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Abstract
This paper deals with the oscillation properties of higher-order nonlinear differential
equations with distributed delay

[
b(�)(y(n–1)(�))γ

]′
+

∫ d

c
q(�,ξ )yγ (g(�,ξ ))d(ξ ) = 0, � ≥ �0,

under the condition

∫ ∞

�0

1

b
1
γ (�)

d� <∞.

We obtain new oscillation criteria by employing a refinement of the generalized
Riccati transformations and new comparison principles. We provide some examples
to illustrate the main results.
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1 Introduction
In this work, we investigate the oscillation behavior of solutions to the higher-order non-
linear differential equation with distributed delay of the form

[
b(�)

(
y(n–1)(�)

)γ ]′ +
∫ d

c
q(�, ξ )yγ

(
g(�, ξ )

)
d(ξ ) = 0, � ≥ �0. (1.1)

We assume that the following assumptions hold:
(A1) b ∈ C1[�0,∞), b′(�) ≥ 0, b(�) > 0,γ is a quotient of odd positive integers;
(A2) q(�, ξ ), q(�, ξ ) ∈ C([�0,∞) × [c, d],R), q(�, ξ ) is positive, g(�, ξ ) is a nondecreasing

function in ξ , g(�, ξ ) ≤ �, and lim
�→∞g(�, ξ ) = ∞.

By a solution of equation (1.1) we mean a function y ∈ Cn–1[�y,∞), Ly ≥ �0, that has the
property b(�)(yn–1(�))γ ∈ C1[Ly,∞) and satisfies equation (1.1) on [Ly,∞). We consider
only solutions y of equation (1.1) that satisfy sup{|y(�)| : � ≥ L} > 0 for all � > Ly. We as-
sume that (1.1) possesses such a solution. A solution of (1.1) is called oscillatory if it has
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arbitrarily large zeros on [Ly,∞), and otherwise it is called nonoscillatory. Equation (1.1)
is said to be oscillatory if all its solutions are oscillatory.

The problem of the oscillation of fourth- and higher-order differential equations have
been widely studied by many authors, who have provided many techniques for obtaining
oscillatory criteria for fourth- and higher-order differential equations. We refer the reader
to the related books [1, 4, 9–11, 19] and to the papers [2, 3, 5, 8, 12–24]. In the follows, we
present some related results that served as a motivation for the contents of this paper.

Zhang et al. [22] studied the oscillation behavior of the higher-order nonlinear differen-
tial equation

[
b(�)

(
y(n–1)(�)

)γ ]′ + q(�)yβ
(
τ (�)

)
= 0.

Tunc and Bazighifan [21] studied the oscillatory behavior of the fourth-order nonlinear
differential equation with a continuously distributed delay

[
b(�)

(
y′′′(�)

)β]′ +
∫ d

c
q(�, τ )xβ

(
g(�, τ )

)
d(τ ) = 0.

Bazighifan [4] considered the oscillatory properties of the higher-order differential equa-
tion

[
b(�)

(
y(n–1)(�)

)γ ]′ + q(�)f
(
y
(
τ (�)

))
= 0

under the conditions
∫ ∞

�0

1

b
1
γ (�)

d� = ∞

and
∫ ∞

�0

1

b
1
γ (�)

d� < ∞. (1.2)

Moaaz et al. [19] considered the fourth-order differential equations of the form

[
b(�)

(
y′′′(�)

)α]′ +
∫ b

a
q(�, ξ )f

(
x
(
g(�, ξ )

))
d(ξ ) = 0.

Elabbasy et al. [6, 7] and Zhang et al. [24] examined the oscillation of the fourth-order
nonlinear delay differential equation

[
b(�)

(
y′′′(�)

)α]′ + q(�)yα(�) = 0.

Our aim in the present paper is to employ the Riccatti technique to establish some new
conditions for the oscillation of all solutions of equation (1.1) under condition (1.2). We
present some examples to illustrate our main results.

The proof of our main results are essentially based on the following lemmas.
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Lemma 1.1 (See [1], Lemma 2.2.3) Let z ∈ (Cn[�0,∞],R+) and assume that z(n) is of fixed
sign and not identically zero on a subray [�0,∞]. If, moreover, z(�) > 0, z(n–1)(�)z(n)(�) ≤ 0,
and lim

�→∞
z(�) �= 0, then, for every λ ∈ (0, 1), there exists �λ ≥ �0 such that

z(�) ≥ λ

(n – 1)
�n–1∣∣z(n–1)(�)

∣
∣ for � ∈ [�λ,∞).

Lemma 1.2 (See [19], Lemma 1.1) If the function z satisfies z(i) > 0, i = 0, 1, . . . , n, and
z(n+1) < 0, then

z(�)
�n/n!

≥ z′(�)
�n–1/(n – 1)!

.

Lemma 1.3 (See [21], Lemma 1) Let β ≥ 1 be a ratio of two numbers, and let U and V be
constants. Then

Uy – Vy
β+1
β ≤ ββ

(β + 1)β+1
Uβ+1

V β
, V > 0.

2 Main results
In this section, we establish some oscillation criteria for equation (1.1). We are now ready
to state and prove the main results. For convenience, we denote

R(�) =
∫ ∞

�0

1
b1/γ (s)

ds,

δ′
+(�) = max

{
0, δ′(�)

}
,

Q(�) =
∫ d

c
q(�, ξ ) d(ξ )

and

σ (υ) =
∫ ∞

υ

Q(s)
(
g(s, c)/s

)3γ dυ.

Theorem 2.1 Let (A1), (A2), and (1.2) hold. Assume that there exists a positive function
δ ∈ C1[�0,∞) such that

∫ ∞

�0

[
δ(s)

1
(n – 3)!

∫ ∞

�

(υ – �)(n–3)
∫ ∞

υ

[
1

b(ν)
σ (s)

]1/γ

dν dυ +
((δ′(s))+)2

4δ(s)

]
ds = ∞. (2.1)

If

∫ ∞

�0

[
Q(s)

(
λ2

(n – 2)!
gn–2(s, c)

)γ

Rγ (s) –
(

γ

γ + 1

)γ +1 b–1/γ (s)
R(s)

]
ds = ∞ (2.2)

for some constant λ2 ∈ (0, 1), then every solution of (1.1) is oscillatory.

Proof Assume that (1.1) has a nonoscillatory solution y. Without loss of generality, we
can assume that y(�) > 0. It follows from (1.1) that there exist tow possible cases for � ≥ �1,
where �1 ≥ �0 is sufficiently large:



Bazighifan et al. Journal of Inequalities and Applications         (2019) 2019:55 Page 4 of 9

Case 1: y′(�) > 0, y(n–1)(�) > 0, y(n)(�) < 0,
(
b
(
y(n–1))γ )′(�) ≤ 0;

Case 2: y′(�) > 0, y(n–2)(�) > 0, y(n–1)(�) < 0,
(
b
(
y(n–1))γ )′(�) ≤ 0.

Assume that case 1 holds. By Lemma 1.1 we find that y(�) ≥ (�/3)y′(�), and hence

y(g(�, c))
y(�)

≥ g3(�, c)
�3 . (2.3)

Integrating (1.1) from � to u, we obtain

b(u)
(
y(n–1)(u)

)γ – b(�)
(
y(n–1)(�)

)γ

= –
∫ u

�

Q(s)yγ
(
g(s, ξ )

)
ds

≤ –yγ (�)
∫ u

�

∫ d

c
q(s, ξ )

(
g(s, ξ )/�

)3γ d(ξ ) ds.

Letting u → ∞, we see that

b(�)
(
y(n–1)(�)

)γ ≥ yγ (�)σ (�).

By virtue of y′(�) > 0, g(�, ξ ) ≤ �, and (2.3), we obtain

y(n–1)(�) ≥ y(�)
[

1
b(�)

σ (s)
]1/γ

. (2.4)

Integrating again from � to ∞, we obtain

y(n–2)(�) ≤ –y(�)
∫ ∞

�

[
1

b(ν)
σ (s)

]1/γ

dν.

Integrating n – 3 times from � to ∞, we find

y′′(�) ≥ y(�)
(n – 3)!

∫ ∞

�

(υ – �)(n–3)
∫ ∞

υ

[
1

b(ν)
σ (s)

]1/γ

dν dυ. (2.5)

Define the function

ω(�) := δ(�)
y′(�)
y(�)

. (2.6)

Then ω(�) > 0 for � ≥ �1, and

ω′(�) := δ′(�)
y′(�)
y(�)

+ δ(�)
y′′(�)y(�) – (y′(�))2

y2(�)
. (2.7)

From (2.5) and (2.6) it follows that

ω′(�) ≤ –δ(�)
1

(n – 3)!

∫ ∞

�

(υ – �)(n–3)
∫ ∞

υ

[
1

b(ν)
σ (s)

]1/γ

dν dυ

+
(δ′(�))+

δ(�)
ω(�) –

1
δ(�)

ω2(�). (2.8)
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Hence we have

ω′(�) ≤ –δ(�)
1

(n – 3)!

∫ ∞

�

(υ – �)(n–3)
∫ ∞

υ

[
1

b(ν)
σ (s)

]1/γ

dν dυ

+
((δ′(�))+)2

4δ(�)
. (2.9)

Integrating (2.9) from �1 to �, we get

∫ �

�1

(
δ(s)

1
(n – 3)!

∫ ∞

�

(υ – �)(n–3)
∫ ∞

υ

[
1

b(ν)
σ (s)

]1/γ

dν dυ +
((δ′(s))+)2

4δ(s)

)
ds ≤ ω(�1)

for all large �, which contradicts (2.1).
Assume that case 2 holds. Noting that b(�)(y(n–1)(�))γ is nonincreasing, we have that

b(s)
(
y(n–1)(s)

)γ ≤ b(�)
(
y(n–1)(�)

)γ

for all s ≥ � ≥ �1. This yields

y(n–1)(s) ≤ [
b(�)

(
y(n–1)(�)

)γ ]1/γ 1
b1/γ (s)

.

Integrating this inequality from � to u, we get

y(n–2)(u) – y(n–2)(�) ≤ [
b(�)

(
y(n–1)(�)

)γ ]1/γ
∫ u

�

1
b1/γ (s)

ds.

Letting u → ∞, we see that

–y(n–2)(�) ≤ [
b(�)

(
y(n–1)(�)

)γ ]1/γ R(�). (2.10)

From Lemma 1.2 we get

y(�) ≥ λ

(n – 2)!
�n–2y(n–2)(�) (2.11)

for all λ ∈ (0, 1) and every sufficiently large �. Next, we define

ϕ(�) =
b(�)(y(n–1)(�))γ

(y(n–2)(�))γ
. (2.12)

We note that ϕ(�) < 0 for � ≥ �1 and

ϕ′(�) =
(b(�)(y(n–1)(�))γ )′

(y(n–2)(�))γ
– γ

b(�)(y(n–1)(�))γ +1

(y(n–2)(�))γ +1 .

From (1.1) and (2.12) we obtain

ϕ′(�) ≤ –Q(�)
yγ (g(�, c))

(y(n–2)g(�, c))γ
(y(n–2)g(�, c))γ

(y(n–2)(�))γ
– γ

1
b1/γ (�)

ϕ
γ +1
γ (�). (2.13)
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Hence (2.13) yields

ϕ′(�) ≤ –Q(s)
(

λ2

(n – 2)!
gn–2(s, c)

)γ

– γ
1

b1/γ (�)
ϕ

γ +1
γ (�). (2.14)

Multiplying (2.14) by Rγ (�) and integrating from �2 to �, we obtain

Rγ (�)ϕ(�) – Rγ (�2)ϕ(�2) + γ

∫ �

�2

Rγ –1(s)
b1/γ (s)

ϕ(s) ds

≤ –
∫ �

�2

Q(s)
(

λ2

(n – 2)!
gn–2(s, c)

)γ

Rγ (s) ds – γ

∫ �

�2

ϕ
1+γ
γ (s)

b1/γ (s)
Rγ (s) ds.

Set

U :=
Rγ –1(s)
b1/γ (s)

, V :=
Rγ (s)

b1/γ (s)
, y := –ϕ(s).

By Lemma (1.3) we find

∫ �

�2

[
Q(s)

(
λ2

(n – 2)!
gn–2(s, c)

)γ

Rγ (s) –
(

γ

γ + 1

)γ +1 b–1/γ (s)
R(s)

]
ds

≤ 1 + Rγ (�2)ϕ(�2)

for some constant λ2 ∈ (0, 1), which contradicts (2.2).
Theorem (2.1) is proved. �

It is well known (see [3]) that the differential equation

[
a(�)

(
y′(�)

)α]′ + q(�)yα
(
τ (�)

)
= 0, � ≥ �0, (2.15)

where α > 0 is the ratio of odd positive integers and a, q ∈ C[�0,∞), is nonoscillatory if and
only if there exist a number � ≥ �0 and a function υ ∈ C1[�,∞) satisfying the inequality

υ ′(�) + αa
–1
α (�)

(
υ(�)

) (1+α)
α + q(�) ≤ 0 for [�,∞).

In what follows, we compare the oscillatory behavior of (1.1) with the second-order half-
linear equations of type (2.15).

Theorem 2.2 Let (A1), (A2), and (1.2) hold. Assume that the differential equations

[
b(�)
�2γ

(
y′(�)

)γ

]′
+ Q(�)

(
λ1g3(�, c)

2�3

)γ

yγ (�) = 0 (2.16)

and

[
b(�)

(
y′(�)

)γ ]′ + Q(�)
(

λ

(n – 2)!
gn–2(�, c)

)γ

yγ (�) = 0 (2.17)

are oscillatory for some constants λ,λ1 ∈ (0, 1). Then every solution of (1.1) is oscillatory.
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Proof We proceed as in the proof of Theorem (2.1). Setting δ(�) = 1 in (2.9), we get

ω′(�) +
1

(n – 4)!

∫ ∞

�

(υ – �)(n–4)σ
1
γ (υ)b(υ)–1/γ dυ ≤ 0.

Thus, we see that equation (2.16) is nonoscillatory, a contradiction. From (2.14) we obtain

ϕ′(�) + Q(s)
(

λ1

(n – 2)!
gn–2g(s, c)

)γ

+ γ
1

b1/γ (�)
ϕ

γ +1
γ (�) ≤ 0

for every constant λ1 ∈ (0, 1). Thus we have that equation (2.17) is nonoscillatory for every
constant λ ∈ (0, 1), a contradiction.

Theorem (2.2) is proved. �

3 Examples
In this section, we give some examples to illustrate our main results.

Example 3.1 Consider the fourth-order differential equation

(
e3�

(
y′′′(�)

)3)′ +
∫ 1

0

�e�(ξ+3)

e� – 1
y3(� – ξ ) dξ = 0, � ≥ 1. (3.1)

Note that γ = 3, n = 4, b(�) = e3�, q(�, ξ ) = �e�(ξ+3)/(e� – 1), c = 0, d = 1, g(�, c) = �, R(�) = e–�,
and Q(�) = e3�. If we choose δ(�) = 1, then it easy to see that conditions (2.1) and (2.2) hold.
Hence, by Theorem 2.1, every solution of equation (3.1) is oscillatory.

Example 3.2 Consider the differential equation

(
�3(y′′′(�)

))′ +
∫ 1

0

νξ

�
y
(

� – ξ

2

)
dξ = 0, � ≥ 1, (3.2)

where ν > 0 is a constant. Note that γ = 1, n = 4, b(�) = �3, q(�, ξ ) = ξν/�, c = 0, d = 1,
g(�, c) = �/2, Q(�) = ν/2�, and R(�) = 1/2s2. If we set δ(�) = 1, then we have

∫ ∞

�0

[
Q(s)

(
λ2

(n – 2)!
gn–2(s, c)

)γ

Rγ (s) –
(

γ

γ + 1

)γ +1 b–1/γ (s)
R(s)

]
ds

=
(

νλ2

32
–

1
2

)∫ ∞

�0

1
�

d�

= ∞,

for ν > 16
λ2

and some constant λ2 ∈ (0, 1). Hence, by Theorem 2.1, every solution of equation
(3.2) is oscillatory if ν > 16

λ2
.

Remark 3.1 The results of [4] cannot confirm the conclusion in Example 3.2.

Remark 3.2 Our results supplement and improve the results obtained in [25].
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4 Conclusion
In this paper, by employing a refinement of the generalized Riccatti transformations and
new comparison principles we have established new oscillation criteria for higher-order
nonlinear differential equations with distributed delay. Further, we can consider the case
of g(�, ξ ) ≥ �, and we can try to get some oscillation criteria of equation (1.1) in the future
work.
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