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Abstract
When a Fourier series is used to approximate a function with a jump discontinuity, the
Gibbs phenomenon always exists. This similar phenomenon exists for wavelets
expansions. Based on the Gibbs phenomenon of a Fourier series and wavelet
expansions of a function with a jump discontinuity, in this paper, we consider that a
Gibbs phenomenon occurs for the p-ary subdivision schemes. Similar to the method
of (Appl. Math. Lett. 76:157–163, 2018), we generalize the results about the stationary
binary subdivision schemes in (Appl. Math. Lett. 76:157–163, 2018) to the case of p-ary
subdivision schemes. By considering the masks of subdivision schemes, we obtain a
sufficient condition to determine whether there exists a Gibbs phenomenon for p-ary
subdivision schemes in the limit function close to the discontinuous point. This
condition consists of the positivity of the partial sums of the values of the masks. By
applying this condition, we can avoid the Gibbs phenomenon for p-ary subdivision
schemes near discontinuity points. Finally, some examples in classical subdivision
schemes are given to illustrate the results in this paper.

Keywords: Gibbs phenomenon; p-ary subdivision schemes; Wavelet expansions;
Fourier series

1 Introduction
The Gibbs phenomenon means an overshoot of the approximation level for the partial
sum of the Fourier series occurring at a simple discontinuity. It is well known that given an
arbitrary continuous and periodic function f (x), it is possible to represent it as a Fourier
series. However, when a Fourier series is used to approximate a discontinuous or non-
periodic function, an overshoot occurs at the discontinuity. This phenomenon is known
as the Gibbs effect. The phenomenon was noticed by Michelson and further explained by
Gibbs [2, 3].

To illustrate what is happening in the Gibbs phenomenon, let us examine the partial
sums of a Fourier series. Let f (x) be a 2-periodic function defined by

f (x) =

⎧
⎨

⎩

–1 for – 1 ≤ x < 0,

1 for 0 ≤ x < 1.

Let sn(x) be the nth partial sum of f (x), then, for all 0 < x1 < 1, the partial sums of f (x) at
x1 approach f (x1). However, if x is allowed to approach the discontinuity 0, sn(x) converges
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to a number greater than 1 due to

lim
n→∞ sn(π/2n) =

2
π

∫ π

0

sin t
t

dt = 1.17898 . . . > 1.

See [2, 4, 5] for many references therein and further details of this phenomenon on Fourier
series.

An analogue of the Gibbs phenomenon is shown in wavelet expansions. Let φ be a com-
pactly supported orthogonal scaling function generating a multiresolution analysis (MRA)
{Vk} for L2(R). For a given f (x) in L2(R), the orthogonal projections Pkf of f onto the spaces
Vk are given by Pkf =

∑
n∈Z〈f ,φk,n〉φk,n. Pkf converge to f in the L2(R) norm as k → ∞.

They form partial sums of the wavelets expansion of f associated with the given scaling
function φ. Shim and Volkmer in [6] used a simple example to illustrate the existence of
the Gibbs phenomenon in wavelet expansions. That is, let the scaling function be Shan-
non scaling function, f be a square integrable bounded function with a jump discontinu-
ity, there exists a Gibbs phenomenon at discontinuous points. The Gibbs phenomenon
for wavelets expansions is further studied in [6–13]. In 1991, Richards [7] showed a Gibbs
phenomenon for periodic spline functions. By considering the multiresolution analysis,
the Gibbs function can be expressed in terms of the scaling function. By considering the
size of the wavelet kernel, Kelly [8] gave a necessary and sufficient condition to prove ex-
istence of the Gibbs phenomenon for some compactly supported wavelets. Karanikas [9]
described this phenomenon in continuous wavelet analysis. Ruch and Fleet studied this
phenomenon for scaling vectors and illustrated that via positive scaling vectors exhibit no
Gibbs phenomenon in [10]. For the periodic wavelet frame series, Zhang analyzed inte-
gral representations of the partial sums, convergence, and the Gibbs phenomenon of this
situation in [12].

Subdivision scheme is an efficient tool for the approximation of a given function. For
convergent schemes starting from discrete sets of control points and using basic rules of
low complexity, curves or surfaces can be obtained as limits of sequences of points gen-
erated by recursive application of the subdivision scheme. The question has arisen as to
whether there exists a Gibbs phenomenon in the limit functions close to a discontinu-
ity point. The analysis and study of the Gibbs phenomenon is basically based on wavelet
expansions and Fourier series. For subdivision schemes, there is little work about this phe-
nomenon. Amat et al. [14] studied a new nonlinear dyadic subdivision scheme and briefly
analyzed the Gibbs phenomenon that could occur in the limit function coming from the
sampling of discontinuous function. Amat et al. [1] obtained a sufficient condition to ana-
lyze the Gibbs phenomenon for a stationary binary subdivision scheme. It is natural to ask
whether we can derive the existence of the Gibbs phenomenon for other types subdivision
schemes. This motivates us to further study the Gibbs phenomenon for the subdivision
schemes.

However, in several applications of signal analysis [15–18], especially in digital image
processing, the existence of this phenomenon is considered to be a disadvantage and leads
to informational distortion. There have been some attempts to remove this phenomenon
[19–23]. It looks back at Fejér averaging of the essentials of the summability theory, which
is of importance to one of the basic methods of removing the effect of the Gibbs phe-
nomenon. Also, there are the Lanczos averaging filter and Vandeven filter [19, 20]. By
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adding the Fourier coefficient of a Heaviside function, overshooting and distortional ap-
proximation near a point of discontinuity can be avoided in [21].

In this paper, we are concerned with the analysis of the Gibbs phenomenon for p-ary sub-
division schemes. Based on the result of Amat in [1], we shall study the Gibbs phenomenon
for p-ary subdivision schemes in the limit functions close to discontinuity zones. By an-
alyzing the properties of the masks of the subdivision schemes, we present a sufficient
condition to determine whether the Gibbs phenomenon occurs for the p-ary subdivision
schemes near the discontinuous point. We also provide some numerical examples to val-
idate our results.

The outline of the remainder of this paper is an follows. In Section 2, we introduce some
basic definitions and facts about subdivision schemes and the Gibbs phenomenon. In Sec-
tion 3, we obtain a sufficient condition to determine whether the Gibbs phenomenon oc-
curs in p-ary subdivision schemes in the limit functions close to discontinuity zones. Sec-
tion 4 provides some examples to validate our results. Section 5 concludes this paper.

2 Preliminaries
In this section, we recall some basic definitions and known facts about subdivision
schemes and the Gibbs phenomenon, which form the basis of the rest of this paper.

Given a sequence of initial control points f 0 = {f 0
i : i ∈ Z}, the new control points f k+1 =

{f k+1
i : i ∈ Z} are iteratively refined with the refinement rule

(
Saf k)

i = f k+1
i =

∑

j∈Z
ai–pjf k

j , i ∈ Z, (2.1)

where the integer p ≥ 2 is called arity, p = 2 is called binary subdivision scheme, and the
subdivision scheme is denoted by Sa. The sequence a = {aj : j ∈ Z} is called subdivision
mask. Generally speaking, the masks are always supposed to be finitely supported. The
limit curve is uniquely determined by the initial control points and subdivision mask a.

For a given subdivision Sa, the vertexes f k+1
pi+l are also calculated with

(
Saf k)

pi+l = f k+1
pi+l =

∑

γ∈Z
apγ +lf k

i–γ , i ∈ Z, (2.2)

for 0 ≤ l ≤ p – 1.
The symbol of a subdivision scheme Sa is given by

a(z) =
∑

j∈Z
ajzj,

which is an important tool to study the properties of subdivision schemes. Set a[k] be the
k iterated symbol, it is known that a[k](z) =

∏k
l=1 a(zpl–1 ) [24]. For 0 ≤ l < pk , we have

f k
pk i+l =

(
Saf k–1)

pk i+l =
(
SaSaf k–2)

pk i+l = · · ·

=
(
Sk

af 0)

pk i+l =
(
Sa[k] f 0)

pk i+l =
∑

γ∈Z
a[k]

pkγ +lf
0

i–γ , (2.3)
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with

a[k]
j =

∑

i∈Z
a[k–1]

i aj–pi, (2.4)

where a[1]
j = aj. Throughout this paper, we require the mask a = {aj : j ∈ Z} satisfying

⎧
⎪⎪⎨

⎪⎪⎩

–1 ≤ aj ≤ 1, M ≤ j ≤ M + N ,

aj = 0, j > M + N or j < M,

aM, aM+N 	= 0,

(2.5)

where M < 0 and N are fixed integers with N ≥ 2 and M + N > 0.
By attaching f k

i to i
pk for i ∈ Z, k ≥ 0, we define the notion of convergence of the subdivi-

sion scheme. We say a stationary subdivision scheme Sa converges to a function f ∈ C0, for
any bounded initial control sequence f 0 = {f 0

i , i ∈ Z}, if there exists a continuous function
f such that

lim
k→∞

∥
∥
∥
∥f

(
i

pk

)

– f k
i

∥
∥
∥
∥∞

= 0, (2.6)

denote S∞
a f 0 = f . In this case, we say the scheme Sa is C0 convergent. We restrict our

discussion to non-singular schemes for which S∞
a f 0 ≡ 0 if and only if f 0 = 0. Next, we

review a necessary condition for the convergence of the subdivision scheme.

Theorem 2.1 If a subdivision scheme Sa is convergent, then the mask a of this subdivision
scheme satisfies

∑

γ∈Z

apγ +l = 1, l = 0, 1, . . . , p – 1. (2.7)

We recall the notion of parametrization which can be used to introduce the Gibbs phe-
nomenon in the subdivision schemes. Usually, set

t(k)
i := p–k(i + c)h, i ∈ Z, c ∈R, k ≥ 0, h > 0. (2.8)

Following [25, 26], the parametrization (2.8) is called primal when c = 0 and dual when
c = – 1

2 . It is well known that most of the properties of a subdivision scheme (e.g., con-
vergence, generation, smoothness, or support size) do not depend on the choice of the
parameter values t(k)

i . However, with respect to the subdivision capability of reproducing
specific classes of functions, t(k)

i plays a very important role. By choosing suitable c, the
reproduction property of subdivision schemes can be improved and achieve the best.

An important issue in the implementation of subdivision algorithm is how to guarantee
the approximation error to be as small as possible. The high quality algorithm is usually
determined by the order of the approximation. Suppose that the given initial data f 0 is of
the form f 0 := {f 0

i }i∈Z with a smooth function f . Then our concern is to find the largest
exponent m > 0 such that

∥
∥f ∞ – f

∥
∥

L∞(Ω) ≤ B′hm
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with a constant B′ > 0, where Ω is a compact set in R. The exponent m is called the ap-
proximation order of the subdivision scheme.

In this paper, we will impose on the scheme Sa satisfying the following condition: C1.
For any f ∈ Cn, n ≥ 2, and h > 0, with the initial data f 0

i = f (ih) (or f ((i – 1
2 )h)), i ∈ Z, then

max
x∈R

∣
∣
(
S∞

a f 0)(x) – f (x)
∣
∣ ≤ Bhn,

where B is a constant which depends on f , but it does not depend on h. In the following, we
give a precise definition of what we mean by the Gibbs phenomenon for the subdivision
schemes.

Definition 2.1 ([1]) For a given discontinuous function f (x) with a jump discontinuity
point ξ , its sampling fh defined by fi,h = f (ih) (or fi,h = f ((i – 1

2 )h)), let the subdivision
scheme Sa be convergent, the Gibbs phenomenon can be delimited by the following two
properties:

1. For any point x away from the discontinuity ξ , the convergence of (S∞
a fh) towards f is

rather slow, that is,

∣
∣f (x) –

(
S∞

a fh
)
(x)

∣
∣ = O(h). (2.9)

2. For any point x close to the discontinuity ξ , there is an overshoot, that is,

max
x∈R

∣
∣f (x) –

(
S∞

a fh
)
(x)

∣
∣ (2.10)

does not tend to zero when h goes to 0.

In fact, for any discontinuous function f with a jump discontinuity point ξ , the Gibbs
phenomenon is related to the convergence of (S∞

a fh) towards f when h goes to 0.

3 Main results
In this section, we focus on the Gibbs phenomenon for p-ary subdivision schemes. By
directly considering the masks of p-ary subdivision schemes, we present the following
theorem to obtain the sufficient conditions to avoid the Gibbs phenomenon in p-ary sub-
division schemes.

Theorem 3.1 For given ξ (0 ≤ ξ ≤ h), let f be any discontinuous function with a jump
discontinuity point ξ defined by

f (x) =

⎧
⎨

⎩

f–(x), f– ∈ Cn(] – ∞, ξ ]), ∀x ≤ ξ ,

f+(x), f+ ∈ Cn([ξ , +∞[), ∀x > ξ ,

with n ≥ 2 and f–(ξ ) > f+(ξ ). Let Sa be a convergent p-ary subdivision scheme with mask a
satisfying condition (2.5), and h be a sufficiently small positive number. We have

(1). If |x| ≥ max{| 1
p–1 (M – p + 1)|, | 1

p–1 (M + N) + 1|}h, then

∣
∣f (x) –

(
S∞

a fh
)
(x)

∣
∣ = O

(
hn)

with n ≥ 2.



Zhou et al. Journal of Inequalities and Applications         (2019) 2019:48 Page 6 of 13

(2). If |x| ≤ max{| 1
p–1 (M – p + 1)|, | 1

p–1 (M + N) + 1|}h, let

λ
[k]
l (i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
τ≤i a[k]

pkτ+l, i < 0,

0, i = 0,
∑

τ≥i a[k]
pkτ+l, i > 0,

(3.1)

0 ≤ l < pk , where a[k] is defined in Eq. (2.4). If λ
[k]
l (i) ≥ 0,∀i, k, then there exist

αh = O(h) such that

f1,h – αh ≤ f+(h) – αh ≤ (
S∞

a fh
)
(x) ≤ f–(0) + αh = f0,h + αh. (3.2)

Proof For any iteration k, there exist P–
k , P+

k such that, for all i /∈ [P–
k , P+

k ], the evaluation
(Sk+1

a fh)pi+l, 0 ≤ l < p is applied starting from regular data, that is, i /∈ [P–
k , P+

k ], the Gibbs
phenomenon does not appear. So, we only consider the Gibbs phenomenon in i ∈ [P–

k , P+
k ].

(1). Let us firstly consider k = 0. As 0 ≤ ξ ≤ h, the discontinuity is between the values
f0,h and f1,h, then by Eq. (2.2), we have i – γ = 0 and i – γ = 1, these values are used. We
only have to determine the values api+l, ap(i–1)+l, 0 ≤ l < p. By considering the condition of
the mask a in (2.5), we have

P–
0 =

M – p + 1
p

, P+
0 =

M + N + p
p

. (3.3)

For k = 1, the points calculated using f0,h and f1,h at level k = 1 are i ∈ [P–
0 , P+

0 ]. Because

(Saf )pi+l =
∑

γ∈Z
apγ +lfi–γ ,h =

∑

γ∈Z
apγ +l

(
Saf 0

h
)

i–γ ,h, (3.4)

so, pi + l ∈ [pP–
0 , pP+

0 ], that is, i – γ ∈ [pP–
0 , pP+

0 ], γ ∈ [i – pP+
0 , i – pP–

0 ]. Thus we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pγ ∈ [pi – p2P+
0 , pi – p2P–

0 ],

pγ + 1 ∈ [pi – p2P+
0 + 1, pi – p2P–

0 + 1],

· · ·
pγ + p – 1 ∈ [pi – p2P+

0 + p – 1, pi – p2P–
0 + p – 1].

By the condition of the mask a in (2.5), we have

P–
1 =

M + p2P–
0 – p + 1
p

= pP–
0 + P–

0 , P+
1 =

M + N + p2P+
0

p
.

By induction, we have

P–
k = P–

0 + pP–
k–1

= P–
0 + p

(
P–

0 + pP–
k–2

)
= P–

0 + pP–
0 + p2P–

k–2

= · · · = P–
0 + pP–

0 + p2P–
0 + · · · + pkP–

0

=
1

p – 1
(
pk+1 – 1

)M – p + 1
p

.
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By using the same method, we have

P+
k =

1
p – 1

(
pk+1 – 1

)M + N
p

+ pk .

∀i ∈ [P–
k , P+

k ], considering primal parametrization of the p-ary subdivision scheme in (2.8).
Then, for condition (C1) and

|x| ≥ max

{∣
∣
∣
∣

1
p – 1

(M – p + 1)
∣
∣
∣
∣,

∣
∣
∣
∣

1
p – 1

(M + N) + 1
∣
∣
∣
∣

}

h,

we have

∣
∣f (x) –

(
S∞

a fh
)
(x)

∣
∣ = O

(
hn)

with n ≥ 2. Next, we analyze the Gibbs phenomenon for a p-ary subdivision scheme sat-
isfying

|x| ≤ max

{∣
∣
∣
∣

1
p – 1

(M – p + 1)
∣
∣
∣
∣,

∣
∣
∣
∣

1
p – 1

(M + N) + 1
∣
∣
∣
∣

}

h.

(2). Analogous to the proof of (1), we consider an induction process to prove this part.
For k = 1,

(Safh)pi =
∑

γ∈Z
apγ fi–γ = a0fi,h +

∑

γ≤–1

apγ fi–γ ,h +
∑

γ≥1

apγ fi–γ ,h

= fi,h –
(∑

τ≤–1

apτ +
∑

τ≥1

apτ

)

fi,h + [a–pfi+1,h + a–2pfi+2,h + · · · + a–pγ fi+γ ,h + · · · ]

+ [apfi–1,h + a2pfi–2,h + · · · + apγ fi–γ ,h + · · · ]

= fi,h –
(∑

τ≤–1

apτ +
∑

τ≥1

apτ

)

fi,h +
[∑

τ≤–1

apτ fi+1,h –
∑

τ≤–2

apτ fi+1,h

+
∑

τ≤–2

apτ fi+2,h –
∑

τ≤–3

apτ fi+2,h + · · · +
∑

τ≤–γ

apτ fi+γ ,h –
∑

τ≤–γ –1

apτ fi+γ ,h + · · ·
]

+
[∑

τ≥1

apτ fi–1,h –
∑

τ≥2

apτ fi–1,h +
∑

τ≥2

apτ fi–2,h –
∑

τ≥3

apτ fi–2,h + · · ·

+
∑

τ≥γ

apτ fi–γ ,h –
∑

τ≥γ +1

apτ fi–γ ,h + · · ·
]

= fi,h +
∑

γ≤–1

(∑

τ≤γ

apτ

)

(fi–γ ,h – fi–γ –1,h) +
∑

γ≥1

(∑

τ≥γ

apτ

)

(fi–γ ,h – fi–γ +1,h)

= fi,h +
∑

γ≤–1

λ0(γ )(fi–γ ,h – fi–γ –1,h) +
∑

γ≥1

λ0(γ )(fi–γ ,h – fi–γ +1,h).

(Safh)pi+1 =
∑

γ∈Z
apγ +1fi–γ = a1fi,h +

∑

γ≤–1

apγ +1fi–γ ,h +
∑

γ≥1

apγ +1fi–γ ,h

= fi,h –
(∑

τ≤–1

apτ+1 +
∑

τ≥1

apτ+1

)

fi,h + [a–p+1fi+1,h + a–2p+1fi+2,h
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+ · · · + a–pγ +1fi+γ ,h + · · · ] + [ap+1fi–1,h + a2p+1fi–2,h + · · ·
+ apγ +1fi–γ ,h + · · · ]

= fi,h –
(∑

τ≤–1

apτ+1 +
∑

τ≥1

apτ+1

)

fi,h +
[∑

τ≤–1

apτ+1fi+1,h –
∑

τ≤–2

apτ+1fi+1,h

+
∑

τ≤–2

apτ+1fi+2,h –
∑

τ≤–3

apτ+1fi+2,h + · · · +
∑

τ≤–γ

apτ+1fi+γ ,h

–
∑

τ≤–γ –1

apτ+1fi+γ ,h + · · ·
]

+
[∑

τ≥1

apτ+1fi–1,h –
∑

τ≥2

apτ+1fi–1,h +
∑

τ≥2

apτ+1fi–2,h –
∑

τ≥3

apτ+1fi–2,h + · · ·

+
∑

τ≥γ

apτ+1fi–γ ,h –
∑

τ≥γ +1

apτ+1fi–γ ,h + · · ·
]

= fi,h +
∑

γ≤–1

(∑

τ≤γ

apτ+1

)

(fi–γ ,h – fi–γ –1,h) +
∑

γ≥1

(∑

τ≥γ

apτ+1

)

(fi–γ ,h – fi–γ +1,h)

= fi,h +
∑

γ≤–1

λ1(γ )(fi–γ ,h – fi–γ –1,h) +
∑

γ≥1

λ1(γ )(fi–γ ,h – fi–γ +1,h).

Analogously, for (Safh)pi+2, (Safh)pi+3, . . . , (Safh)pi+(p–1), we have

(Safh)pi+l = fi,h +
∑

γ≤–1

λl(γ )(fi–γ ,h – fi–γ –1,h) +
∑

γ≥1

λl(γ )(fi–γ ,h – fi–γ +1,h),

where

λl(i) =

⎧
⎪⎪⎨

⎪⎪⎩

∑
τ≤i apτ+l, i < 0,

0, i = 0,
∑

τ≥i apτ+l, i > 0, l = 0, 1, . . . , p – 1.

If i ≤ 0, then

(Safh)pi+l = fi,h +
∑

γ≤–1

λl(γ )(fi–γ ,h – fi–γ –1,h) +
∑

γ≥1

λl(γ )(fi–γ ,h – fi–γ +1,h)

= fi,h + λl(i – 1)(f1,h – f0,h) +
∑

γ≤–1,γ 	=i–1

λl(γ )(fi–γ ,h – fi–γ –1,h)

+
∑

γ≥1

λl(γ )(fi–γ ,h – fi–γ +1,h)

= fi,h + λl(i – 1)(f1,h – f0,h) + O(h)

= f0,h + λl(i – 1)(f1,h – f0,h) + fi,h – f0,h + O(h).

If i > 0, then

(Safh)pi+l = fi,h + λl(i)(f0,h – f1,h) +
∑

γ≤–1

λl(γ )(fi–γ ,h – fi–γ –1,h)
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+
∑

γ≥1,γ 	=i

λl(γ )(fi–γ ,h – fi–γ +1,h)

= fi,h + λl(i)(f0,h – f1,h) + O(h)

= f1,h + λl(i)(f0,h – f1,h) + fi,h – f1,h + O(h).

Since λl(i) ≥ 0,∀i, and f0,h – f1,h > 0, we obtain that if i ∈ [P–
1 , P+

1 ],

f1,h – O(h) ≤ (Safh)pi+l ≤ f0,h + O(h).

If k = 2, according to (2.3), we get

f 2
p2i+l =

(
S2

af 0)

p2i+l =
(
Sa[2] f 0)

p2i+l =
∑

γ∈Z
a[2]

p2γ +lf
0

i–γ . (3.5)

When l = 0, by applying (2.4), we obtain

a[2]
p2τ

=
∑

i∈Z
aiap2τ–pi.

Let p2τ – pi = pj, we have

∑

τ∈Z
a[2]

p2τ
= a[2]

0 +
∑

τ≤–1

a[2]
p2τ

+
∑

τ≥1

a[2]
p2τ

=
∑

τ∈Z
apτ–j

∑

j∈Z
apj = 1,

(
S2

afh
)

p2i = a[2]
0 fi,h +

∑

γ≤–1

a[2]
p2γ

fi–γ ,h +
∑

γ≥1

a[2]
p2γ

fi–γ ,h

= fi,h

(

1 –
∑

τ≥1

a[2]
p2τ

–
∑

τ≤–1

a[2]
p2τ

)

+
(
a[2]

–p2 fi+1,h + a[2]
–2p2 fi+2,h + · · ·

+ a[2]
γ p2 fi–γ ,h + · · · ) +

(
a[2]

p2 fi–1,h + a[2]
2p2 fi–2,h + · · · + a[2]

γ p2 fi–γ ,h + · · · )

= fi,h

(

1 –
∑

τ≥1

a[2]
p2τ

–
∑

τ≤–1

a[2]
p2τ

)

+
(∑

τ≤–1

a[2]
p2τ

fi+1,h –
∑

τ≤–2

a[2]
p2τ

fi+1,h

+
∑

τ≤–2

a[2]
p2τ

fi+2,h –
∑

τ≤–3

a[2]
p2τ

fi+2,h + · · · +
∑

τ≤γ

a[2]
p2τ

fi–γ ,h

–
∑

τ≤γ –1

a[2]
p2τ

fi–γ ,h + · · ·
)

+
(∑

τ≥1

a[2]
p2τ

fi–1,h –
∑

τ≥2

a[2]
p2τ

fi–1,h

+
∑

τ≥2

a[2]
p2τ

fi–2,h –
∑

τ≥3

a[2]
p2τ

fi–2,h + · · · +
∑

τ≥γ

a[2]
p2τ

fi–γ ,h

–
∑

τ≥γ +1

a[2]
p2τ

fi–γ ,h + · · ·
)

= fi,h +
∑

γ≤–1

(∑

τ≤γ

a[2]
p2τ

)

(fi–γ ,h – fi–γ –1,h) +
∑

γ≥1

(∑

τ≥γ

a[2]
p2τ

)

(fi–γ ,h – fi–γ +1,h)

= fi,h +
∑

γ≤–1

λ
[2]
0 (γ )(fi–γ ,h – fi–γ –1,h) +

∑

γ≥1

λ
[2]
0 (γ )(fi–γ ,h – fi–γ +1,h),



Zhou et al. Journal of Inequalities and Applications         (2019) 2019:48 Page 10 of 13

where

λ
[2]
0 (i) =

⎧
⎪⎪⎨

⎪⎪⎩

∑
τ≤i a[2]

p2τ
, i < 0,

0, i = 0,
∑

τ≥i a[2]
p2τ

, i > 0.

By using the analogous method, for (S2
afh)p2i+1, (S2

afh)p2i+2, . . . (S2
afh)p2i+p–1, we have analo-

gous results. So, for all l, 0 ≤ l ≤ p – 1, if λ
[2]
l (i) ≥ 0, we can obtain

f1,h – O(h) ≤ (
S2

afh
)

p2i+l ≤ f0,h + O(h).

For all k, by using an induction process, we have the following results.
If λ

[k]
l (i) ≥ 0,∀i, k, there exist αh = O(h) such that

f1,h – αh ≤ f+(h) – αh ≤ (
S∞

a fh
)
(x) ≤ f–(0) + αh = f0,h + αh. (3.6)

This completes the proof of this theorem. �

By analyzing the proof of Theorem 3.1, we can find that, for all k and i ∈ [P–
k , P+

k ], if λ
[k]
l (i) ≥

0,∀i, k, Eq. (3.2) is true. Because λ
[k]
l (i) is related to the partial sums of the values of the

masks. So we have the following corollary.

Corollary 3.1 Let Sa be a convergent p-ary subdivision scheme with mask a = {aM, . . . ,
aM+N }. If aj > 0,∀M ≤ j ≤ M + N , then Sa does not produce the Gibbs phenomenon in the
limit function close to discontinuity zones.

In the next section, we will show four examples to demonstrate that our results are effi-
cient.

4 Example
In this section, we show the Gibbs phenomena in four classical subdivision schemes to
illustrate the results of this paper. We consider the limit function obtained in some typical
subdivision schemes when the initial data is a sampling of the following function:

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, x ∈ [0, 1],

0, x ∈ (1, 2],

1, x ∈ (2, 3].

(4.1)

We take the binary 5-point approximating scheme in [27]:

⎧
⎨

⎩

f k+1
2i = u

128 f k
i–2 + ( u

32 + 3
16 )f k

i–1 + ( 5
8 – 5u

64 )f k
i + ( u

32 + 3
16 )f k

i+1 + u
128 f k

i+2,

f k+1
2i+1 = ( u

32 + 1
32 )f k

i–1 + ( 15
32 – u

32 )f k
i + ( 15

32 – u
32 )f k

i+1 + ( u
32 + 1

32 )f k
i+2.

According to Corollary 3.1, because of the positivity of the masks of the binary 5-point
scheme with u = 1, this scheme does not produce the Gibbs phenomenon in the limit
functions close to discontinuity zones. The result for this scheme is shown by Fig. 1(a).
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Figure 1 The limit functions of subdivision schemes. The blue ∗ denotes the original sampling of function
(4.1), and the red solid line denotes the limit function

We consider the symmetric interpolatory scheme designed by Deslauriers and Dubuc
in [28], when taking m = 2:

⎧
⎨

⎩

f k+1
2i = f k

i ,

f k+1
2i+1 = – 1

16 f k
i–1 + 9

16 f k
i + 9

16 f k
i+1 – 1

16 f k
i+2.

It produces the Gibbs phenomenon in the limit function close to discontinuity zones. In
the numerical experiments we can clearly observe the Gibbs phenomenon, see Fig. 1(b).

Next, we will consider the ternary schemes.
We take the 3-point ternary subdivision scheme [29]:

⎧
⎪⎪⎨

⎪⎪⎩

f k+1
3i = 3

8 f k
i–1 + 1

2 f k
i + 1

8 f k
i+1,

f k+1
3i+1 = 3

16 f k
i–1 + 5

8 f k
i + 3

16 f k
i+1,

f k+1
3i+2 = 1

8 f k
i–1 + 1

2 f k
i + 3

8 f k
i+1.

Analogous to the binary schemes, according to Corollary 3.1, because of the positivity
of the masks of the 3-point ternary scheme, it is easy to see that this scheme does not
produce the Gibbs phenomenon; this result is shown in Fig. 1(c).
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We take the interpolating 5-point ternary subdivision scheme [30]:

⎧
⎪⎪⎨

⎪⎪⎩

f k+1
3i–1 = (ω – 4

81 )f k
i–2 + (–4ω + 10

27 )f k
i–1 + (6ω + 20

27 )f k
i – (4ω + 5

81 )f k
i+1 + ωf k

i+2,

f k+1
3i = f k

i ,

f k+1
3i+1 = ωf k

i–2 – (4ω + 5
81 )f k

i–1 + (6ω + 20
27 )f k

i + (–4ω + 10
27 )f k

i+1 + (ω – 4
81 )f k

i+2.

For the interpolating 5-point ternary subdivision scheme, when ω = 0, it can produce
Gibbs oscillations, see Fig. 1(d).

5 Conclusions
In this paper, we analyzed that a Gibbs phenomenon occurs for the p-ary subdivision
schemes in the limit function close to discontinuity zones. A sufficient condition was
presented to determine whether the p-ary subdivision scheme produces the Gibbs phe-
nomenon close to discontinuities. This condition consists of the positivity of the partial
sums of the values of the mask. By analyzing the properties of the masks of the subdivision
schemes, we demonstrated how the Gibbs phenomenon can be removed from the p-ary
subdivision schemes. Furthermore, in the numerical experiments we analyzed this phe-
nomenon in classical subdivision schemes such as binary 5-point scheme, Deslauriers and
Dubuc interpolation subdivision scheme, ternary 3-point, and ternary 5-point schemes.
The numerical results validated that our results are efficient. In the future, we will focus
on the Gibbs phenomenon and its resolution in other subdivision schemes, and we hope
to give a common and uniform condition to remove this phenomenon.
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