
i=1 a2

i
(
∑n

i=1 ai)2 ≤ 1
4n

(√
A
a

+
√

a
A

)2

(7)

for any sequence such that 0 < a ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ A.
If A > a(1 + 2/(

√
n – 1)), then the right-hand side of (7) is greater than 1

n–1 , and therefore
inequality (5) (with k = 1) improves the Pólya–Szegö inequality (under the hypotheses
considered).

We will also need the following auxiliary result, which gives bounds for the error of
approximation of an integral by the trapezoidal rule in terms of the first derivative of a
function. Before stating the result, we note that such a result is known, but only in the
asymptotic case (asymptotic error estimate): denoting by EN (f ) the exact error and ẼN (f ) =

1
12N2 (f ′(1) – f ′(0)), we have limN→∞ EN (f )/ẼN (f ) = 1 (see [1, Sect. 5.1]), whereas our result
below shows that 0 ≤ EN (f ) ≤ 1

4N2 (f ′(1) – f ′(0)) for all N ≥ 1.

Lemma 3 Suppose f ∈ C3([0, 1]) is such that f , f ′, f ′′, f ′′′ ≥ 0 on [0, 1]. Then for any integer
N ≥ 1, we have

0 ≤
N∑

i=0

f
(

i
N

)
– N

∫ 1

0
f (t) dt –

f (0) + f (1)
2

≤ f ′(1) – f ′(0)
4N

. (8)
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Figure 1 Trapezoids Ti and T ′
i in the proof of Lemma 3. Area(T ′

i )
≤ ∫ xi+1

xi
f (x)dx ≤ Area(Ti)

Proof Since f is convex, the sum of the areas of trapezoids T0, . . . , TN–1 (see Fig. 1) is larger
than the area under the graph of f , and thus

∫ 1

0
f (t) dt ≤

N–1∑

i=0

(
f (xi) + f (xi+1)

2
· 1

N

)
, (9)

where xi = i
N , i ∈ {0, 1, . . . , N}, which proves the left inequality in (8).

Since f is convex, the tangent line to the graph of f at xi lies below the graph of f , and
therefore the sum of the areas of the corresponding trapezoids T ′

i is smaller than the area
under f (see Fig. 1). Summing over i ∈ {0, 1, . . . , N – 1}, we obtain

N–1∑

i=0

(
f (xi) + yi

2
· 1

N

)
≤

∫ 1

0
f (t) dt,

where yi = f (xi) + f ′(xi) · 1
N , or, equivalently,

N
∫ 1

0
f (t) dt ≥

N–1∑

i=0

f (xi) + f (xi) + f ′(xi)
N

2
=

N–1∑

i=0

f (xi) +
1

2N

N–1∑

i=0

f ′(xi),

and therefore

N∑

i=0

f (xi) ≤ f (1) +
1

2N
f ′(1) + N

∫ 1

0
f (t) dt –

1
2N

N∑

i=0

f ′(xi).

Using inequality (9) with f replaced by f ′, we obtain

N∑

i=0

f (xi) ≤ f (1) +
1

2N
f ′(1) + N

∫ 1

0
f (t) dt –

1
2N

N∑

i=0

f ′(xi)

≤ f (1) +
1

2N
f ′(1) + N

∫ 1

0
f (t) dt –

1
2N

(
N

∫ 1

0
f ′(t) dt +

f ′(0) + f ′(1)
2

)

= N
∫ 1

0
f (t) dt +

f (0) + f (1)
2

+
f ′(1) – f ′(0)

4N
,

concluding the proof. �

The following technical result is essential for the proof of our main results in the follow-
ing section.



Tripşa and Pascu Journal of Inequalities and Applications         (2019) 2019:47 Page 5 of 10

Lemma 4 For any integers n ≥ 2 and k ∈ {0, . . . , n – 1}, there exists xn,k ∈ [ k–1
n–1 , k

n–1 ] such
that the function

ϕn,k(x) =
n–1∑

i=0

1
1 – i

n–1 x
–

n–k–1∑

i=0

1
1 – x – i

n–1 x
, x ∈

[
0,

n – 1
2n – k – 2

)
, (10)

is positive on (0, xn,k) and negative on (xn,k , n–1
2n–k–2 ).

Proof Under the hypotheses on n and k, it is easy to verify that k–1
n–1 < k

n < n–1
2n–k–2 ≤ 1 (the

last inequality is strict if k < n – 1).
If k = 0, then since 1

1–x– i
n–1 x

> 1
1– i

n–1 x
for i ∈ {0, . . . , n – 1} and x ∈ (0, 1

2 ), we have ϕn,0(x) < 0

for x ∈ (0, 1
2 ), and the claim holds with xn,0 = 0 ∈ [– 1

n–1 , 0].
If k = n – 1, then we have ϕn,n–1(x) =

∑n–2
i=0

1
1– i

n–1 x
> 0 for x ∈ [0, 1), and the claim holds

with xn,n–1 = 1 ∈ [ n–2
n–1 , 1].

Assume now that n > 2 and k ∈ {1, . . . , n – 2}. We will first show that if ϕn,k(x) = 0, then
ϕ′

n,k(x) < 0 (note that ϕn,k(0) = k > 0 and thus x 	= 0).
We have

ϕ′
n,k(x) =

n–1∑

i=0

i
n–1

(1 – i
n–1 x)2

–
n–k–1∑

i=0

1 + i
n–1

(1 – x – i
n–1 x)2

=
1
x

( n–1∑

i=0

–(1 – x i
n–1 ) + 1

(1 – i
n–1 x)2

–
n–k–1∑

i=0

–(1 – x(1 + i
n–1 )) + 1

(1 – x – i
n–1 x)2

)

= –
1
x
ϕn,k(x) +

1
x

( n–1∑

i=0

1
(1 – i

n–1 x)2
–

n–k–1∑

i=0

1
(1 – x – i

n–1 x)2

)

.

If ϕn,k(x) = 0, then we obtain ϕ′
n,k(x) = 1

x (
∑n–1

i=0
1

(1– i
n–1 x)2 –

∑n–k–1
i=0

1
(1–x– i

n–1 x)2 ), and we are
left to prove the implication

n–1∑

i=0

1
1 – i

n–1 x
=

n–k–1∑

i=0

1
1 – x – i

n–1 x
⇒

n–1∑

i=0

1
(1 – i

n–1 x)2
<

n–k–1∑

i=0

1
(1 – x – i

n–1 x)2
.

Choosing ai+1 = 1
1– i

n–1 x
, i ∈ {0, . . . , n – 1}, and bj+1 = 1

1–x– j
n–1 x

, j ∈ {0, . . . , n – k – 1}, we have

max1≤i≤n ai = an = 1
1–x = b1 = min1≤j≤n–k bj, and the implication follows from Lemma 1,

concluding the proof of the claim.
We showed that ϕn,k(x) = 0 implies ϕ′

n,k(x) < 0. Since ϕn,k is continuously differentiable,
a moment’s thought shows that this condition implies that ϕn,k can change signs at most
once on the interval [0, n–1

2n–k–2 ).
Since ϕn,k(0) = n – (n – k) = k > 0 and limx↗ n–1

2n–k–2
ϕn,k(x) = –∞, the function ϕn,k changes

sign on [0, n–1
2n–k–2 ); let xn,k denote its unique root. We are left to show that xn,k belongs to

the specified interval.
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Using Lemma 3 with N = n – 1 and f (t) = 1
1–tx , respectively, with N = n – k – 1 and

f (t) = 1
1–x–t n–k–1

n–1 x
, we obtain:

ϕn,k(x) ≤
(

(n – 1)
∫ 1

0

1
1 – tx

dt +
1 + 1

1–x
2

+
x

(1–x)2 – x
4(n – 1)

)

–
(

(n – k – 1)
∫ 1

0

1
1 – x – tx n–k–1

n–1
dt +

1
1–x + 1

1–x– n–k–1
n–1 x

2

)

=
(

–
n – 1

x
ln(1 – x) +

1 + 1
1–x

2
+

x
(1–x)2 – x
4(n – 1)

)

–
(

–
n – 1

x
ln

1 – x – n–k–1
n–1 x

1 – x
+

1
1–x + 1

1–x– n–k–1
n–1 x

2

)

=
1
2

(
1 –

1
1 – x – n–k–1

n–1 x

)
+

x2(2 – x)
4(n – 1)(1 – x)2 +

n – 1
x

ln
1 – x – n–k–1

n–1 x
(1 – x)2 .

In particular, for x = k
n–1 , we obtain ϕn,k( k

n–1 ) ≤ k(2n–k–2)(k–2(n–1)2)
4(n–1)2(n–k–1)2 < 0, which shows that

xn,k < k
n–1 .

To obtain the lower bound for xn,k , first note that for k = 1, the claim is trivial (ϕn,1(0) =
1 > 0, and thus xn,1 > 0), so we may assume that k ∈ {2, . . . , n – 1}.

Using again Lemma 3 with the same choices as before, we obtain

ϕn,k(x) ≥
(

(n – 1)
∫ 1

0

1
1 – tx

dt +
1 + 1

1–x
2

)
–

(
(n – k – 1)

∫ 1

0

1
1 – x – tx n–k–1

n–1
dt

+
1

1–x + 1
1–x– n–k–1

n–1 x

2
+

n–k–1
n–1 x

(1–x– n–k–1
n–1 x)2 –

n–k–1
n–1 x

(1–x)2

4(n – k – 1)

)

=
(

–
n – 1

x
ln(1 – x) +

1 + 1
1–x

2

)
–

(
–

n – 1
x

ln
1 – x – n–k–1

n–1 x
1 – x

+
1

1–x + 1
1–x– n–k–1

n–1 x

2
+

n–k–1
n–1 x

(1–x– n–k–1
n–1 x)2 –

n–k–1
n–1 x

(1–x)2

4(n – k – 1)

)

=
1
2

(
1 –

1
1 – x – n–k–1

n–1 x

)
–

(
1

(1 – x – n–k–1
n–1 x)2

–
1

(1 – x)2

)
x

4(n – 1)

+
n – 1

x
ln

1 – x – n–k–1
n–1 x

(1 – x)2 .

To simplify the following computation, denote A = ( n–k
n–1 )2, B = k–1

(n–1)2 , and C = A
B = (n–k)2

k–1 .
For x = k–1

n–1 , the inequality becomes

ϕn,k

(
k – 1
n – 1

)
≥ 1

2

(
1 –

1
A + B

)
–

(
1

(A + B)2 –
1

A2

)
B
4

+
1
B

ln

(
A + B

A

)

=
1
2

+
1
B

(
–

1
2(1 + C)

–
1

4(1 + C)2 +
1

4C2 + ln

(
1 +

1
C

))
.



Tripşa and Pascu Journal of Inequalities and Applications         (2019) 2019:47 Page 7 of 10

Since

d
dC

(
–

1
2(1 + C)

–
1

4(1 + C)2 +
1

4C2 + ln

(
1 +

1
C

))

=
(

1
2(1 + C)2 –

1
C(1 + C)

)
+

(
1

2(1 + C)3 –
1

2C3

)
< 0

and limC→∞(– 1
2(1+C) – 1

4(1+C)2 + 1
4C2 + ln(1 + 1

C )) = 0, we conclude that (– 1
2(1+C) – 1

4(1+C)2 +
1

4C2 + ln(1 + 1
C )) > 0 for all C > 0.

From this and from the previous inequality we obtain xn,k > k–1
n–1 , concluding the proof. �

3 Main results
We can now prove the first main result.

Theorem 5 For arbitrarily fixed integers n ≥ 2 and k ∈ {0, 1, . . . , n}, the probability
pn,k(x) = px,1–x,– min{x,1–x}/(n–1)

n,k given by (1) increases for x ∈ [0, x∗
n,k] and decreases for x ∈

[x∗
n,k , 1], where

x∗
n,k =

⎧
⎪⎪⎨

⎪⎪⎩

xn,k if k ≤ n–1
2 ,

1
2 if n–1

2 < k < n+1
2 ,

1 – xn,n–k if k ≥ n+1
2 ,

(11)

and xn,k ∈ [ k–1
n–1 , k

n–1 ] is given by Lemma 4.

Proof First, note that pn,0(x) =
∏n–1

i=0
(1–x–i min{x,1–x}/(n–1))

1–i min{x,1–x}/(n–1) is a decreasing function of x ∈ [0, 1]
(each factor decreases in x), and, similarly, pn,n(x) =

∏n–1
i=0

(x–i min{x,1–x}/(n–1))
1–i min{x,1–x}/(n–1) is an increasing

function of x ∈ [0, 1] (each factor increases in x). The claim of the theorem therefore holds
in the cases k = 0 and k = n (x∗

n,0 = xn,0 = 0 and x∗
n,n = 1 – xn,0 = 1, respectively), and we can

assume that k ∈ {1, . . . , n – 1}.
For x ∈ (0, 1/2), in the notation of Lemma 4, we have

d
dx

ln pn,k(x) =
d

dx

(

ln Ck
n +

k–1∑

i=0

ln

(
x –

i
n – 1

x
)

+
n–k–1∑

i=0

ln

(
1 – x –

i
n – 1

x
)

–
n–k–1∑

i=0

ln

(
1 –

i
n – 1

x
))

=
k
x

+
n–k–1∑

i=0

–(1 + i
n–1 )

1 – x – i
n–1 x

–
n–1∑

i=0

– i
n–1

1 – i
n–1 x

=
k
x

+
1
x

n–k–1∑

i=0

1 – (1 + i
n–1 )x – 1

1 – x – i
n–1 x

–
1
x

n–1∑

i=0

1 – i
n–1 x – 1

1 – i
n–1 x

=
k
x

+
n – k

x
–

1
x

n–k–1∑

i=0

1
1 – x – i

n–1 x
–

n
x

+
1
x

n–1∑

i=0

1
1 – i

n–1 x

=
1
x
ϕn,k(x), (12)
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and a similar computation shows

d
dx

ln pn,k(x) = –
1

1 – x
ϕn,n–k(1 – x), x ∈ (1/2, 1) (13)

(alternatively, to derive this, we can use the relation pn,k(x) = pn,n–k(1 – x), valid for x ∈
[0, 1], n ≥ 2, and k ∈ {0, 1, . . . , n}).

It remains to show that the information about the sign of ϕn,k(x) given by Lemma 4
translates into the monotonicity of pn,k(x) indicated in the statement of the theorem.

Note that by Lemma 4 we have

xn,k ∈
[

k – 1
n – 1

,
k

n – 1

]
for all n ≥ 2 and k ∈ {1, . . . , n – 1}. (14)

If k
n–1 ≤ 1

2 , then Lemma 4 and (12) show that pn,k increases on [0, xn,k] and decreases
on [xn,k , 1/2] (note that xn,k ≤ 1

2 by (14) in this case). Since xn,n–k ≥ n–k–1
n–1 = 1 – k

n–1 ≥ 1
2 ,

the function ϕn,n–k(x) is positive for x ∈ [0, 1/2] ⊂ [0, xn,n–k], and from (13) it follows that
pn,k decreases on [1/2, 1]. Since pn,k is a continuous function on [0, 1], it follows that pn,k

increases on [0, xn,k] and decreases on [xn,k , 1], and therefore the claim of the theorem
holds in this case with x∗

n,k = xn,k .
If k–1

n–1 ≥ 1
2 , then Lemma 4 and (12) show that pn,k increases on [0, 1/2] ⊂ [0, xn,k] (note

that xn,k ≥ 1
2 by (14) in this case). Since xn,n–k ≤ n–k

n–1 = 1 – k–1
n–1 ≤ 1

2 , the function ϕn,n–k(x)
is positive for x ∈ [0, xn,n–k] ⊂ [0, 1/2] and negative for x ∈ [xn,n–k , 1/2], and from (13) it
follows that pn,k increases on [ 1

2 , 1 – xn,n–k] and decreases on [1 – xn,n–k , 1]. Since pn,k(x)
is a continuous function of x ∈ [0, 1], it follows that pn,k increases on [0, 1 – xn,n–k] and
decreases on [1 – xn,n–k , 1], and therefore the claim of the theorem holds in this case with
x∗

n,k = 1 – xn,n–k .
We are left to consider the case k–1

n–1 < 1
2 < k

n–1 or, equivalently, n–1
2 < k < n–1

2 + 1. If n is
odd, then the previous double inequality is not satisfied for any integer k, so assume that
n = 2m is even. The previous double inequality gives m – 1

2 < k < m + 1
2 , which is satisfied

only for k = m. We have

2m–1∑

i=0

1
1 – i

n–1 · 1
2

>
m–1∑

j=0

(
1

1 – 2j
n–1 · 1

2

+
1

1 – 2j
n–1 · 1

2

)
= 2

m–1∑

j=0

1
1 – j

n–1

,

and therefore

ϕ2m,m

(
1
2

)
=

2m–1∑

i=0

1
1 – i

n–1 · 1
2

–
m–1∑

j=0

1
1
2 – j

n–1 · 1
2

> 0.

Since ϕn,k = ϕ2m,m = ϕn,n–k in this case, the previous inequality shows that xn,k = x2m,m =
xn,n–k > 1

2 (thus ϕn,k = ϕn,n–k are positive on (0, 1
2 ]). Using (12) and (13), we conclude that

pn,k increases on [0, 1
2 ] and decreases on [ 1

2 , 1], and thus the claim of the theorem holds
with x∗

n,k = 1
2 in this case, concluding the proof. �

Remark 6 Since pn,k(x) = pn,n–k(1 – x) for x ∈ [0, 1], from the previous theorem it follows
that x∗

n,k = 1 – x∗
n,n–k for all n ≥ 2 and k ∈ {0, . . . , n}.
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Moeover, note that since xn,k ∈ [ k–1
n–1 , k

n–1 ], from (11) it follows that we also have x∗
n,k ∈

[ k–1
n–1 , k

n–1 ] for all n ≥ 2 and k ∈ {0, 1, . . . , n}.

We are now ready to prove the main result. Recall that a random variable X is smaller
than a random variable Y in the usual stochastic order (denoted X ≤st Y ; see, e.g., [10]) if
the corresponding distribution functions FX and FY satisfy FX(x) ≥ FY (x) for all x ∈R.

Theorem 7 For any n ≥ 2, the random variables Xx,1–x,– min{x,1–x}/(n–1)
n with Pólya urn dis-

tribution given by (1) and parameter x ∈ [0, 1] satisfy the following stochastic ordering:

Xx,1–x,– min{x,1–x}/(n–1)
n ≤st Xy,1–y,– min{x,1–y}/(n–1)

n , 0 ≤ x ≤ y ≤ 1.

Proof Fix n ≥ 2 and denote by Fx the distribution function of the random variable
Xx,1–x,– min{x,1–x}/(n–1)

n , x ∈ [0, 1]. To prove the claim, it suffices to show that, for any k ∈
{0, 1, . . . , n}, Fx(k) is a decreasing function of x ∈ [0, 1], and we will prove this inductively
on k.

Since Fx(0) = P(Xx,1–x,– min{x,1–x}/(n–1)
n = 0) = pn,0(x) is a decreasing function of x ∈ [0, 1]

(by Theorem 5), the claim holds for k = 0.
Assume now that the claim is true for k – 1, that is, Fx(k – 1) is decreasing in x ∈ [0, 1].
Theorem 5 shows that pn,k(x) is a decreasing function of x ∈ [x∗

n,k , 1], and therefore
Fx(k) = Fx(k – 1) + pn,k(x) is decreasing for x ∈ [x∗

n,k , 1].
Considering now x ∈ [0, x∗

n,k], we observe that

Fx(k) =
k∑

i=0

pn,i(x) = 1 –
n∑

i=k+1

pn,n–i(1 – x) = 1 –
n–k–1∑

i=0

pn,i(1 – x). (15)

Using Remark 6, we obtain x∗
n,k + x∗

n,n–k–1 ≤ k
n–1 + n–k–1

n–1 = 1, and it follows that, for x ∈
[0, x∗

n,k], we have

1 – x ≥ 1 – x∗
n,k ≥ x∗

n,n–k–1 ≥ x∗
n,i, i ∈ {0, 1, . . . , n – k – 1}, (16)

since by Remark 6 we have x∗
n,i ≤ i

n–1 ≤ x∗
n,i+1 for i ∈ {0, 1, . . . n – 1}.

Using (15) and (16), together with the monotonicity of pn,i given by Theorem 5, it follows
that Fx(k) is also decreasing for x ∈ [0, x∗

n,k], concluding the proof of the theorem. �

It is known (e.g., [10], p. 4) that the stochastic comparison X ≤st Y is equivalent to
Ef (X) ≤ Ef (Y ) for all increasing functions f for which the expectations exist.

Using this and definition (2) of the operator Rn, we can restate the theorem as follows.

Theorem 8 The operator Rn defined by (2) is a monotone operator, that is, if f : [0, 1] →R

is increasing (decreasing), then Rn(f , ·) : [0, 1] → R is also increasing (decreasing).

Acknowledgements
Not applicable.

Funding
Not applicable.
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