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1 Introduction
Convexity and generalized convexity are important in mathematical programming. In-
vex functions, introduced by Hanson [17], are important generalized convex functions
and are successfully used in optimization and equilibrium problems. For example, nec-
essary and sufficient conditions are obtained for K-invex functions in [14]. The concept
of G-invex functions is introduced by Antczak [3]. Optimality and duality for differen-
tiable G-multiobjective problems are considered in [4, 5]. Noor [26] considered invex
equilibrium problems in the context of invexity. As an extension and refinement of Noor
[26], Farajzadeh [15] gave some results for invex Ky Fan inequalities in topological vector
spaces.

Another important type of generalized convex functions, called univex functions and
preunivex functions, is introduced in [8]. Suppose ∅ �= X ⊆ Rn, η : X × X → Rn, Φ : R → R,
and b = b(x, y) : X × X → R+. A differentiable function F : X → R is said to be univex at
y ∈ X with respect to η, Φ , b if, for all x ∈ X,

b(x, y)Φ
[
F(x) – F(y)

] ≥ ηt(x, y)∇F(y). (1)

Later, some generalized optimality conditions of primal and dual problems were consid-
ered by Hanson and Mond [18]. Combing with generalized type I and univex functions,
optimality conditions and duality for several mathematical programming problems were
considered by many researchers [1, 16, 29], and more and more scholars pay attention to
type I and univex functions [24, 25, 34, 35].

The authors of [2, 6, 9, 12, 27, 30, 33, 36–39] have studied generalized convex interval-
valued mappings and their connection with interval-valued optimization. For example,
Steuer [33] proposed three algorithms, called the F-cone algorithm, E-cone algorithm,
and emanating algorithms, to solve the linear programming problems with interval-valued
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objective functions. To prove strong duality theorems, Wu [37] derived KKT optimal-
ity conditions in the interval-valued problems under convexity hypotheses. Wu [36] also
obtained KKT conditions in an optimization problem with an interval-valued objective
function using H-derivatives and the concept of weakly differentiable functions. Since
the H-derivative suffers certain disadvantages, Chalco-Cano et al. [10] gave KKT-type
optimality conditions, which were obtained using the gH-derivatives of interval-valued
functions. Also, they studied the relationship between the approach presented with other
known approaches given by Wu [36]. However, these methods cannot solve a kind of op-
timization problems with interval-valued objective functions that are not LU-convex but
univex. Antczak [6] used the classical exact l1 penalty function method for solving nondif-
ferentiable interval-valued optimization problems under convexity hypotheses. Optimal-
ity conditions in invex optimization problems with an interval-valued objective function
were discussed by Zhang et al. [39]. Using gH-differentiability, Li et al. [21] introduced
interval-valued invex mappings and gave the optimality conditions for interval-valued ob-
jective functions under invexity. By using the weak derivative of fuzzy functions, Li et al.
[22] defined fuzzy weakly univex functions and considered optimization conditions for
fuzzy minimization problem.

Followed by [21] and [22], in this paper, we introduce the concept of interval-valued
univex mappings, consider optimization conditions for interval-valued univex functions
for the constrained interval-valued minimization problem, and show examples for illus-
tration purposes. The present paper can be seen as promotion and expansion of [20]. The
method presented in this paper is different from that in [6]. Our method cannot solve
Example 3.1 of [6] because the objective function is not gH-differentiable. Example 4.1
shows that the methods given by [6, 33, 36, 37] cannot solve a kind of optimization prob-
lems for interval-valued univex mappings. Example 4.2 shows that the methods given by
Li et al. [22] cannot solve a kind of fuzzy optimization problems for interval-valued univex
mappings. Finally, Example 4.3 shows that the method given in [10] cannot solve a kind
of optimization problems for interval-valued univex mappings. In Sect. 3, we introduce
the concept of interval-valued univex mappings and discuss some their properties. Sec-
tion 4 deals with optimality conditions for the constrained interval-valued minimization
problem under the assumption of interval-valued univexity.

2 Preliminaries
In this paper, a closed interval in R is denoted by A = [aL, aU ]. Every a ∈ R is considered as
a particular closed interval a = [a, a]. The set of closed intervals is denoted by I .

Given A = [aL, aU ] and B = [bL, bU ] ∈ I , the arithmetic operations and order are defined
in [32] as follows:

(1) A + B = [aL + bL, aU + bU ] and –A = {–a : a ∈ A} = [–aU , –aL];
(2) A 	gH B = [min(aL – bL, aU – bU ), max(aL – bL, aU – bU )];
(3) A 
 B ⇔ aL ≤ bL and aU ≤ bU ; A ≺ B ⇔ A 
 B and A �= B.
For X ⊆ Rn, a mapping F : X → I is called an interval-valued function. Then F(x) =

[FL(x), FU(x)], where FL(x) and FU (x) are two real-valued functions defined on Rn and
satisfying FL(x) ≤ FU (x) for every x ∈ X. If FL(x) and FU (x) are continuous, then F(x) is
said to be continuous.

It is well known that the derivative and subderivative of a function is important in the
study of generalized convexity and mathematical programming. For example, a classic
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subdifferential is introduced by Azimov and Gasimov [7]. Some theorems connecting op-
erations on the weak subdifferential in the nonsmooth and nonconvex analysis are pro-
vided in [13]. The derivative and subderivative of interval-valued functions are extensions
of real-valued functions. Due to different arithmetics of intervals, several definitions about
derivatives of interval-valued functions are introduced by the authors, such as weakly dif-
ferentiable functions [36], H-differentiable functions (based on the Hukuhara difference
of two closed intervals [36]), gH-differentiable functions (based on the operation 	gH of
two closed intervals [11, 31]), and subdifferentiable functions (based on the difference
A – B = [aL – bU , aU – bL] of two closed intervals [6]). In this paper, we always use weakly
differentiable and gH-differentiable functions, which are defined as follows.

Let X be an open set in Rn, and let F(x) = [FL(x), FU (x)]. Then F(x) is called weakly
differentiable at x0 if FL(x) and FU (x) are differentiable at x0.

Let x0 ∈ (a, b) and h be such that x0 + h ∈ (a, b). Then

F ′(x0) = lim
x→0

[
F(x0 + h) 	gH F(x0)

]
. (2)

If F ′(x0) ∈ I exists, then F is gH- differentiable at x0.
If FL(x) and FU (x) are differentiable functions at x ∈ (a, b), then F(x) is gH-differentiable

at x, and

F ′(x) =
[
min

{(
FL)′(x),

(
FU)′(x)

}
, max

{(
FL)′(x),

(
FU)′(x)

}]
. (3)

We say that an interval-valued function F is gH-differentiable at x = (x1, . . . , xn) ∈ X if all
the partial gH-derivatives ( ∂F

∂x1
)(x), . . . , ( ∂F

∂xn
)(x) exist on some neighborhood of x and are

continuous at x. We write

∇F(x) =
((

∂F
∂x1

)
(x),

(
∂F
∂x2

)
(x), . . . ,

(
∂F
∂xn

)
(x)

)t

,

and we call ∇F(x) the gradient of a gH-differentiable interval-valued function F at x.
Let H(Rn) denote the family of nonempty compact subsets of Rn. For A, B ∈ H(Rn), the

Hausdorff metric h(A, B) on H(Rn) is defined by

h(A, B) = inf
{
ε | A ⊆ N(B, ε), B ⊆ N(A, ε)

}
,

where

N(A, ε) =
{

x ∈ Rn | d(x, A) < ε
}

, d(x, A) = inf
a∈A

‖x – a‖.

The following basic result (which can be found in Lemma 3.1. of [19]) of the mathemat-
ical analysis is well known:

Suppose that Φ : Rn → Rn is continuous and let X ∈H(Rn). Then the mapping

Ψ : H
(
Xn) →H

(
Rn), Ψ (A) =

{
φ(a) | a ∈ A

}

is uniformly continuous in h-metric.
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We say that Ψ : I → I is increasing if A 
 B implies Ψ (A) 
 Ψ (B). From the above result
we can prove the following result:

If function Φ : R → R is increasing, then Ψ : I → I is increasing. Moreover,
Ψ ([aL, aU ]) = [Φ(aL),Φ(aU )].

3 Interval-valued univex functions
In this section, we define interval-valued univex functions as a generalization of univex
functions [8] and discuss some their properties.

Let X be an invex set in Rn (the concept of an invex set can be found in [8]), and let F be
an interval-valued function. The following definition is a particular case of fuzzy weakly
univex functions, which has been introduced in [22].

Suppose F is a weakly differentiable interval-valued function. Then F is weakly univex
at y ∈ X with respect to η, Φ , b if and only if both FL(x) and FU (x) are univex at y ∈ X, that
is, for all x ∈ X,

b(x, y)Φ
[
FL(x) – FL(y)

] ≥ ηt(x, y)∇FL(y), (4)

b(x, y)Φ
[
FU (x) – FU (y)

] ≥ ηt(x, y)∇FU (y), (5)

where η = η(x, y) : X × X → Rn, Φ : R → R, and b = b(x, y) : X × X × [0, 1] → R+.

Remark 3.1 The concept of LU-invexity for interval-valued functions is introduced in
[39], since it considers the endpoint functions; in this paper, we call them weakly invex.
Every interval-valued weakly invex function is interval-valued weakly univex with respect
to η, b, Φ , where

Φ(x) = x, b = 1,

but the converse is not true.

Example 3.1 Consider the function F : (–∞, 0) → I defined by

F(x) = [1, 2]x3,

η(x, y) =

⎧
⎨

⎩
x2 + xy + y2, x > y,

x – y, x ≤ y,

b(x, y) =

⎧
⎨

⎩

y2

x–y , x > y,

0, x ≤ y.

Let Φ : R → R be defined by Φ(V ) = 3V , FL(x) = 2x3, and FU (x) = x3; then ∇FL(x) = 6x2

and ∇FU (x) = 3x2. Then F is interval-valued weakly univex but not interval-valued weakly
invex, since for x = –2 and y = –1, FU (x) – FU (y) < ηt(x, y)∇FU (y).

Let X be a nonempty open set in Rn, η : X × X → Rn, Ψ : I → I , and b = b(x, y) :
X × X → R+.
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Definition 3.1 Suppose F is a gH-differentiable interval-valued function. Then F is uni-
vex at y ∈ X with respect to η, Ψ , b if for all x ∈ X,

b(x, y)Ψ
[
F(x) 	gH F(y)

] � ηt(x, y)∇F(y). (6)

The following example shows that an interval-valued univex function may not be an
interval-valued weakly univex function.

Example 3.2 Suppose F(x) = [–|x|, |x|], x ∈ R, b = 1, and Φ(a) = a. Then Ψ [a, b] = [a, b] is
induced by Φ(a) = a, and

η(x, y) =

⎧
⎨

⎩
x – y, xy ≥ 0,

x + y, xy < 0.

Then F(x) is gH-differentiable on R, and F ′(y) = [–1, 1]. We can prove that

bΨ
[
F(x) 	gH F(y)

] � ηt(x, y)∇F(y).

Therefore F(x) is univex with respect to η, b, Ψ , but F(x) is not weakly univex since FL(x)
is not univex with respect to η, b, Φ .

Theorem 3.1 Suppose F(x) is gH-differentiable. If F(x) is an interval-valued weakly uni-
vex function with respect to η, b, Φ and Φ is increasing, then F(x) is an interval-valued
univex function with respect to the same η, b, and Ψ , where Ψ is an extension of Φ .

Proof Since F(x) is weakly univex at y, then real-valued functions FL and FU are univex at
y, that is,

b(x, y)Φ
[
FL(x) – FL(y)

] ≥ ηt(x, y)∇FL(y) and

b(x, y)Φ
[
FU (x) – FU (y)

] ≥ ηt(x, y)∇FU (y)

for all x ∈ X.
(i) Under the condition ηt(x, y)∇FL(y) ≤ ηt(x, y)∇FU (y), we have

ηt(x, y)∇F(y) =
[
ηt(x, y)∇FL(y),ηt(x, y)∇FU (y)

]
.

If F(x) 	gH F(y) = [FL(x) – FL(y), FU (x) – FU (y)], then since Φ is increasing, we have

b(x, y)Ψ
[
F(x) 	gH F(y)

]

=
[
b(x, y)Φ

(
FL(x) – FL(y)

)
, b(x, y)Φ

(
FU (x) – FU (y)

)]

� [
ηt(x, y)∇FL(y),ηt(x, y)∇FU (y)

]

= ηt(x, y)∇F(y).
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If F(x) 	gH F(y) = [FU (x) – FU (y), FL(x) – FL(y)], then

b(x, y)Φ
(
FL(x) – FL(y)

)

� b(x, y)Φ
(
FU (x) – FU (y)

)

� ηt(x, y)∇FU (y)

� ηt(x, y)∇FL(y),

and since Φ is increasing, we have

b(x, y)Ψ
[
F(x) 	gH F(y)

]

= [b(x, y)Ψ
[
FU (x) – FU (y), FL(x) – FL(y)

]

=
[
b(x, y)Φ

(
FU (x) – FU (y)

)
, b(x, y)Φ

(
FL(x) – FL(y)

)]

� [
ηt(x, y)∇FL(y),ηt(x, y)∇FU (y)

]

= ηt(x, y)∇F(y).

(ii) Under the condition ηt(x, y)∇FL(y) > ηt(x, y)∇FU (y), we have

ηt(x, y)∇F(y) =
[
ηt(x, y)∇FU (y),ηt(x, y)∇FL(y)

]
.

If F(x) 	gH F(y) = [FU (x) – FU (y), FL(x) – FL(y)], then since Φ is increasing, we have

b(x, y)Ψ
[
F(x) 	gH F(y)

]

=
[
b(x, y)Φ

(
FU (x) – FU (y)

)
, b(x, y)Φ

(
FL(x) – FL(y)

)]

� [
ηt(x, y)∇FU (y),ηt(x, y)∇FL(y)

]

= ηt(x, y)∇F(y).

If F(x) 	gH F(y) = [FL(x) – FL(y), FU (x) – FU (y)], then

b(x, y)Φ
(
FU (x) – FU (y)

)

� b(x, y)Φ
(
FL(x) – FL(y)

)

� ηt(x, y)∇FL(y)

� ηt(x, y)∇FU (y).

Since Φ is increasing, we have

b(x, y)Ψ
[
F(x) 	gH F(y)

]

= b(x, y)Ψ
[
FL(x) – FL(y), FU (x) – FU (y)

]

=
[
b(x, y)Φ

(
FL(x) – FL(y)

)
, b(x, y)Φ

(
FU (x) – FU (y)

)]

� [
ηt(x, y)∇FU (y),ηt(x, y)∇FL(y)

]

= ηt(x, y)∇F(y). �
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Remark 3.2 If Φ is nonincreasing, then Theorem 3.1 may not be true (as shown in the
following Example 3.3).

Example 3.3 Suppose F(x) = [–2, 1]x2, x < 0. Then F(x) is gH-differentiable and weakly
differentiable. It is easy to check that F(x) is weakly univex with respect to η(x, y) = x – y,

b(x, y) =

⎧
⎨

⎩
1, x ≤ y < 0,
–2y(x–y)
–x2+y2 , y < x < 0,

and Φ(a) = |a|. However, F(x) is not univex with respect to the same η(x, y), b, and Ψ ,
where Ψ is defined by the extension of Φ(a) = |a|.

4 Optimality criteria for interval-valued univex mappings
In this section, for gH-differentiable interval-valued univex functions, we establish suffi-
cient optimality conditions for a feasible solution x∗ to be an optimal solution or a non-
dominated solution for (P).

Suppose F(x), g1(x), . . . , gm(x) are gH-differentiable interval-valued mappings defined on
a nonempty open set X ⊆ Rn. Then, we consider the primal problem:

(P) min F(x)

s.t. g(x) 
 0.

Let P := {x ∈ X : g(x) 
 0} denote the feasible set of (P).
Since 
 is a partial order, the optimal solution may not exist for some interval-valued op-

timization problems. Therefore, authors always consider the concept of a nondominated
solution in this situation. We reconsider an optimal solution and nondominated solution
as follows.

Definition 4.1
(i) x∗ ∈ P is an optimal solution of (P) ⇔ F(x∗) 
 F(x) for all x ∈ P. In this case, F(x∗) is

called the optimal objective value of F .
(ii) x∗ ∈ P is a nondominated solution of (P) ⇔ there exists no x0 ∈ P such that

F(x0) ≺ F(x∗). In this case, F(x∗) is called the nondominated objective value of F .

Theorem 4.1 Let x∗ be P-feasible. Suppose that:
(i) there exist η, Ψ0, b0, Ψi, bi, i = 1, 2, . . . , m, such that

b0(x, y)Ψ0
[
F(x) 	gH F

(
x∗)] � ηt(x, x∗)∇F

(
x∗) (7)

and

–bi
(
x, x∗)Ψi

[
gi

(
x∗)] � ηt(x, x∗)∇gi

(
x∗) (8)

for all feasible x;
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(ii) there exists y∗ ∈ Rm such that

∇F
(
x∗) = –y∗t∇g

(
x∗), (9)

y∗ ≥ 0. (10)

Further suppose that

Ψ0(μ) � 0 ⇒ μ � 0, (11)

μ 
 0 ⇒ Ψi(μ) � 0, (12)

and

b0
(
x, x∗) > 0, bi

(
x, x∗) ≥ 0, (13)

for all feasible x. Then x∗ is an optimal solution of (P).

Proof Let x be P-feasible. Then

g(x) 
 0.

This, along with (12), yields

Ψi
[
gi(x)

] � 0.

From (7)–(13) it follows that

b0
(
x, x∗)Ψ0

[
F(x) 	gH F

(
x∗)] � ηt(x, x∗)∇F

(
x∗)

= –ηt(x, x∗)
m∑

i=1

yi∇gi
(
x∗)

�
m∑

i=1

bi
(
x, x∗)yiΨi

[
gi(x∗]

� 0.

From (13) it follows that

Ψ0
[
F(x) 	gH F

(
x∗)] � 0.

By (11) we have

F(x) 	gH F
(
x∗) � 0.

Thus

F(x) � F
(
x∗).

Therefore x∗ is an optimal solution of (P). �
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Remark 4.1 If we change the condition

Ψ0(μ) � 0 ⇒ μ � 0

of Theorem 4.1 by

Ψ0(μ) ⊀ 0 ⇒ μ⊀ 0, (14)

then x∗ is a nondominated solution of (P).

In Theorem 18 of [20], the authors also gave a sufficient optimality condition for a fea-
sible solution x∗ to be an optimal solution. In this theorem, the equation

∇F
(
x∗) + y∗t∇g

(
x∗) = 0

was used, substituted for (9) of Theorem 4.1. We can prove that the previous equation
is very restrictive. In fact, in case F(x) is a unary function, suppose ∇F(x∗) = [a, b] and
y∗t∇g(x∗) = [yc, yd]. Then we have [a, b] + [yc, yd] = [a + yc, b + yd] = 0, where a ≤ b and
yc ≤ yd. Therefore we have a = b and c = d since y ≥ 0. That is to say, ∇F(x∗) is a real num-
ber instead of an interval. In the following example, we can observe that x∗ is an optimal
solution of (P), but x∗ do not satisfies the previous equation. The following example also
shows the advantages of our method over [6, 33, 36, 37].

Example 4.1

min F(x) =
[

1
2

,
3
2

]
sin2 x1 +

[
1
2

,
3
2

]
sin2 x2

s.t. g(x) =
[

1
2

,
3
2

]
(sin x1 – 1)2 +

[
1
2

,
3
2

]
(sin x2 – 1)2 
 1

4

[
1
2

,
3
2

]
,

x1, x2 ∈
(

0,
π

2

)
.

We can observe that F(x) is weakly differentiable, H-differentiable, and gH-differentiable.
Since the interval-valued function F(x) is not convex, the method in [6, 33, 36, 37] cannot
be used.

The function F(x) is interval-valued univex with respect to

η(x, y) =

⎧
⎨

⎩
( sin x1–sin y1

cos y1
, sin x2–sin y2

cos y2
)t , (x1, x2) ≥ (y1, y2),

0 otherwise,

b0(x, y) =

⎧
⎨

⎩
1, (x1, x2) ≥ (y1, y2),

0 otherwise,

and Ψ is induced by Φ(a) = 2a, b1(x, y) = b0(x, y), and Ψ1 is induced by Φ1(a) = |a|, where
x = (x1, x2)t and y = (y1, y2)t . The point x∗ = (sin–1(1 – 1

2
√

2 ), sin–1(1 – 1
2
√

2 ))t is a feasible
solution. We can also see that (F , g) satisfies the hypotheses of Theorem 4.1. Therefore
x∗ = (sin–1(1 – 1

2
√

2 ), sin–1(1 – 1
2
√

2 ))t is an optimal solution.
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Theorem 4.2 Let x∗ be P-feasible. Suppose that:
(i) there exist η, Ψ0, b0, Ψi, bi, i = 1, 2, . . . , m, such that

b0(x, y)Ψ0
[
F(x) 	gH F

(
x∗)] � ηt(x, x∗)∇F

(
x∗) (15)

and

–bi
(
x, x∗)Ψi

[
gi

(
x∗)] � ηt(x, x∗)∇gi

(
x∗) (16)

for all feasible x;
(ii) there exists y∗ ∈ Rm such that

{∇F
(
x∗)}L =

{
–y∗t∇g

(
x∗)}L, (17)

y∗ ≥ 0. (18)

Further, suppose that

Ψ0(μ) ⊀ 0 ⇒ μ⊀ 0, (19)

μ 
 0 ⇒ Ψi(μ) � 0, (20)

and

b0
(
x, x∗) > 0, bi

(
x, x∗) ≥ 0 (21)

for all feasible x. Then x∗ is a nondominated solution of (P).

Proof Let x be P-feasible. Then

g̃(x) 
 0.

From (20) we conclude

Ψi
[
gi(x)

] � 0.

From (15), (16) it follows that

b0(x, y)
{
Ψ0

[
F(x) 	gH F

(
x∗)]}L ≥ {

ηt(x, x∗)∇F
(
x∗)}L,

b0(x, y)
{
Ψ0

[
F(x) 	g F

(
x∗)]}U ≥ {

ηt(x, x∗)∇F
(
x∗)}U ,

and

bi
(
x, x∗){Ψi

[
gi

(
x∗)]}L ≤ {

–ηt(x, x∗)∇gi
(
x∗)}L,

bi
(
x, x∗){Ψi

[
gi

(
x∗)]}U ≤ {

–ηt(x, x∗)∇gi
(
x∗)}U .
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Since

ηt(x, x∗)∇F
(
x∗) = ηt(x, x∗)[{∇F

(
x∗)}L,

{∇F
(
x∗)}U]

]

=

⎧
⎨

⎩
[ηt(x, x∗){∇F(x∗)}L,ηt(x, x∗){∇F(x∗)}U ], ηt(x, x∗) ≥ 0,

[ηt(x, x∗){∇F(x∗)}U ,ηt(x, x∗){∇F(x∗)}L], ηt(x, x∗) < 0,

and

–ηt(x, x∗)∇gi
(
x∗) = –ηt(x, x∗)[{∇gi

(
x∗)}L,

{∇gi
(
x∗)}U]

]

=

⎧
⎨

⎩
[ηt(x, x∗){–∇gi(x∗)}U ,ηt(x, x∗){–∇gi(x∗)}L], ηt(x, x∗) ≥ 0,

[ηt(x, x∗){–∇gi(x∗)}L,ηt(x, x∗){–∇gi(x∗)}U ], ηt(x, x∗) < 0,

we consider the following two cases.
Case (i)

{
ηt(x, x∗)∇F

(
x∗)}L = ηt(x, x∗){∇F

(
x∗)}L

and

{
–ηt(x, x∗)∇gi

(
x∗)}L = ηt(x, x∗){–∇gi

(
x∗)}U

yield

{
ηt(x, x∗)∇F

(
x∗)}U = ηt(x, x∗){∇F

(
x∗)}U

and

{
–ηt(x, x∗)∇gi

(
x∗)}U = ηt(x, x∗){–∇gi

(
x∗)}L.

Thus

b0(x, y)
{
Ψ0

[
F(x) 	gH F

(
x∗)]}L ≥ {

ηt(x, x∗)∇F
(
x∗)}L

= ηt(x, x∗){∇F
(
x∗)}L

= ηt(x, x∗){–y∗t∇g
(
x∗)}L

≥
m∑

i=1

bi
(
x, x∗)yi

{
Ψi

[
gi

(
x∗)]}L

≥ 0.

From (21) it follows that

Ψ0
[
F(x) 	gH F

(
x∗)] � 0.
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Then

F(x) 	gH F
(
x∗)

⊀ 0,

and thus

F(x) ⊀ F
(
x∗).

Therefore x∗ is a nondominated solution of (P).
Case (ii)

{
ηt(x, x∗)∇F

(
x∗)}L = ηt(x, x∗){∇F

(
x∗)}U

and

{
–ηt(x, x∗)∇gi

(
x∗)}L = ηt(x, x∗){–∇gi

(
x∗)}L

yield

{
ηt(x, x∗)∇F

(
x∗)}U = ηt(x, x∗){∇F

(
x∗)}L

and

{
–ηt(x, x∗)∇gi

(
x∗)}U = ηt(x, x∗){–∇gi

(
x∗)}U .

Thus

b0(x, y)
{
Ψ0

[
F(x) 	gH F

(
x∗)]}U ≥ {

ηt(x, x∗)∇F
(
x∗)}U

= ηt(x, x∗){∇F
(
x∗)}L

= ηt(x, x∗){–y∗t∇g
(
x∗)}L

≥
m∑

i=1

bi
(
x, x∗)yi

{
Ψi

[
gi

(
x∗)]}L

≥ 0,

From (21) it follows that

Ψ0
[
F(x) 	gH F

(
x∗)]

⊀ 0.

Then

F(x) 	gH F
(
x∗)

⊀ 0,

and thus

F(x) ⊀ F
(
x∗).

Therefore x∗ is a nondominated solution of (P). �
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Theorem 4.3 Let x∗ be P-feasible. Suppose that:
(i) there exist η, Ψ0, b0, Ψi, bi, i = 1, 2, . . . , m, such that

b0(x, y)Ψ0
[
F(x) 	gH F

(
x∗)] � ηt(x, x∗)∇F

(
x∗) (22)

and

–bi
(
x, x∗)Ψi

[
gi

(
x∗)] � ηt(x, x∗)∇gi

(
x∗) (23)

for all feasible x;
(ii) there exists y∗ ∈ Rm such that

{∇F
(
x∗)}U =

{
–y∗t∇g

(
x∗)}U , (24)

y∗ ≥ 0. (25)

Further, suppose that

Ψ0(μ) ⊀ 0 ⇒ μ⊀ 0, (26)

μ 
 0 ⇒ Ψi(μ) � 0, (27)

and

b0
(
x, x∗) > 0, bi

(
x, x∗) ≥ 0 (28)

for all feasible x. Then x∗ is a nondominated solution of (P).

The following example shows the advantages of our method over [22].

Example 4.2

min F(x) = [–1, 1]|x|
s.t. g(x) = x – 1 ≤ 0.

Since FL(x) = –|x| and FU (x) = |x| is not differentiable at x = 0, F(x) is not weakly differ-
entiable at x = 0. Therefore the method in [22] cannot be used.

Note that the objective function F(x) is gH-differentiable on R and that F ′(y) = [–1, 1].
Let

b0(x, y) =

⎧
⎨

⎩
1, x < y < 0 or 0 < x < y,

0 otherwise.

the function Ψ0[a, b] = [a, b] is induced by Φ0(a) = a, and

η(x, y) =

⎧
⎨

⎩
x – y, x < y < 0 or 0 < x < y,

0 otherwise.
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Let b1 = 1, and let Ψ1 be induced by Φ1(a) = |a|. The point x∗ = 1 is a feasible solution. We
can see that (F , g) satisfies the hypotheses of Theorem 4.2. Therefore x∗ = 1 is a nondom-
inated solution.

The following example also shows the advantages of our method over [10] and [23, 28].

Example 4.3

min F(x) = [–2, 1]x2, x < 0,

s.t. g(x) = x + 1 ≤ 0.

Then F(x) is gH-differentiable and weakly differentiable. Since F(x) is not LU-convex, the
methods of [10] cannot be used, and since FL(x) + FU(x) = –x2 is not convex, the methods
of [23, 28] cannot be used.

Let

b0(x, y) =

⎧
⎨

⎩
1, x ≤ y < 0,
–2y(x–y)
–x2+y2 , y < x < 0,

and Ψ0[a, b] =

⎧
⎨

⎩
[a, b], [a, b] 
 0,

Ψ ([a, b]), [a, b] � 0,

where Ψ ([a, b]) induced by Φ(a) = |a|, and

η(x, y) =

⎧
⎨

⎩
x – y, x < y < 0 or 0 < x < y,

0 otherwise.

Let b1(x, y) = 1 and Φ1(a) = Φ(a) = |a|. The point x∗ = –1 is a feasible solution. We can see
that (F , g) satisfies the hypotheses of Theorem 4.3, and therefore x∗ = –1 is a nondomi-
nated solution.

5 Conclusion
The objective of this paper is to introduce the concept of gH-differentiable interval-valued
univex mappings and discuss the relationship between interval-valued univex mappings
and interval-valued weakly univex mappings. We derive sufficient optimality conditions
for constrained interval-valued minimization problem under interval-valued univex map-
pings. In future work, we hope to give sufficient optimality conditions for a nondifferen-
tiable interval-valued optimization problem under univexity hypotheses.
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