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Abstract
In the paper, we introduce two concepts of Katugampola conformable partial
derivatives and α-conformable integrals. As applications, we establish Opial type
inequalities for Katugampola conformable partial derivatives and α-conformable
integrals. The new inequalities in special cases yield some of the recent results on
inequality of this type.
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1 Introduction
In 1960, Opial [1] established the following interesting and important inequality.

Theorem A Suppose that f ∈ C1[0, a] satisfies f (0) = f (a) = 0 and f (x) > 0 for all x ∈ (0, a).
Then the inequality holds

∫ a

0

∣∣f (x)f ′(x)
∣∣dx ≤ a

4

∫ a

0

(
f ′(x)

)2 dx, (1.1)

where this constant a/4 is best possible.

Opial’s inequality and its generalizations, extensions, and discretizations play a funda-
mental role in establishing the existence and uniqueness of initial and boundary value
problems for ordinary and partial differential equations as well as difference equations
[2–6]. Inequality (1.1) has received considerable attention, and a large number of papers
dealing with new proofs, extensions, generalizations, variants, and discrete analogues of
Opial’s inequality have appeared in the literature [7–18].

Recently, some new Opial’s inequalities for the conformable fractional integrals have
been established (see [19–22]). In the paper, we introduce two new concepts of Katugam-
pola conformable partial derivatives and α-conformable integrals. As applications, we es-
tablish some Opial type inequalities for Katugampola conformable partial derivatives and
α-conformable integrals.
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2 Inequalities for Katugampola conformable partial derivatives
We recall the well-known Katugampola derivative formulation of conformable derivative
of order for α ∈ (0, 1] and t ∈ [0,∞), given by

Dα(f )(t) = lim
ε→0

f (teεt–α ) – f (t)
ε

, (2.1)

and

Dα(f )(0) = lim
t→0

Dα(f )(t), (2.2)

provided the limits exist. If f is fully differentiable at t, then

Dα(f )(t) = t1–α df
dt

(t).

A function f is α-differentiable at a point t ≥ 0 if the limits in (2.1) and (2.2) exist and are
finite. Inspired by this, we propose a new concept of α-conformable partial derivative. In
the way of (2.1), we define α-conformable partial derivative.

Definition 2.1 (α-conformable partial derivative) Let α ∈ (0, 1] and s, t ∈ [0,∞). Sup-
pose that f (s, t) is a continuous function and partially derivable, the α-conformable partial
derivative at a point s ≥ 0, denoted by ∂

∂s (f )α(s, t), is defined by

∂

∂s
(f )α(s, t) = lim

ε→0

f (seεs–α , t) – f (s, t)
ε

, (2.3)

provided the limits exist, and is called α-conformable partially derivable.

To generalize Definition 2.1, we give the following definition.

Definition 2.2 (Katugampola conformable partial derivative) Let α ∈ (0, 1] and s, t ∈
[0,∞). Suppose that f (s, t) and ∂

∂s (f )α(s, t) are continuous functions and partially deriv-
able, the Katugampola conformable partial derivative, denoted by ∂2

∂s∂t (f )α2 (s, t), is defined
by

∂2

∂s∂t
(f )α2 (s, t) = lim

ε→0

∂
∂s (f )α(s, teεt–α ) – ∂

∂s (f )α(s, t)
ε

, (2.4)

provided the limits exist, and is called Katugampola conformable partially derivable.

Definition 2.3 (α-conformable integral) Let α ∈ (0, 1], 0 ≤ a < b, and 0 ≤ c < d. A function
f (x, y) : [a, b] × [c, d] →R is α-conformable integrable if the integral

∫ b

a

∫ d

c
f (x, y) dαx dαy :=

∫ b

a

∫ d

c
(xy)α–1f (x, y) dx dy (2.5)

exists and is finite.
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Lemma 2.1 Let α ∈ (0, 1], s, t ∈ [0,∞), and f (s, t), g(s, t) be Katugampola conformable par-
tially differentiable, then

∂2

∂s∂t
(f ◦ g)α2 (s, t) = f ′(g(s, t)

) · ∂2

∂s∂t
(g)α2 (s, t) +

∂

∂t
(g)α(s, t) · ∂

∂t
(
f ′(g(s, t)

))
α

(s, t), (2.6)

where f has derivative at g(s, t).

Proof From Definitions 2.1 and 2.2, we obtain

∂

∂s
(f ◦ g)α(s, t) =

∂

∂s
(
f
(
g(s, t)

))
α

(s, t)

= s1–α ∂

∂s
(
f
(
g(s, t)

))

= s1–αf ′(g(s, t)
) ∂

∂s
(
g(s, t)

)

= f ′(g(s, t)
) ∂

∂s
(g)α(s, t).

Hence

∂2

∂s∂t
(f ◦ g)α2 (s, t) =

∂

∂t

(
∂

∂s
(f ◦ g)α(s, t)

)
α

(s, t)

=
∂

∂t

(
f ′(g(s, t)

) ∂

∂s
(g)α(s, t)

)
α

(s, t)

= t1–α ∂

∂t

(
f ′(g(s, t)

) · ∂

∂s
(g)α(s, t)

)

= t1–α ∂

∂t
(
f ′(g(s, t)

)) · ∂

∂t
(g)α(s, t) + t1–αf ′(g(s, t)

) · ∂

∂t

(
∂

∂s
(g)α(s, t)

)

=
∂

∂t
(g)α(s, t) · ∂

∂t
(
f ′(g(s, t)

))
α

(s, t) + f ′(g(s, t)
) · ∂2

∂s∂t
(g)α2 (s, t).

This completes the proof. �

This similar chain rule theorem is important, but it is also understood. In order for the
reader to better understand this theorem, we give another proof below.

Second proof Let

δ = g
(
seεs–α

, t
)

– g(s, t).

Obviously, if ε → 0, then δ → 0. From the hypotheses, we obtain

∂2

∂s∂t
(f ◦ g)α2 (s, t) =

∂

∂t

(
∂

∂s
(
f
(
g(s, t)

))
α

(s, t)
)

α

(s, t)

=
∂

∂t

(
lim
ε→0

f (g(seεs–α , t)) – f (g(s, t))
ε

)
α

(s, t)

=
∂

∂t

(
lim
δ→0

f (g(s, t) + δ) – f (g(s, t))
δ

· lim
ε→0

δ

ε

)
α

(s, t)
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=
∂

∂t

(
f ′(g(s, t)

) ∂

∂s
(g)α(s, t)

)
α

(s, t)

= f ′(g(s, t)
) · ∂2

∂s∂t
(g)α2 (s, t) +

∂

∂t
(g)α(s, t) · ∂

∂t
(
f ′(g(s, t)

))
α

(s, t).

This completes the proof. �

Theorem 2.1 Let p(s, t), u(s, t) : [a, b] × [c, d] → R with a, c ≥ 0 be Katugampola con-
formable partially derivable such that ∂2

∂s∂t (p)α2 (s, t) > 0, α ∈ (0, 1] and p(a, c) = p(a, d) =
p(b, c) = p(b, d) = 0, and F be derivable on [0,∞) and F ′ be increasing. Let ϕ be a convex
and increasing function on [0,∞), and define

z(s, t) =
∫ s

a

∫ t

c

∂2

∂σ∂τ
(p)α2 (σ , τ ) · ϕ

( | ∂2

∂σ∂τ
(u)α2 (σ , τ )|

∂2
∂σ∂τ

(p)α2 (σ , τ )

)
dασ dατ . (2.7)

Then

∫ b

a

∫ d

c

{
∂2

∂s∂t
(z)α2 (s, t) · F ′

(
p(s, t) · ϕ

( |u(s, t)|
p(s, t)

))

+
∂

∂t
(z)α(s, t) · ∂

∂t
(
F ′(z(s, t)

))
α

(s, t)
}

dαs dαt

≤ F
(∫ b

a

∫ d

c

∂2

∂s∂t
(p)α2 (s, t) · ϕ

( | ∂2

∂s∂t (u)α2 (s, t)|
∂2

∂s∂t (p)α2 (s, t)

)
dαs dαt

)
, (2.8)

where

∂

∂t
(
F ′(z(s, t)

))
α

(s, t) = t1–α ∂

∂t
F ′(z(s, t)

)
.

Proof Let

y(s, t) =
∫ s

a

∫ t

c

∣∣∣∣ ∂2

∂s∂t
(u)α2 (σ , τ )

∣∣∣∣dασ dατ

such that

∂2

∂s∂t
(y)α2 (s, t) =

∣∣∣∣ ∂2

∂s∂t
(u)α2 (s, t)

∣∣∣∣

and y(s, t) ≥ |u(s, t)|. Since ϕ is convex and increasing, by using Jensen’s inequality, we get

ϕ

( |u(s, t)|
p(s, t)

)
≤ ϕ

(
y(s, t)
p(s, t)

)

= ϕ

(∫ s
a
∫ t

c
∂2

∂σ∂τ
(p)α2 (σ , τ ) | ∂2

∂σ∂τ
(u)

α2 (σ ,τ )|
∂2

∂σ∂τ
(p)

α2 (σ ,τ )
dασ dατ

∫ s
a
∫ t

c
∂2

∂σ∂τ
(p)α2 (σ , τ ) dασ dατ

)
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≤ 1
p(s, t)

∫ s

a

∫ t

c

∂2

∂σ∂τ
(p)α2 (σ , τ ) · ϕ

( | ∂2

∂σ∂τ
(u)α2 (σ , τ )|

∂2
∂σ∂τ

(p)α2 (σ , τ )

)
dασ dατ

=
1

p(s, t)

∫ s

a

∫ t

c

∂2

∂σ∂τ
(p)α2 (σ , τ ) · ϕ

( ∂2

∂σ∂τ
(y)α2 (σ , τ )

∂2
∂σ∂τ

(p)α2 (σ , τ )

)
dασ dατ . (2.9)

From (2.9) and noting that F ′ is increasing, and Lemma 2.1, (2.7) and in view of that F is
derivable on [0,∞), we obtain

∫ b

a

∫ d

c

{
∂2

∂s∂t
(z)α2 (s, t) · F ′

(
p(s, t) · ϕ

( |u(s, t)|
p(s, t)

))

+
∂

∂t
(z)α(s, t) · ∂

∂t
(
F ′(z(s, t)

))
α

(s, t)
}

dαs dαt

≤
∫ b

a

∫ d

c

{
∂2

∂s∂t
(z)α2 (s, t) · F ′(z(s, t)

)

+
∂

∂t
(z)α(s, t) · ∂

∂t
(
F ′(z(s, t)

))
α

(s, t)
}

dαs dαt

=
∫ b

a

∫ d

c

∂2

∂s∂t
(F ◦ z)α2 (s, t) dαs dαt

=
∫ b

a

∫ d

c

∂2

∂s∂t

(
F
(∫ s

a

∫ t

b

∂2

∂σ∂τ
(p)α2 (σ , τ )

· ϕ
( ∂2

∂σ∂τ
(y)α2 (σ , τ )

∂2
∂σ∂τ

(p)α2 (σ , τ )

)
dασ dατ

))
α2

(s, t) dαs dαt

= F
(∫ b

a

∫ d

c

∂2

∂σ∂τ
(p)α2 (σ , τ ) · ϕ

( ∂2

∂σ∂τ
(y)α2 (σ , τ )

∂2
∂σ∂τ

(p)α2 (σ , τ )

)
dασ dατ

)

= F
(∫ b

a

∫ d

c

∂2

∂s∂t
(p)α2 (s, t) · ϕ

( | ∂2

∂s∂t (u)α2 (s, t)|
∂2

∂s∂t (p)α2 (s, t)

)
dαs dαt

)
.

This completes the proof. �

Remark 2.1 Putting ϕ(x) = x in (2.7), we have

∫ b

a

∫ d

c

{∣∣∣∣ ∂2

∂s∂t
(u)α2 (s, t)

∣∣∣∣ · F ′(∣∣u(s, t)
∣∣)

+
∂

∂t
(y)α(s, t) · ∂

∂t
(
F ′(y(s, t)

))
α

(s, t)
}

dαs dαt

≤ F
(∫ b

a

∫ d

c

∣∣∣∣ ∂2

∂s∂t
(u)α2 (s, t)

∣∣∣∣dαs dαt
)

, (2.10)

where

y(s, t) =
∫ s

a

∫ t

c

∣∣∣∣ ∂2

∂s∂t
(u)α2 (σ , τ )

∣∣∣∣dασ dατ .
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This inequality (2.10) is just a two-dimensional generalization of the following inequality
which was established in [20] and [21]:

∫ b

a

∣∣Dαu(t)
∣∣ · F ′(∣∣u(t)

∣∣)dαt ≤ F
(∫ b

a

∣∣Dαu(t)
∣∣dαt

)
.

Theorem 2.2 Let α, p(s, t), u(s, t), z(s, t), ϕ, F be as in Theorem 2.1 and replace [a, b]× [c, d]
by [0, a]×[0, b]. Let h be a concave and increasing function on [0,∞), and φ be a continuous
and positive function on [0,∞) and such that

∂2

∂s∂t
(F ◦ z)α2 (s, t) · φ

(
1

∂2
∂s∂t (z)α2 (s, t)

)
≤ F(z(a, b))

z(a, b)
· φ′

(
t

z(a, b)

)
. (2.11)

Then

∫ a

0

∫ b

0

{
ψ

(
∂2

∂s∂t
(p)α2 (s, t) · ϕ

( | ∂2

∂s∂t (u)α2 (s, t)|
∂2

∂s∂t (p)α2 (s, t)

))
· F ′

(
p(s, t) · ϕ

( |u(s, t)|
p(s, t)

))

+ ψ

(
∂2

∂s∂t
(z)α2 (s, t)

)
· ∂

∂t
(
F ′(z(s, t)

))
α

(s, t) ·
∂
∂t (z(s, t))α(s, t)

∂2
∂s∂t (z)α2 (s, t)

}
dαs dαt

≤ Φ

(∫ a

0

∫ b

0

∂2

∂s∂t
(p)α2 (s, t) · ϕ

( | ∂2

∂s∂t (u)α2 (s, t)|
∂2

∂s∂t (p)α2 (s, t)

)
dαs dαt

)
, (2.12)

where

ψ(r) = rh
(

φ

(
1
r

))
, (2.13)

and

Φ(r) = F(r) · h
(

1
r

∫ a

0

∫ b

0
φ′

(
t
r

)
dαs dαt

)
. (2.14)

Proof From (2.9), we have

ϕ

( |u(s, t)|
p(s, t)

)
≤ z(s, t)

p(s, t)
. (2.15)

From (2.7), (2.15), (2.13) (2 times), Lemma 2.1, and noting that h is a concave, increasing
and using reverse Jensen’s inequality, and (2.11) and (2.14), we obtain

∫ a

0

∫ b

0

{
ψ

(
∂2

∂s∂t
(p)α2 (s, t) · ϕ

( | ∂2

∂s∂t (u)α2 (s, t)|
∂2

∂s∂t (p)α2 (s, t)

))
· F ′

(
p(s, t) · ϕ

( |u(s, t)|
p(s, t)

))

+ ψ

(
∂2

∂s∂t
(z)α2 (s, t)

)
· ∂

∂t
(
F ′(z(s, t)

))
α

(s, t) ·
∂
∂t (z)α(s, t)
∂2

∂s∂t (z)α2 (s, t)

}
dαs dαt

≤
∫ a

0

∫ b

0

{
ψ

(
∂2

∂s∂t
(z)α2 (s, t)

)
· F ′(z(s, t)

)

+ h
(

φ

(
1

∂2
∂s∂t (z)α2 (s, t)

))
∂

∂t
(z)α(s, t)

∂

∂t
(
F ′(z(s, t)

))
α

(s, t)
}

dαs dαt
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=
∫ a

0

∫ b

0
h
(

φ

(
1

∂2
∂s∂t (z)α2 (s, t)

))
·
(

∂2

∂s∂t
(z)α2 (s, t) · F ′(z(s, t)

)

+
∂

∂t
(z)α(s, t) · ∂

∂t
(
F ′(z(s, t)

))
α

(s, t)
)

dαs dαt

=

∫ a
0

∫ b
0

∂2

∂s∂t (F ◦ z)α2 (s, t) · h(φ( 1
∂2

∂s∂t (z)
α2 (s,t)

)) dαs dαt
∫ a

0
∫ b

0
∂2

∂s∂t (F ◦ z)α2 (s, t) dαs dαt

∫ a

0

∫ b

0

∂2

∂s∂t
(F ◦ z)α2 (s, t) dαs dαt

≤ h
(∫ a

0
∫ b

0
∂2

∂s∂t (F ◦ z)α2 (s, t) · φ( 1
∂2

∂s∂t (z)
α2 (s,t)

) dαs dαt
∫ a

0
∫ b

0
∂2

∂s∂t (F ◦ z)α2 (s, t) dαs dαt

)
F
(
z(a, b)

)

≤ h
(∫ a

0
∫ b

0
F(z(a,b))

z(a,b) φ′( t
z(a,b) ) dαs dαt

F(z(a, b))

)
F
(
z(a, b)

)

= Φ
(
z(a, b)

)

= Φ

(∫ a

0

∫ b

0

∂2

∂s∂t
(p)α2 (s, t) · ϕ

( | ∂2

∂s∂t (u)α2 (s, t)|
∂2

∂s∂t (p)α2 (s, t)

)
dαs dαt

)
.

This completes the proof. �

Remark 2.2 Putting ϕ(x) = x in (2.12), we have

∫ b

0
ψ

(∣∣∣∣ ∂2

∂s∂t
(u)α2 (s, t)

∣∣∣∣
)

· F ′(∣∣u(s, t)
∣∣)dαs dαt

≤ Φ

(∫ a

0

∫ b

0

∣∣∣∣ ∂2

∂s∂t
(u)α2 (s, t)

∣∣∣∣dαs dαt
)

– Nα(a, b), (2.16)

where

Nα(a, b) =
∫ a

0

∫ b

0
ψ

(
∂2

∂s∂t
(z)α2 (s, t)

)
· ∂

∂t
(
F ′(z(s, t)

))
α

(s, t) ·
∂
∂t (z)α(s, t)
∂2

∂s∂t (z)α2 (s, t)
dαs dαt.

This inequality (2.16) is just a two-dimensional generalization of the following inequality
which was established in [21]:

∫ b

0
ψ

(
Dαp(t) · ϕ

( |Dαu(t)|
Dαp(t)

))
· F ′

(
p(t) · ϕ

( |u(t)|
p(t)

))
dαt

≤ Φ

(∫ b

0
Dαp(t) · ϕ

( |Dαu(t)|
Dαp(t)

)
dαt

)
,

where Dαp(t) = Dα(p)(t), ψ(r) = rh(φ( 1
r )) and Φ(r) = F(r)h(φ( b

r )), and h is a concave and
increasing function on [0,∞).
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