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1 Introduction
In this paper, we consider the eigenvalues of a real symmetric matrix of order n ≥ 2 with
zero diagonal. The set of such matrices is denoted by Mn, that is,

Mn =
{

A = (aij) ∈R
n×n : aij = aji, aii = 0

}
.

By G(A) we denote the underlying graph of A ∈ Mn, that is, it is a simple graph (without
loops or multiple edges) whose vertices correspond to rows (or columns) of A with two
vertices vi and vj adjacent whenever the (i, j)th entry of A is nonzero. Let

Bn =
{

A ∈Mn : G(A) is bipartite
}

.

We denote by Kn the complete graph on n vertices and by Km,n the complete bipartite
graph with corresponding color classes of sizes m, n. We also use the following notation:
Jn denotes the all-ones matrix of order n, whereas Jm,n is the all-ones matrix of order m×n.
Note that A(Kn) = Jn – In, where In is the unit matrix of order n, whereas

A(Km,n) =

[
Om Jm,n

Jn,m On

]

.

Throughout the paper, we assume that the eigenvalues of a matrix A, that is, the roots
of its characteristic polynomial ϕA(λ) = det(λI – A) (or, occasionally, its underlying graph
G = G(A)) are ordered in nonincreasing way (λi(A) ≥ λj(A) for i < j).
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We will frequently exploit the well-known Courant–Weyl inequalities (see, e.g., [2,
p. 239]).

Theorem 1.1 Let A and B be n × n Hermitian matrices. Then

λi(A + B) ≤ λj(A) + λi–j+1(B) (n ≥ i ≥ j ≥ 1), (1.1)

λi(A + B) ≥ λj(A) + λi–j+n(B) (1 ≤ i ≤ j ≤ n), (1.2)

with equality in (1.1) for a pair i, j if and only if there is a nonzero vector x such that Ax =
λj(A)x, Bx = λi–j+1(B)x, and (A+B)x = λi(A+B)x and in (1.2) if and only if there is a nonzero
vector x such that Ax = λj(A)x, Bx = λi–j+n(B)x, and (A + B)x = λi(A + B)x. If A and B have
no common eigenvector, then every inequality in (1.1) and (1.2) is strict.

The rest of the paper is organized as follows. In Sect. 2, we introduce the concept of
a bipartite complement of a real symmetric matrix with zero diagonal whose underlying
graph is bipartite, and then we show that the odd-indexed eigenvalues of the initial matrix
interlace the even-indexed eigenvalues of its bipartite complement (and vice versa). In
this section, we also show that the bounds on the second largest eigenvalue of matrices
in Mn whose off-diagonal entries are in the (closed) interval [0, 1], as given in [3], can be
significantly improved in the case where the underlying graph of a matrix in question is
bipartite. Also, we extend these results (i.e., bounds) in several directions. First, we prove
that these bounds hold for all matrices in Mn, not only for those with aij ∈ [0, 1]; second,
we prove that similar bounds hold for the other eigenvalues (not only for the second largest
one). We also deduce, in the nonbipartite case, similar properties for a real symmetric
matrix with zero diagonal with respect to its complement. In Sect. 3, we focus on matrices
whose underlying graphs are bipartite and all nonzero entries are in a given interval. We
provide both upper and lower bounds on the largest eigenvalue of these matrices. If the
corresponding matrices are nonnegative, then we also provide upper and lower bounds on
the second largest eigenvalue. Here we give a partial answer to the problem posed in [4],
that is, we determine extremal values for the second largest eigenvalue of a real symmetric
matrix whose entries lie in a nonnegative interval.

2 Matrices with bipartite underlying graph
Let A ∈ Bn and assume that G(A) has two color classes of sizes p and q. We write Bp,q,
p + q = n, p, q > 0, if p and q are relevant further on. Then A ∈ Bp,q with suitable (and
simultaneous) permutation of rows and columns has the following form:

A =

[
Op B
BT Oq

]

(2.1)

with B ∈ R
p×q. The bipartite complement of A (with respect to the above form) is the

matrix

Ab = A(Kp,q) – A, (2.2)
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where

A(Kp,q) =

[
Op Jp,q

Jq,p Oq

]

,

that is, A + Ab is the adjacency matrix of the complete bipartite graph Kp,q. Note that,
for reducible symmetric matrices or, equivalently, for those with disconnected underlying
graphs, such a representation (i.e., form) need not be unique. This stems from the fact that
color classes only in disconnected bipartite graphs need not be uniquely determined. Note
also that if we restrict ourselves to {0, 1}-matrices or just simple graphs, then the bipartite
complement of a disconnected bipartite graph need be neither unique nor connected (ob-
serve, for example, two copies of K1,2). In the graph theory the bipartite complement may
be also considered as a Seidel switching regarding the color classes (cf. [1, p. 5]). Finally,
note that (Ab)b = A, provided that color classes of G(A) and G(Ab) are preserved in both
graphs.

We first establish relations between the eigenvalues of A and Ab. Recall that the spectrum
of a symmetric matrix with bipartite underlying graph is symmetric with respect to the
origin (see, e.g., [1, p. 56]).

Theorem 2.1 Let A ∈ Bp,q (p + q ≥ 3, p, q ≥ 1), and let Ab be its bipartite complement. If
n ≥ 3, then

λ1(A) ≥ λ2
(
Ab), λn(A) ≤ λn–1

(
Ab), (2.3)

and

λj+1
(
Ab) ≤ λj(A) ≤ λj–1

(
Ab) (2 ≤ j ≤ n – 1). (2.4)

Proof Since the eigenvalues of A(Kp,q) are √pq, 0, . . . , 0︸ ︷︷ ︸
n–2

, –√pq, by Theorem 1.1 (case (1.2))

we obtain

0 = λ2
(
G(Kp,q)

)
= λ2

(
A + Ab) ≥ λj(A) + λ2–j+n

(
Ab) (2 ≤ j ≤ n).

Hence

λj(A) + λ2–j+n
(
Ab) ≤ 0, (2.5)

that is, λj(A) ≤ –λ2–j+n(Ab). Since the underlying graph of Ab is bipartite, its spectrum is
symmetric with respect to the origin, which implies –λ2–j+n(Ab) = λj–1(Ab) for all 2 ≤ j ≤ n.
So, we obtain

λj(A) ≤ λj–1
(
Ab) (2 ≤ j ≤ n).

For j = n, we obtain the second inequality in (2.3). From (2.5), for j ≥ 2, we can also obtain
λn+2–j(Ab) ≤ –λj(A) = λn+1–j(A), which in turn is equivalent to λj(Ab) ≤ λj–1(A) for 2 ≤ j ≤
n. In particular, for j = 2, we obtain the first inequality in (2.3). �
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This result tells that the even- and odd-indexed eigenvalues of A interlace the odd- and
even-indexed eigenvalues of Ab, respectively. We now deduce when the first inequality in
(2.3) becomes equality under the constraint that all entries of A belong to [0, 1].

Theorem 2.2 If A ∈ Bp,q (p + q ≥ 3, p, q ≥ 1) is a matrix with all entries in [0, 1], then

λ2(A) = λ1
(
Ab) (2.6)

if and only if G(Ab) is disconnected, and either

A = A(Kp,q) or, equivalently, Ab = O,

or there exists a nonzero vector x ∈R
n such that Abx = λn(Ab)x and

(0, . . . , 0︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
q

)x = 0, (1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

)x = 0. (2.7)

Proof If A = A(Kp,q), then we are immediately done. So let A �= A(Kp,q). Then

λ2(A) + λn
(
Ab) = λ2

(
A(Kp,q)

)
,

since λn(Ab) = –λ1(Ab) and λ2(A(Kp,q)) = 0. By Theorem 1.1, case (1.2), the previous equal-
ity holds if and only if there exists a nonzero vector x such that

Ax = λ2(A)x, Abx = λn
(
Ab)x, A(Kp,q)x = λ2

(
A(Kp,q)

)
x = 0.

The last condition is equivalent to (2.7).
We now prove that G(Ab) is disconnected. Suppose on the contrary that G(Ab) is con-

nected. Then Ab is irreducible. If x = (yt , zt)t is the eigenvector corresponding to λn(Ab),
then (yt , –zt)t is the eigenvector corresponding to λ1(Ab). Therefore (yt , –zt)t is a scalar
multiple of the Perron eigenvector of Ab. (Note that both A and Ab are nonnegative.) This
implies that all entries of y must be either strictly positive or strictly negative. Hence their
sum cannot be equal to 0 as expected (see (2.7)). A similar argument holds for z, and we
arrive at a contradiction.

Suppose now that there exists a nonzero vector x such that Abx = λn(Ab)x and (2.7)
holds. Since A + Ab = A(Kp,q), we have (A + Ab)x = A(Kp,q)x and Ax + Abx = 0, since
A(Kp,q)x = 0 due to (2.7). Therefore Ax = –λn(Ab)x = λ1(Ab)x. This means that λ1(Ab) is
the eigenvalue of A, and we only need to prove that it is not equal to λ1(A). Since (2.7)
holds, x cannot be a Perron vector, because all entries of a Perron vector can be taken to
be nonnegative.

This completes the proof. �

Remark 2.1 By applying Courant–Weyl inequalities to the largest eigenvalue of A + Ab,
that is, to λ1(A(Kp,q)), we obtain λ1(A) + λ1(Ab) ≥ √pq.

Example 2.1 If G is a nearly complete bipartite graph (with only a few edges missing)
and AG is its adjacency matrix, then the bound (2.3) can be very good. For example, for
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G = K5,6 – e, λ2(AG) = 0.84076, and λ1(Ab
G) = 1. For G = K5,6 – e1 – e2, where e1 and e2 are

two nonadjacent edges in K5,6, λ2(AG) = λ1(Ab
G) = 1.

Next, we consider the Kronecker product A(K2) ⊗ A for any matrix A ∈Mn. Then

[
0 1
1 0

]

⊗ A =

[
O A
A O

]

,

which means that the underlying graph of A(K2) ⊗ A is bipartite. The eigenvalues of
A(K2) ⊗ A are ±λi(A) for 1 ≤ i ≤ n (see [1, p. 44]). The bipartite complement of A(K2) ⊗ A
has the following form:

(
A(K2) ⊗ A

)b =

[
O Ac + In

Ac + In O

]

, (2.8)

where Ac = Jn – In – A (the underlying graph of A + Ac is Kn). In view of Theorems 2.1 and
2.2 and previous observations, together with he corresponding inequalities (2.3) and (2.4)
applied to both A and Ac, we have the following:

Theorem 2.3 Let A be a real symmetric matrix with zero diagonal, and let Ac = Jn – In – A
be its complement. If n ≥ 2, then

λ1(A) ≥ λ2
(
Ac) + 1, λn(A) ≤ λn–1

(
Ac) – 1, (2.9)

and

λj+1
(
Ac) + 1 ≤ λj(A) ≤ λj–1

(
Ac) – 1 (2 ≤ j ≤ n – 1). (2.10)

If A is a matrix with all entries in [0, 1] and if G((A(K2) ⊗ A)b) is disconnected, then

λ2(A) = λ1
(
Ac) – 1 (2.11)

if and only if either A = Jn – In or, equivalently, Ac = O, or there exists a nonzero vector
x ∈R

n such that Acx = λn(Ac)x and jtx = 0.

Remark 2.2 Theorem 2.3 generalizes Proposition 2.1 from [3] since it provides interlacing
between all the eigenvalues of A (i.e., Ac), not only between the largest and second largest
ones.

We conclude this section with the following result.

Proposition 2.4 Let A =
[ O B

Bt O

] ∈ Bp,q be an irreducible nonnegative matrix such that the
matrix B has the fixed row (column) sum equal to r (resp., s). Then σ (A), the spectrum of
A, is

±√
rs, ±μ2

m2 , . . . , ±μk
mk ,

and
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• σ (Ab) = ±(√pq –
√

rs),±μ2
m2 , . . . ,±μk

mk if √pq –
√

rs �= λ2(A),
• σ (Ab) = ±(√pq –

√
rs)m2+1,±μ3

m3 , . . . ,±μk
mk if √pq –

√
rs = λ2(A).

Proof Since the matrices A and A(Kp,q) are symmetric and commute, they can be simulta-
neously diagonalized by, for example, matrix P, that is, P–1AP = D1 and P–1A(Kp,q)P = D.
Consequently, P–1AbP = D – D1. The matrix A(Kp,q) has three distinct eigenvalues, namely√pq, 0, –√pq with multiplicities 1, p + q – 2, 1, respectively. Also, λ1(A) =

√
λ1(BBt) =

√
rs,

since BBt has the constant row sum equal to rs. Now the result directly follows. �

3 Interval matrices
By an interval matrix we assume a matrix whose all entries lie in some interval, say (closed)
interval [a, b] (–∞ < a < b < +∞). Its diagonal entries in general need not be equal to 0.
Let Sn[a, b] denote the set of all symmetric interval matrices over the interval [a, b]. In [4]
the range of extremal eigenvalues of a real symmetric interval matrix was considered.

Here we consider the set of symmetric matrices whose all nonzero entries lie in the
interval [a, b] and whose underlying graphs are bipartite with bipartition U ∪ V , where
|U| = p, |V | = q, p + q = n, p, q > 0. Without loss of generality we may assume that this
set, say B′

p,q[a, b], consists of all matrices of the form
[ O B

Bt O

]
, where B ∈ [a, b]p×q for some

p + q = n, p, q > 0.
We first determine max{λ1(A) : A ∈ B′

p,q[a, b]} and min{λ1(A) : A ∈ B′
p,q[a, b]}, and we

also identify matrices that attain these extremal values.
Let A =

[ O B
Bt O

] ∈ B′
p,q[a, b]. Without loss of generality, we assume that p ≥ q. Then A2 =

[ BBt O
O BtB

]
and ϕA2 (λ) = λp–qϕ2

BtB(λ). Hence λ1(A) =
√

λ1(BtB), where

BtB ∈

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sq[pa2, pb2], 0 ≤ a < b;

Sq[pb2, pa2], a < b ≤ 0;

Sq[pab, pb2], a ≤ 0 < b, |a| ≤ b;

Sq[pab, pa2], a < 0 ≤ b, |a| > b.

(3.1)

Next, we apply the following results to BtB.

Theorem 3.1 ([4]) Let A ∈ Sn[a, b] with n > 2 and a < b.
(i) If |a| > b, then

λ1(A) ≤
⎧
⎨

⎩
n(b – a)/2 if n is even,

(nb –
√

b2 + (n2 – 1)a2)/2 if n is odd.

If n is even, then the equality holds if and only if A is permutation similar to

[
bJ n

2
aJ n

2

aJ n
2

bJ n
2

]

.

If n is odd, then the equality holds if and only if A is permutation similar to

[
bJ n–1

2
aJ n–1

2 , n+1
2

aJ n+1
2 , n–1

2
bJ n+1

2

]

.



Alazemi et al. Journal of Inequalities and Applications         (2019) 2019:50 Page 7 of 12

(ii) If |a| ≤ b, then λ1(A) ≤ nb. If |a| < b, then the equality holds if and only if A = bJn.
If |a| = b, then the equality holds if and only if A is permutation similar to

[
bJk aJk,n–k

aJn–k,k bJn–k

]

for some k with 1 ≤ k ≤ n.

Theorem 3.2 ([4]) Let A ∈ Sn[a, b] with n > 2.
• If 0 < a < b, then λ1(A) ≥ na with equality if and only if A = aJn.
• If a ≤ 0 < b, then λ1(A) ≥ a with equality if and only if A = aIn.

According to the intervals where entries of BtB belong to, we distinguish the following
cases:

(1) If 0 < a < b, then λ1(A) ≤ √pqb. The equality holds if and only if B = bJpq . Also,
λ1(A) ≥ √pqa. The equality holds if and only if B = aJpq .

(2) If a < b < 0, then λ1(A) ≤ √pq|a|. The equality holds if and only if B = aJpq . Here
λ1(A) ≥ √pq|b|. The equality holds if and only if B = bJpq .

(3) If a ≤ 0 < b, |a| ≤ b, then λ1(A) ≤ √pqb. If |a| = b, then the equality holds if and only
if B is permutation similar to

[
bJk aJk,p–k

aJp–k,k bJp–k

]

for some k with 1 ≤ k ≤ n. If |a| < b, then the holds if and only if B = bJpq . In this
case, λ1(A) ≥ 0. The equality holds if and only if B = Opq , since BtB is positive
semidefinite.

(4) If a < 0 ≤ b, |a| > b, then λ1(A) ≤ √pq|a|. The equality holds if and only if B = aJpq .
Also, λ1(A) ≥ 0. The equality holds if and only if B = Opq .

Next, we determine upper and lower bounds on the second largest eigenvalue of bipar-
tite interval matrices with given cardinality of color classes in the case where 0 ≤ a < b or
a < b ≤ 0.

Recall first the following:

Theorem 3.3 ([2, p. 238]) Let A ∈ R
n×n be a symmetric matrix, and let λ1(A) ≥ · · · ≥ λn(A)

be its eigenvalues given in nonincreasing fashion. Let S be a subspace of Rn. Then

λ2(A) = min
{S≤Rn :dim S=n–1}

max
{x:x∈S,‖x‖=1}

xtAx. (3.2)

Next, we provide an upper bound for the second largest eigenvalue of a nonnegative
matrix with entries in a given interval.

Theorem 3.4 Let A ∈ Sn[a, b], n ≥ 2, 0 ≤ a < b, be an irreducible matrix. Then

λ2(A) ≤
⎧
⎨

⎩
n(b – a)/2 if n is even,

(nb –
√

b2 + (n2 – 1)a2)/2 if n is odd.
(3.3)
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Proof Let v1, v2 be unit eigenvectors corresponding to λ1(A) and λ2(A), respectively. Then
v2 is orthogonal to v1. Since A is a nonnegative matrix, all entries of v1 can be taken to be
nonnegative (see [2, p. 529]). Due to orthogonality, v2 has both nonnegative and negative
entries. By simultaneous row and column permutations of A, if necessary, we may assume
that the first k entries of v2 are nonnegative, whereas the remaining are negative for some
k < n. Without loss of generality, we may also assume that k ≥ n – k. (In the opposite case,
instead of v2, we would consider –v2.) Also, λ2(A) can be written in the form

λ2(A) = vt
2Av2 = jt[A ◦ v2vt

2
]
j,

where ◦ denotes the Hadamard entrywise product of matrices, and j is the all-ones vector.
Note that A ◦ v2vt

2 has the sign pattern
[ +k –k,n–k

–n–k,k +n–k

]
. Let

Â = J(k, a, b) =

[
bJk aJk,n–k

aJn–k,k bJn–k

]

(3.4)

and

R
n
k,n–k =

{
(x1, . . . , xn)t ∈ R

n : x1, . . . , xk ≥ 0, xk+1, . . . , xn < 0
}

.

For any x ∈R
n
k,n–k , xtAx ≤ xtÂx, and thus

max
{x:x∈S∩Rn

k,n–k ,‖x‖=1},dim S=n–1
xtAx ≤ max

{x:x∈S∩Rn
k,n–k ,‖x‖=1},dim S=n–1

xtÂx,

min
{S≤Rn :dim S=n–1}

max
{x:x∈S∩Rn

k,n–k ,‖x‖=1}
xtAx ≤ min

{S≤Rn :dim S=n–1}
max

{x:x∈S∩Rn
k,n–k ,‖x‖=1}

xtÂx.

Since both A and Â have at least one eigenvector corresponding to λ2(A), that is, λ2(Â)
belonging to R

n
k,n–k , by (3.2) it follows

λ2(A) = min
{S≤Rn :dim S=n–1}

max
x∈S∩Rn

k,n–k ,‖x‖=1
xtAx

≤ min
{S≤Rn :dim S=n–1}

max
{x:x∈S∩Rn

k,n–k ,‖x‖=1}
xtÂx = λ2(Â),

that is,

λ2(A) ≤ λ2
(
J(k, a, b)

)
. (3.5)

Therefore the maximal value for λ2(A) is attained at some matrix of the form (3.4). The
eigenvalues of Â are 0 with multiplicity n – 2, and λ1,2(Â) = nb±

√
(n–2k)b2+4k(n–k)a2

2 . Since
0 ≤ a < b,

λ2(Â) =
nb –

√
(n – 2k)b2 + 4k(n – k)a2

2
> 0. (3.6)

If n is even, then the right-hand side of (3.6) attains its maximum at k = n
2 , and then λ2(A) ≤

λ2(J( n
2 , a, b)) = n

2 (b – a).
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If n is odd, then the maximal value in (3.6) is attained at k = n–1
2 or k = n+1

2 . Hence

λ2(A) ≤ λ2

(
J
(

n – 1
2

, a, b
))

=
nb –

√
b2 + (n2 – 1)a2

2
.

This completes the proof. �

Theorem 3.5 Let A ∈ Sn[a, b], n ≥ 2, 0 ≤ a < b, be an irreducible matrix. If n is even, then
λ2(A) = n

2 (b – a) if and only if A is permutation similar to

[
bJ n

2
aJ n

2

aJ n
2

bJ n
2

]

.

If n is odd, then λ2(A) = 1
2 (nb –

√
b2 + (n2 – 1)a2) if and only if A is permutation similar to

[
bJ n–1

2
aJ n–1

2 , n+1
2

aJ n+1
2 , n–1

2
bJ n+1

2

]

.

Proof For even n, let A ∈ Sn[a, b] be a matrix satisfying λ2(A) = n
2 (b – a), and let x =

(x1, . . . , xn)t be a corresponding unit eigenvector. First, suppose that x has no zero entries
and that k of them are positive and n – k negative. If k �= n

2 , then by (3.5) we know that
λ2(A) ≤ λ2(J(k, a, b)) < λ2(J( n

2 , a, b)) = n(b–a)
2 , a contradiction. Therefore k = n

2 . By simulta-
neous row and column permutations of A, if necessary, we may assume that xi > 0 for i ≤ n

2
and xj < 0 for j > n

2 . Then

λ2(A) = xtAx ≤ xtJ
(

n
2

, a, b
)

x ≤ λ2(A)

implies that A = J( n
2 , a, b). Otherwise, the first inequality would be strict, a contradiction.

Therefore, the initial matrix A is permutation similar to J( n
2 , a, b).

The equality condition for odd n when x has no zero components can be proved simi-
larly, and therefore we omit it. Note that

[
bJ n+1

2
aJ n+1

2 , n–1
2

aJ n–1
2 , n+1

2
bJ n–1

2

]

and

[
bJ n–1

2
aJ n–1

2 , n+1
2

aJ n+1
2 , n–1

2
bJ n+1

2

]

are permutation similar.
Otherwise, if n is even and x has zero entries, then without loss of generality it can be

represented in the form x = (u, 0, . . . , 0︸ ︷︷ ︸
n–k′

), where u ∈ R
k′ , k′ < n, and u has no zero entries.

Consequently, A can be partitioned in the form
[ Ã B

Bt C

]
, where Ã ∈ R

k′×k′ , B ∈ R
k′×(n–k′),

and C ∈R
(n–k′)×(n–k′), provided that

Ãu = λ2(A)u, (3.7)

Btu = 0. (3.8)
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From (3.7) it follows that λ2(A) ∈ Spec(Ã), and therefore λ2(A) = λ1(Ã) or λ2(A) = λ2(Ã). If
the second equality holds, then u is the corresponding eigenvector for λ2(Ã) with no zero
entries, and hence from the first case it follows that λ2(A) = λ2(Ã) ≤ k′

2 (b – a) < n
2 (b – a) if

k′ is even and similarly if k′ is odd, a contradiction.
Therefore λ2(A) = λ1(Ã), and u is the corresponding positive eigenvector (since we as-

sumed that u has no zero entries). From (3.8) it follows that any row of Bt is orthogonal to
u, and consequently Bt = O since Bt is a nonnegative matrix (note that a = 0 in this case).
Assume that v1 = [vt , wt], v ∈ R

k′ , w ∈ R
n–k′ . Having in mind that B = O, it easily follows

that Cw = λ1(A)w, that is, λ1(A) ∈ Spec(C), which implies λ1(A) = λ1(C).
According to Theorem 3.1, if n is even and k′ < n

2 , then λ2(A) = λ1(Ã) ≤ k′b < n
2 b, a

contradiction. Hence k′ = n
2 . Moreover, again by Theorem 3.1, λ1(Ã) = n

2 b if and only if
Ã = bJ n

2
. Consequently, n

2 b = λ2(A) ≤ λ1(A) ≤ (n – k′)b = n
2 b, that is, λ1(C) = n

2 b, which
implies C = bJ n

2
. Hence A = J( n

2 , 0, b).
If n is odd and x contains zeros, in a similar way, we can prove that the equality holds if

and only if A = J( n–1
2 , 0, b).

This completes the proof. �

For the remaining cases, where not both a and b are nonnegative, we conjecture the
following:

Conjecture 1 Let

Â(r, s, t) =

⎡

⎢
⎣

bJr aJrs aJrt

aJsr bJs aJst

aJtr aJts bJt

⎤

⎥
⎦ , B̃(k, l) =

[
bJk Okl

Olk bJl

]

,

and let A ∈ Sn[a, b], n ≥ 2, be an irreducible matrix.
(i) If a < 0 ≤ b, then

λ2(A) ≤ max
r+s+t=n,

k+l=n,r,s,t,k,l≥1

{
λ2

(
Â(r, s, t)

)
,λ2

(
B̃(k, l)

)}
.

(ii) If a < b ≤ 0, then

λ2(A) ≤ max
r+s+t=n,r,s,t≥1

λ2
(
Â(r, s, t)

)
.

For A =
[ O B

Bt O

]
, where B ∈ R

p×q[a, b], BtB is nonnegative if 0 ≤ a < b or a < b ≤ 0. Since
λ2(A) =

√
λ2(BtB), it follows that

λ2(A) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
pq|b2–a2|

2 if q is even and 0 ≤ a < b or a < b ≤ 0,
√

pqb2–
√

p2b4+(q2–1)p2a4

2 if q is odd and 0 ≤ a < b,
√

pqa2–
√

p2a4+(q2–1)p2b4

2 if q is odd and a < b ≤ 0.

We next consider the lower bounds for second largest eigenvalue of the matrix inSn[a, b]
for |a| < b.
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Recall that λ2(A) ≥ λ2(C), where C is any principal submatrix of A of order k. In partic-
ular,

λ2(A) ≥ λ2

([
aii aij

aji ajj

])

=
aii + ajj –

√
(aii – ajj)2 + 4a2

ij

2
≥ a – b. (3.9)

Thus λ2(A) ≥ a – b. If λ2(A) = a – b, then all the inequalities in (3.9) must be equalities.
This forces aii = ajj = a and aij = aji = b. As this should be true for all i < j, A = bJ + (a – b)I .

Therefore we proved the following:

Theorem 3.6 Let A ∈ Sn[a, b], n ≥ 2, |a| < b, then

λ2(A) ≥ a – b.

The equality holds if and only if A = bJ + (a – b)I .

Next, we focus only on bipartite interval matrices belonging to the set B′
p,q[0, 1].

Proposition 3.7 Let A ∈ B′
p,q[0, 1], n ≥ 3. Then λ2(A) ≤ q/2.

Proof Let di(A) be the row sum of ith row of A, D = diag(d1(A), . . . , dn(A)), and Q = D + A =
(D – A) + 2A. The matrix D – A is positive semidefinite, and therefore λ2(A) ≤ λ2(Q)/2
(see [2, p. 495]). On the other hand,

[ qIp Jpq
Jqp pIq

]
= Q +

([ qIp Jpq
Jqp pIq

]
– Q

)
, and

[ qIp Jpq
Jqp pIq

]
– Q is pos-

itive semidefinite. Consequently, Q ≤ [ qIp Jpq
Jqp pIq

]
and λ2(Q) ≤ q, and thus λ2(A) ≤ q/2, as

required. �

Proposition 3.8 Let A ∈ B′
p,q[0, 1]. Then

λ2(A) ≤ max
{

q – r(B), p – s(B)
}

,

where r(B) and s(B) are the minimal row and column sums in B, respectively.

Proof The bound is a direct consequence of Theorem 2.1 and the Frobenius upper bound:

λ2(A) ≤ λ1
(
Ab) ≤ max

1≤i≤n
ri
(
Ab) = max

{
q – r(B), p – s(B)

}
. �
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