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Abstract
This paper provides some new results on robust approximate optimal solutions of a
fractional semi-infinite optimization problem under uncertainty data in the constraint
functions. By employing conjugate analysis and robust optimization approach
(worst-case approach), we obtain some necessary and sufficient optimality
conditions for robust approximate optimal solutions of such a fractional semi-infinite
optimization problem. In addition, we state a mixed type approximate dual problem
to the reference problem and obtain some robust duality properties between them.
The results obtained in this paper improve the corresponding results in the literature.

MSC: Primary 49N15; 90C34; secondary 90C46

Keywords: Approximate optimal solutions; Mixed type duality; Fractional
semi-infinite optimization

1 Introduction
Let X be a locally convex vector space, and let T be a nonempty infinite index set. Let
f : X → R be a continuous convex and nonnegative function, g : X → R be a continuous
concave and positive function, and let ht : X → R, t ∈ T , be continuous convex functions.
Consider the following fractional optimization problem, which has an infinite number of
inequality constraints:

(FP) min
x∈X

{
f (x)
g(x)

∣∣∣ ht(x) ≤ 0,∀t ∈ T
}

.

Throughout this paper, we always assume that F := {x ∈ X : ht(x) ≤ 0,∀t ∈ T} �= ∅. This
modeling of fractional optimization problem has been recognized as a valuable modeling
tool for many optimization problems which arise from practical needs. Many papers have
been devoted to fractional optimization problem in the absence of data uncertainty in the
past years, see [1–10] and the references therein.

Recently, a fractional optimization problem under data uncertainty has attracted a great
deal of attention. Jeyakumar and Li [11] established robust duality results for a convex-
concave fractional optimization problem in the face of data uncertainty in the constraints.
Following the framework of robust optimization, Jeyakumar et al. [12] developed a duality
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theory for a minimax fractional optimization problem in the face of data uncertainty both
in the objective and constraints. Sun and Chai [13] presented duality theory for fractional
programming problems with uncertain cone constraints in locally convex vector spaces.
Sun et al. [14] obtained some complete characterizations of robust optimal solutions of
a fractional optimization problem in the face of data uncertainty both in the objective
and constraints in terms of some robust type subdifferential constraint qualifications. Li
et al. [15] obtained some necessary and sufficient optimality conditions for an uncertain
minimax convex-concave fractional optimization problem under the robust subdifferen-
tiable constraint qualification. They also obtained strong duality results between the ro-
bust counterpart of this uncertain optimization problem and the optimistic counterpart
of its conventional Wolfe type and Mond–Weir type dual problems.

The above papers are mainly devoted to robust optimal solutions for fractional opti-
mization problems with data uncertainty. It is well known that approximate solutions in
optimization problems occur naturally, see, for example, [16–20]. However, to the best of
our knowledge, there is no work dealing with robust approximate optimal solutions for
fractional semi-infinite optimization problems with data uncertainty in spite of the fact
that some authors have investigated some robust approximate optimal solutions for other
kinds of uncertain optimization problems, see, for example, [21–24]. Thus, it is mean-
ingful to consider robust approximate optimal solutions for fractional semi-infinite opti-
mization problems with data uncertainty. To do this, let Zt , t ∈ T , be locally convex vector
spaces, ht : X × Zt → R, t ∈ T , be continuous functions, and let vt ∈ Vt be the uncertain
parameters which belong to the uncertainty set Vt ⊆ Zt , t ∈ T . The uncertainty case of
(FP) is given as follows:

(UFP) min
x∈X

{
f (x)
g(x)

∣∣∣ ht(x, vt) ≤ 0,∀t ∈ T
}

.

The aim of this paper is to provide some approximate optimality and duality for the robust
(worst-case) counterpart of (UFP), namely

(RUFP) min
x∈X

{
f (x)
g(x)

∣∣∣ ht(x, vt) ≤ 0,∀(t, vt) ∈ gphV
}

,

where the uncertainty set-valued mapping V : T ⇒ Zt is defined as V(t) := Vt for all t ∈ T .
Our results are divided into two parts. In the first one, we deal with robust approximate

optimal solutions for (UFP). We establish necessary and sufficient optimality conditions
for robust approximate optimal solutions of (UFP) by using a robust type constraint qual-
ification introduced in the literature. In particular, we give the optimality conditions of
robust approximate optimal solutions for convex semi-infinite optimization problems un-
der uncertainty data. In the second part, we first propose a mixed type approximate dual
problem of (UFP). And then, we discuss robust approximate duality relationships between
the robust counterpart of (UFP) and the optimistic counterpart of its conventional mixed
type approximate dual problem. We also show that our results encompass as special cases
some optimization problems considered recently in the literature.

The paper is organized as follows. In Sect. 2, we recall some notions and give some
preliminary results. In Sect. 3, we obtain necessary and sufficient optimality conditions
for robust approximate optimal solutions of (UFP). In Sect. 4, we investigate mixed type
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robust approximate duality theory for (UFP). In Sect. 5, we apply the proposed approach
to investigate optimality conditions of robust approximate optimal solution for a fractional
optimization problem with uncertain cone constraints.

2 Preliminaries
In this section, we recall some notations and preliminary results which will be used in this
paper, see [25]. Unless otherwise specified, all spaces under consideration are assumed to
be locally convex vector spaces. The canonical pairing between space X and its topological
dual X∗ is defined by 〈·, ·〉. Let D ⊆ X∗ ×R. The weak∗ closure (resp. convex hull, convex
cone hull) of D is denoted by cl D (resp. co D, cone D) Furthermore, for the nonempty set
C ⊆ X, the dual cone of C is denoted by

C∗ =
{

x∗ ∈ X∗ | 〈x∗, x
〉 ≥ 0,∀x ∈ C

}
.

For the nonempty infinite index set T , consider the product space R
T of multipliers λ =

(λt)t∈T with λt ∈R, and denote by R
(T) the following linear space [26]:

R
(T) :=

{
λ = (λt)t∈T | λt = 0 for all t ∈ T except for finitely many λt �= 0

}
.

The nonnegative cone of R(T) is defined by

R
(T)
+ :=

{
λ ∈R

(T) | λt ≥ 0,∀t ∈ T
}

.

Given u ∈ R
T and λ ∈R

(T), and denoting T(λ) := {t ∈ T | λt �= 0}, we have

〈λ, u〉 :=
∑
t∈T

λtut =
∑

t∈T(λ)

λtut .

For an extended real-valued function f : X →R∪ {+∞}, we use the classical notations for
effective domain dom f = {x ∈ X | f (x) < +∞}, epigraph epi f = {(x, r) ∈ X × R | f (x) ≤ r},
and conjugate function f ∗ : X∗ →R, f ∗(x∗) = supx∈X{〈x∗, x〉 – f (x)}. We say that f is proper
iff its effective domain is nonempty. We say that f is convex iff epi f is a convex set. The
function f is said to be concave whenever –f is convex. Moreover, we say that f is lower
semicontinuous iff epi f is closed. For any ε ≥ 0, the ε-subdifferential of f at x̄ ∈ dom f is
the convex set given by

∂εf (x̄) =
{

x∗ ∈ X∗ | f (x) – f (x̄) ≥ 〈
x∗, x – x̄

〉
– ε,∀x ∈ X

}
,

while if f (x̄) = +∞, we take by convention ∂εf (x̄) = ∅. If ε = 0, the set ∂f (x̄) := ∂0f (x̄) is the
classical subdifferential of convex analysis, that is,

∂f (x̄) =
{

x∗ ∈ X∗ | f (x) – f (x̄) ≥ 〈
x∗, x – x̄

〉
,∀x ∈ X

}
.

On the other hand, for spaces X and Y , given a vector-valued function h : X → Y . Let
K ⊆ Y be a nonempty closed convex cone which defined the partial order of Y . One has
h is K-convex iff, for any x, y ∈ X and α ∈ [0, 1],

h
(
αx + (1 – α)y

)
– αh(x) – (1 – α)h(y) ∈ –K .
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Consider for each λ ∈ K∗. The function λh : X → R is defined by (λh)(x) := 〈λ, h(x)〉 for
any x ∈ X. It is easy to see that h is K-convex if and only if λh is a convex function for each
λ ∈ K∗.

Now, let us recall the following results which will be used in the sequel.

Lemma 2.1 ([27]) Let f : X → R ∪ {+∞} be a proper lower semicontinuous convex func-
tion, and let x̄ ∈ dom f . Then

epi f ∗ =
⋃
ε≥0

{(
ξ , 〈ξ , x̄〉 + ε – f (x̄)

) | ξ ∈ ∂εf (x̄)
}

.

Lemma 2.2 ([28]) Let f : X →R∪ {+∞} be a proper convex function, and let α > 0. Then

epi (αf )∗ = α epi f ∗.

Lemma 2.3 ([28]) Let f1, f2 : X →R∪ {+∞} be proper convex functions such that dom f1 ∩
dom f2 �= ∅.

(i) If f1 and f2 are lower semicontinuous, then

epi(f1 + f2)∗ = cl
(
epi f ∗

1 + epi f ∗
2
)
.

(ii) If one of f1 and f2 is continuous at some x̄ ∈ dom f1 ∩ dom f2, then

epi(f1 + f2)∗ = epi f ∗
1 + epi f ∗

2 .

3 Robust approximate optimality conditions
In this section, we investigate some optimality conditions for robust approximate opti-
mal solutions of (UFP). First of all, let us recall some concepts which will be used in the
sequel.

Definition 3.1 The robust feasible set of (UFP) is defined by

F :=
{

x ∈ X | ht(x, vt) ≤ 0,∀vt ∈ Vt , t ∈ T
}

.

Definition 3.2 Let ε ≥ 0. We say that x̄ ∈ F is a robust ε-optimal solution of (UFP) iff
x̄ ∈F is an ε-optimal solution of (RUFP), i.e.,

f (x)
g(x)

≥ f (x̄)
g(x̄)

– ε, ∀x ∈F .

Remark 3.1 It is apparent that, if ε = 0, then the concept of robust ε-optimal solution
coincides with the usual robust optimal solution for (UFP).

The following constraint qualification will play an important role in the study of
(UFP).
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Definition 3.3 ([23]) We say that robust type closed convex cone constraint qualification
(RCQ) holds iff

⋃
v∈V ,λ∈R(T)

+

epi

(∑
t∈T

λtht(·, vt)
)∗

is weak∗ closed and convex,

where v ∈ V means that v is a selection of V , i.e., v : T →R
q and vt ∈ Vt for all t ∈ T .

The following result gives a robust version of Farkas lemma for uncertain infinite convex
systems.

Lemma 3.1 ([23]) Let φ : X → R be a convex function, and let ht : X × Zt → R, t ∈ T , be
continuous functions such that, for any vt ∈ Zt , ht(·, vt) is a convex function. Let Vt ⊆ Zt ,
t ∈ T , be compact and let F �= ∅. Then the following statements are equivalent:

(i) {x ∈ X | ht(x, vt) ≤ 0,∀vt ∈ Vt , t ∈ T} ⊆ {x ∈ X | φ(x) ≥ 0}.
(ii) (0, 0) ∈ epiφ∗ + cl co(

⋃
v∈V ,λ∈R(T)

+
epi(

∑
t∈T λtht(·, vt))∗).

In order to give some optimality conditions for robust ε-optimal solutions of (UFP), by
virtue of the parametric approach introduced in [1], we associate (RUFP) with the follow-
ing optimization problem, with a parametric μ ∈R+:

(RUFP)μ min
x∈X

{
f (x) – μg(x) | ht(x, vt) ≤ 0,∀vt ∈ Vt , t ∈ T

}
.

By using the similar method of [21], the following relation between the ε-optimal solu-
tions of (RUFP) and (RUFP)μ is obtained.

Lemma 3.2 Let x̄ ∈ F and ε ≥ 0. Let μ̄ := f (x̄)
g(x̄) – ε ≥ 0. Then x̄ ∈ F is a robust ε-optimal

solution of (UFP) if and only if x̄ ∈F is an ε̄-optimal solution of (RUFP)μ̄, where ε̄ = εg(x̄).

Now, we are in a position to give some optimality conditions for robust ε-optimal solu-
tions of (UFP) using Lemmas 3.1 and 3.2.

Theorem 3.1 Let x̄ ∈F , ε ≥ 0, and μ̄ = f (x̄)
g(x̄) – ε > 0. Let ht : X × Zt → R, t ∈ T , be contin-

uous functions such that, for any vt ∈ Vt , ht(·, vt) is a convex function. If (RCQ) holds, then
x̄ is a robust ε-optimal solution of (UFP) if and only if there exist (λ̄t)t∈T ∈ R

(T)
+ , v̄t ∈ Vt ,

t ∈ T , and ε′
0 ≥ 0, ε′′

0 ≥ 0, εt ≥ 0, t ∈ T such that

0 ∈ ∂ε′
0
f (x̄) + μ̄∂ε′′

0
(–g)(x̄) +

∑
t∈T

∂εt

(
λ̄tht(·, v̄t)

)
(x̄) (1)

and

ε′
0 + μ̄ε′′

0 +
∑
t∈T

εt – εg(x̄) =
∑
t∈T

λ̄tht(x̄, v̄t). (2)

Proof (⇒): Let x̄ be a robust ε-optimal solution of (UFP). Then

f (x)
g(x)

≥ f (x̄)
g(x̄)

– ε, ∀x ∈F ,
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from which it follows that

ht(x, vt) ≤ 0, vt ∈ Vt , t ∈ T , x ∈ X �⇒ f (x)
g(x)

≥ f (x̄)
g(x̄)

– ε.

For any x ∈ X, set

φ(x) := f (x) –
(

f (x̄)
g(x̄)

– ε

)
g(x) = f (x) – μ̄g(x).

Then

ht(x, vt) ≤ 0, vt ∈ Vt , t ∈ T , x ∈ X �⇒ φ(x) ≥ 0.

By Lemma 3.1, we have

(0, 0) ∈ epiφ∗ + cl co

( ⋃
v∈V ,λ∈R(T)

+

epi

(∑
t∈T

λtht(·, vt)
)∗)

.

Since (RCQ) holds, one has

(0, 0) ∈ epiφ∗ +
⋃

v∈V ,λ∈R(T)
+

epi

(∑
t∈T

λtht(·, vt)
)∗

. (3)

By Lemmas 2.2 and 2.3, we obtain

epiφ∗ = epi f ∗ + μ̄ epi(–g)∗ (4)

and

epi

(∑
t∈T

λtht(·, vt)
)∗

=
∑
t∈T

epi
(
λtht(·, vt)

)∗. (5)

Then, together with (3), (4), and (5), we obtain

(0, 0) ∈ epi f ∗ + μ̄ epi(–g)∗ +
⋃

v∈V ,λ∈R(T)
+

(∑
t∈T

epi
(
λtht(·, vt)

)∗
)

.

So, there exist (λ̄t)t∈T ∈R
(T)
+ and v̄t ∈ Vt , t ∈ T , such that

(0, 0) ∈ epi f ∗ + μ̄ epi(–g)∗ +
∑
t∈T

epi
(
λ̄tht(·, v̄t)

)∗.

It follows that there exist (ξ ′
0, r′

0) ∈ epi f ∗, (ξ ′′
0 , r′′

0 ) ∈ epi(–g)∗, and (ξt , rt) ∈ epi(λ̄tht(·, v̄t))∗

such that

(0, 0) =
(

ξ ′
0 + μ̄ξ ′′

0 +
∑
t∈T

ξt , r′
0 + μ̄r′′

0 +
∑
t∈T

rt

)
. (6)
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Moreover, by Lemma 2.1, there exist ε′
0 ≥ 0, ε′′

0 ≥ 0, and εt ≥ 0, t ∈ T , such that

ξ ′
0 ∈ ∂ε′

0
f (x̄) and r′

0 =
〈
ξ ′

0, x̄
〉
+ ε′

0 – f (x̄),

ξ ′′
0 ∈ ∂ε′′

0
(–g)(x̄) and r′′

0 =
〈
ξ ′′

0 , x̄
〉
+ ε′′

0 + g(x̄),

and

ξt ∈ ∂εt

(
λ̄tht(·, v̄t)

)
(x̄), and rt = 〈ξt , x̄〉 + εt – λ̄tht(x̄, v̄t).

It follows from (6) that

0 ∈ ∂ε′
0
f (x̄) + μ̄∂ε′′

0
(–g)(x̄) +

∑
t∈T

∂εt

(
λ̄tht(·, v̄t)

)
(x̄), (7)

and

0 = r′
0 + μ̄r′′

0 +
∑
t∈T

rt

=
〈
ξ ′

0 + μ̄ξ ′′
0 +

∑
t∈T

ξt , x̄
〉

+ ε′
0 + μ̄ε′′

0 +
∑
t∈T

εt – f (x̄) + μ̄g(x̄) –
∑
t∈T

λ̄tht(x̄, v̄t)

= ε′
0 + μ̄ε′′

0 +
∑
t∈T

εt – εg(x̄) –
∑
t∈T

λ̄tht(x̄, v̄t).

Thus, (1) and (2) hold.
(⇐): Suppose that there exist (λ̄t)t∈T ∈ R

(T)
+ , v̄t ∈ Vt , t ∈ T , and ε′

0 ≥ 0, ε′′
0 ≥ 0, εt ≥ 0,

t ∈ T , such that (1) and (2) hold. By (1), there exist ξ ′
0 ∈ ∂ε′

0
f (x̄), ξ ′′

0 ∈ ∂ε′′
0
(–g)(x̄), and ξt ∈

∂εt (λ̄tht(·, v̄t))(x̄) such that

ξ ′
0 + μ̄ξ ′′

0 +
∑
t∈T

ξt = 0. (8)

Since ξ ′
0 ∈ ∂ε′

0
f (x̄), ξ ′′

0 ∈ ∂ε′′
0
(–g)(x̄), and ξt ∈ ∂εt (λ̄tht(·, v̄t))(x̄), we obtain that, for any x ∈F ,

f (x) – f (x̄) ≥ 〈
ξ ′

0, x – x̄
〉
– ε′

0,

–g(x) + g(x̄) ≥ 〈
ξ ′′

0 , x – x̄
〉
– ε′′

0 ,

and

λ̄tht(x, v̄t) – λ̄tht(x̄, v̄t) ≥ 〈ξt , x – x̄〉 – εt .

These imply that, for any x ∈F ,

f (x) – f (x̄) – μ̄g(x) + μ̄g(x̄) +
∑
t∈T

λ̄tht(x, v̄t) –
∑
t∈T

λ̄tht(x̄, v̄t)

≥
〈
ξ ′

0 + μ̄ξ ′′
0 +

∑
t∈T

ξt , x – x̄
〉

– ε′
0 – μ̄ε′′

0 –
∑
t∈T

εt .
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Together with λ̄tht(x, v̄t) ≤ 0 and (8), one has

f (x) – f (x̄) – μ̄g(x) + μ̄g(x̄) –
∑
t∈T

λ̄tht(x̄, v̄t) ≥ –ε′
0 – μ̄ε′′

0 –
∑
t∈T

εt , ∀x ∈F . (9)

From (2) and (9), one gets

f (x) – μ̄g(x) ≥ f (x) – μ̄g(x) – εg(x̄), ∀x ∈F .

And so, x̄ is an ε̄-optimal solution of (RUFP)μ̄ where ε̄ = εg(x̄). By Lemma 3.2, x̄ is a robust
ε-optimal solution of (UFP) and the proof is complete. �

Remark 3.2 It is worth noticing that the robust approximate optimality conditions for
(UFP) obtained in Theorem 3.1, to the best of our knowledge, have not yet been considered
in the literature. In [21, Theorems 3.2 and 3.3], the authors obtained some similar results
for a class of fractional optimization with a finite number of inequality constraints and a
geometric constraint set. So, our results can be regarded as a generalization of the results
obtained in [21].

In the special case when Vt , t ∈ T , are singletons, we can easily obtain the following
result.

Corollary 3.1 Let x̄ ∈ F , ε ≥ 0, and μ̄ = f (x̄)
g(x̄) – ε > 0. Let ht : X → R, t ∈ T , be continuous

convex functions. If cone(
⋃

t∈T epi h∗
t ) is weak∗ closed, then x̄ is an ε-optimal solution of

(FP) if and only if there exist (λ̄t)t∈T ∈R
(T)
+ and ε′

0 ≥ 0, ε′′
0 ≥ 0, εt ≥ 0, t ∈ T , such that

0 ∈ ∂ε′
0
f (x̄) + μ̄∂ε′′

0
(–g)(x̄) +

∑
t∈T

λ̄t∂εt ht(x̄)

and

ε′
0 + μ̄ε′′

0 +
∑
t∈T

εt – εg(x̄) =
∑
t∈T

λ̄tht(v̄t).

In the special case when ε = 0, we can get the following result which is a version of the ro-
bust optimality condition for nonsmooth fractional semi-infinite optimization problems.

Corollary 3.2 Let x̄ ∈ F and μ̄ = f (x̄)
g(x̄) > 0. Let ht : X × Zt → R, t ∈ T , be continuous func-

tions such that, for any vt ∈ Vt , ht(·, vt) is a convex function. If (RCQ) holds, then x̄ is a
robust optimal solution of (UFP) if and only if there exist (λ̄t)t∈T ∈R

(T)
+ and v̄t ∈ Vt , t ∈ T ,

such that

0 ∈ ∂f (x̄) + μ̄∂(–g)(x̄) +
∑
t∈T

∂
(
λ̄tht(·, v̄t)

)
(x̄),

and

ht(x̄, v̄t) = 0, ∀t ∈ T(λ̄).
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As a direct corollary of Theorem 3.1, we obtain a robust optimality condition of robust ε-
optimal solutions for convex semi-infinite optimization problems under uncertainty data.
Related results can be found in [23].

Theorem 3.2 For the problem

(UCP) min
x∈X

{
f (x) : ht(x, vt) ≤ 0,∀t ∈ T

}
.

Let ε ≥ 0. Suppose that f : X → R is a convex function. Let x̄ ∈ F and ε ≥ 0. Let ht :
X × Zt → R, t ∈ T , be continuous functions such that, for any vt ∈ Vt , ht(·, vt) is a con-
vex function. If (RCQ) holds, then x̄ is a robust ε-optimal solution of (UCP) if and only if
there exist (λ̄t)t∈T ∈R

(T)
+ , v̄t ∈ Vt , t ∈ T , and ε0 ≥ 0, εt ≥ 0, t ∈ T , such that

0 ∈ ∂ε0 f (x̄) +
∑
t∈T

∂εt

(
λ̄tht(·, v̄t)

)
(x̄)

and

ε0 +
∑
t∈T

εt – ε =
∑
t∈T

λ̄tht(x̄, v̄t).

Proof Let g(x) ≡ 1 for each x ∈ X. Then the conclusion follows from Theorem 3.1. �

Similarly, we obtain the following result for nonsmooth convex semi-infinite optimiza-
tion problems.

Corollary 3.3 Let x̄ ∈F . Let ht : X × Zt → R, t ∈ T , be continuous functions such that, for
any vt ∈ Vt , ht(·, vt) is a convex function. If (RCQ) holds, then x̄ is a robust optimal solution
of (UCP) if and only if there exist (λ̄t)t∈T ∈R

(T)
+ and v̄t ∈ Vt , t ∈ T , such that

0 ∈ ∂f (x̄) +
∑
t∈T

∂
(
λ̄tht(·, v̄t)

)
(x̄)

and

ht(x̄, v̄t) = 0, ∀t ∈ T(λ̄).

4 Mixed type approximate duality results
In this section, we first introduce a mixed type robust dual problem for (UFP), and then
discuss the robust approximate weak and strong duality properties.

Let y ∈ X, λ := (λt)t ∈ R
(T)
+ , β := (βt)t ∈ R

(T)
+ , μ ≥ 0, and ε ≥ 0. For fixed vt ∈ Vt , t ∈ T ,

the conventional mixed type dual problem of (UFP) is given by

(MD)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxμ

s.t. 0 ∈ ∂ε′
0
f (y) + μ∂ε′′

0
(–g)(y) +

∑
t∈T ∂εt ((λt + βt)ht(·, vt))(y),

f (y) – μg(y) +
∑

t∈T λtht(y, vt) ≥ εg(y),

ε′
0 + με′′

0 +
∑

t∈T εt – εg(y) ≤ ∑
t∈T βtht(y, vt),

μ ≥ 0,λt ≥ 0,βt ≥ 0, ε′
0 ≥ 0, ε′′

0 ≥ 0, εt ≥ 0, t ∈ T .



Zeng et al. Journal of Inequalities and Applications         (2019) 2019:45 Page 10 of 16

The optimistic counterpart of (MD), called optimistic dual optimization problem, is a de-
terministic maximization problem which is given by

(OMD)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxμ

s.t. 0 ∈ ∂ε′
0
f (y) + μ∂ε′′

0
(–g)(y) +

∑
t∈T ∂εt ((λt + βt)ht(·, vt))(y),

f (y) – μg(y) +
∑

t∈T λtht(y, vt) ≥ εg(y),

ε′
0 + με′′

0 +
∑

t∈T εt – εg(y) ≤ ∑
t∈T βtht(y, vt),

μ ≥ 0,λt ≥ 0,βt ≥ 0, vt ∈ Vt , ε′
0 ≥ 0, ε′′

0 ≥ 0, εt ≥ 0, t ∈ T .

Remark 4.1
(i) In the special case that ε = 0, and there is no uncertainty in the constraint

functions, (UFP) becomes (FP), (OMD) collapses to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

maxμ

s.t. 0 ∈ ∂f (y) + μ∂(–g)(y) +
∑

t∈T ∂((λt + βt)ht(·, vt))(y),

f (y) – μg(y) +
∑

t∈T λtht(y, vt) ≥ 0,βtht(y, vt) ≥ 0,

μ ≥ 0,λt ≥ 0,βt ≥ 0, vt ∈ Vt , t ∈ T .

(ii) In the special case that ε = 0, and the objective functions and the constraint
functions are continuously differentiable, (OMD) collapses to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

maxμ

s.t. ∇f (y) – μ∇g(y) +
∑

t∈T (λt + βt)∇ht(·, vt)(y) = 0,

f (y) – μg(y) +
∑

t∈T λtht(y, vt) ≥ 0,βtht(y, vt) ≥ 0,

μ ≥ 0,λt ≥ 0,βt ≥ 0, vt ∈ Vt , t ∈ T .

(iii) Obviously, if ε = 0 and λ = 0, (OMD) collapses to the Mond–Weir type optimistic
dual problem as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

maxμ

s.t. 0 ∈ ∂f (y) + μ∂(–g)(y) +
∑

t∈T ∂(βtht(·, vt))(y),

f (y) – μg(y) ≥ 0,βtht(y, vt) ≥ 0,

μ ≥ 0,βt ≥ 0, vt ∈ Vt , t ∈ T .

And if ε = 0 and β = 0, (OMD) collapses to the Wolfe type optimistic dual problem
as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

maxμ

s.t. 0 ∈ ∂f (y) + μ∂(–g)(y) +
∑

t∈T ∂(λtht(·, vt))(y),

f (y) – μg(y) +
∑

t∈T λtht(y, vt) ≥ 0,

μ ≥ 0,λt ≥ 0, vt ∈ Vt , t ∈ T .

Let us denote by F (OMD) the feasible set of (OMD). Now, we give some robust ε-weak
and ε-strong duality properties.
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Theorem 4.1 (Mixed type robust ε-weak duality) Let ε ≥ 0. For any feasible x of (RUFP)
and any feasible (y,λ,β , v,μ) of (OMD), we have

f (x)
g(x)

≥ μ – ε.

Proof Since (y,λ,β , v,μ) is a feasible solution of (OMD), we have μ ≥ 0, λt ≥ 0, βt ≥ 0,
vt ∈ Vt , ε′

0 ≥ 0, ε′′
0 ≥ 0, εt ≥ 0, t ∈ T , such that

0 ∈ ∂ε′
0
f (y) + μ∂ε′′

0
(–g)(y) +

∑
t∈T

∂εt

(
(λt + βt)ht(·, vt)

)
(y), (10)

f (y) – μg(y) +
∑
t∈T

λtht(y, vt) ≥ εg(y), (11)

and

ε′
0 + με′′

0 +
∑
t∈T

εt – εg(y) ≤
∑
t∈T

βtht(y, vt). (12)

By (10), there exist ξ ′
0 ∈ ∂ε′

0
f (y), ξ ′′

0 ∈ ∂ε′′
0
(–g)(y), and ξt ∈ ∂εt ((λt + βt)ht(·, vt))(y) such that

ξ ′
0 + μξ ′′

0 +
∑
t∈T

ξt = 0. (13)

Note that for any x ∈ F , one has (λt + βt)ht(x, vt) ≤ 0 and g(x) > 0. These, together with
(11), (12), and (13), imply

f (x) – μg(x) + εg(x)

≥ f (y) +
〈
ξ ′

0, x – y
〉
– ε′

0 – μg(y) + μ
〈
ξ ′′

0 , x – y
〉
– με′′

0 + εg(x)

= f (y) – μg(y) –
〈∑

t∈T

ξt , x – y
〉

– ε′
0 – με′′

0 + εg(x)

≥ f (y) – μg(y) –
∑
t∈T

(λt + βt)ht(x, vt)

+
∑
t∈T

(λt + βt)ht(y, vt) –
∑
t∈T

εt – ε′
0 – με′′

0 + εg(x)

≥ f (y) – μg(y) +
∑
t∈T

λtht(y, vt) +
∑
t∈T

βtht(y, vt) –
∑
t∈T

εt – ε′
0 – με′′

0

≥ f (y) – μg(y) +
∑
t∈T

λtht(y, vt) – εg(y)

≥ 0.

Thus,

f (x)
g(x)

≥ μ – ε.

This completes the proof. �
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Theorem 4.2 (Mixed type robust ε-strong duality) Let x̄ ∈F and ε ≥ 0. Let ht : X ×Zt →
R, t ∈ T , be continuous functions such that, for any vt ∈ Vt , ht(·, vt) is a convex function.
Assume that (RCQ) holds. If x̄ is a robust ε-optimal solution of (UFP) and f (x̄)

g(x̄) – ε > 0,
then there exist (λ̄t)t∈T ∈ R

(T)
+ , v̄t ∈ Vt , t ∈ T , and μ̄ ≥ 0 such that (x̄, 0, λ̄, v̄, μ̄) is a robust

2ε-optimal solution of (MD).

Proof Suppose that x̄ ∈ F is a robust ε-optimal solution of (UFP). Let μ̄ := f (x̄)
g(x̄) – ε > 0.

Then

f (x̄) – μ̄g(x̄) = εg(x̄). (14)

Moreover, by Theorem 3.1, there exist (λ̄t)t∈T ∈ R
(T)
+ , v̄t ∈ Vt , t ∈ T , and ε′

0 ≥ 0, ε′′
0 ≥ 0,

εt ≥ 0, t ∈ T , such that

0 ∈ ∂ε′
0
f (x̄) + μ̄∂ε′′

0
(–g)(x̄) +

∑
t∈T

∂εt

(
λ̄tht(·, v̄t)

)
(x̄) (15)

and

ε′
0 + μ̄ε′′

0 +
∑
t∈T

εt – εg(x̄) =
∑
t∈T

λ̄tht(x̄, v̄t). (16)

From (14), (15), and (16), we can deduce that (x̄, 0, λ̄, v̄, μ̄) is a feasible solution of (OMD).
Then, for any feasible solution (y,λ,β , v,μ) of (OMD),

μ̄ – μ =
f (x̄)
g(x̄)

– ε – μ ≥ μ – ε – ε – μ = –2ε,

where the inequality is from the mixed type robust ε-weak duality. Thus, (x̄, 0, λ̄, v̄, μ̄) is a
robust 2ε-optimal solution of (MD). The proof is complete. �

Remark 4.2 In the special case when ε = 0 and/or Vt , t ∈ T , are singletons, some similar
results concerning the classical Wolfe type duality for smooth optimization problems have
been established in [13, 28] based on different kinds of constraint qualifications.

Finally, in this section, we consider a special case of (UFP) with g(x) ≡ 1. In this case,
(UFP) becomes the uncertain convex semi-infinite optimization (UCP), and (OMD) re-
duces to the following optimization problem:

(OMD)1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max f (y) +
∑

t∈T λtht(y, vt)

s.t. 0 ∈ ∂ε0 f (y) +
∑

t∈T ∂εt ((λt + βt)ht(·, vt))(y),

ε0 +
∑

t∈T εt – ε ≤ ∑
t∈T βtht(y, vt),

λt ≥ 0,βt ≥ 0, vt ∈ Vt , ε0 ≥ 0, εt ≥ 0, t ∈ T .

Remark 4.3 Note that if for any t ∈ T , βt = 0, then (OMD)1 becomes the Wolfe type dual
problem introduced in [23]. Thus, (OMD)1 can be seen as a mixed type dual problem for
uncertain convex semi-infinite optimization (UCP).
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Similarly, we obtain the following robust approximate weak and strong duality proper-
ties which generalize the corresponding results obtained in [23].

Theorem 4.3 Let ε ≥ 0. For any feasible x of (RUCP) and any feasible (y,λ,β , v) of
(OMD)1, we have

f (x) ≥ f (y) +
∑
t∈T

λtht(y, vt) – ε.

Theorem 4.4 Let x̄ ∈ F and ε ≥ 0. Let ht : X × Zt → R, t ∈ T , be continuous functions
such that, for any vt ∈ Vt , ht(·, vt) is a convex function. Assume that (RCQ) holds. If x̄ is a
robust ε-optimal solution of (UCP), then there exist (λ̄t)t∈T ∈ R

(T)
+ , v̄t ∈ Vt , t ∈ T , such that

(x̄, 0, λ̄, v̄) is a 2ε-optimal solution of (OMD)1.

5 Applications
In this section, let X, Y , and Z be real locally convex topological vector spaces. Let K ⊆ Y
be a nonempty closed convex cone which defined the partial order of Y . Let f : X →R be a
continuous convex and nonnegative function, and let g : X → R be a continuous concave
and positive function. Consider the following uncertain fractional optimization problem
with cone constraint:

(UFP)c min
x∈X

{
f (x)
g(x)

∣∣∣ h(x, v) ∈ –K
}

,

where h : X × Z → Y is a continuous function, and the uncertain parameter v belongs to
the convex compact set V ⊆ Z.

Pursuing the approach given in [29, 30], (UFP)c can be reformulated as an example of
(UFP) by setting

T := K∗, hλ(x, vλ) := (λh)(x, v) for any λ ∈ T = K∗.

Here, we also use F to denote the feasible solution set of (UFP)c, i.e.,

Fc :=
{

x ∈ X | (λh)(x, v) ≤ 0,∀v ∈ V ,λ ∈ K∗} =
{

x ∈ X | h(x, v) ∈ –K ,∀v ∈ V
}

.

Moreover, for any β = (βλ)λ∈K∗ ∈ R
(K∗)
+ , it is easy to obtain that

⋃
v∈V ,β∈R(K∗)

+

epi

(∑
λ∈K∗

βλhλ(·, vλ)
)∗

=
⋃

v∈V ,λ∈K∗
epi

(
(λh)(·, v)

)∗.

Now, we establish the corresponding results of the problem (UFP)c by using the similar
methods of Sects. 3 and 4.

Theorem 5.1 Let x̄ ∈ Fc, ε ≥ 0, and μ̄ = f (x̄)
g(x̄) – ε > 0. Let h : X × Z → Y be a continuous

function such that h(·, v) is a K-convex function for any v ∈ V . If
⋃

v∈V ,λ∈K∗ epi((λh)(·, v))∗

is weak∗ closed and convex, then x̄ is a robust ε-optimal solution of (UFP)c if and only if
there exist λ̄ ∈ K∗, v̄ ∈ V , and εi ≥ 0, i = 1, 2, 3, such that

0 ∈ ∂ε1 f (x̄) + μ̄∂ε2 (–g)(x̄) + ∂ε3

(
(λ̄h)(·, v̄)

)
(x̄)



Zeng et al. Journal of Inequalities and Applications         (2019) 2019:45 Page 14 of 16

and

ε1 + μ̄ε2 + ε3 – εg(x̄) = (λ̄h)(x̄, v̄).

Corollary 5.1 Let x̄ ∈ Fc and μ̄ = f (x̄)
g(x̄) > 0. Let h : X × Z → Y be a continuous function

such that h(·, v) is a K-convex function for any v ∈ V . If
⋃

v∈V ,λ∈K∗ epi((λh)(·, v))∗ is weak∗

closed and convex, then x̄ is a robust optimal solution of (UFP)c if and only if there exist
λ̄ ∈ K∗ and v̄ ∈ V such that

0 ∈ ∂f (x̄) + μ̄∂(–g)(x̄) + ∂
(
(λ̄h)(·, v̄)

)
(x̄)

and

(λ̄h)(x̄, v̄) = 0.

Similarly, for any λ, β ∈ K∗ and ε ≥ 0, we define the mixed type dual problem of (UFP)c

as follows:

(MD)c

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxμ

s.t. 0 ∈ ∂ε1 f (y) + μ∂ε2 (–g)(y) + ∂ε3 ((λ + β)h(·, v))(y),

f (y) – μg(y) + (λh)(y, v) ≥ εg(y),

ε1 + με2 + ε3 – εg(y) ≤ (βh)(y, v),

μ ≥ 0,λ,β ∈ K∗, εi ≥ 0, i = 1, 2, 3.

The optimistic counterpart of (MD)c is given by

(OMD)c

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxμ

s.t. 0 ∈ ∂ε1 f (y) + μ∂ε2 (–g)(y) + ∂ε3 ((λ + β)h(·, v))(y),

f (y) – μg(y) + (λh)(y, v) ≥ εg(y),

ε1 + με2 + ε3 – εg(y) ≤ (βh)(y, v),

μ ≥ 0,λ,β ∈ K∗, v ∈ V , εi ≥ 0, i = 1, 2, 3.

Theorem 5.2 Let ε ≥ 0. For any feasible x of (UFP)c and any feasible (y,λ,β , v,μ) of
(OMD)c, we have

f (x)
g(x)

≥ μ – ε.

Theorem 5.3 Let x̄ ∈ F and ε ≥ 0. Let h : X × Z → Y be a continuous function such that
h(·, v) is a K-convex function for any v ∈ V . Assume that

⋃
v∈V ,λ∈K∗ epi((λg)(·, v))∗ is weak∗

closed and convex. If x̄ is a robust ε-optimal solution of (UFP)c and f (x̄)
g(x̄) – ε > 0, then there

exist λ̄ ∈ K∗, v̄ ∈ V , and μ̄ ≥ 0 such that (x̄, 0, λ̄, v̄, μ̄) is a 2ε-optimal solution of (OMD)c.



Zeng et al. Journal of Inequalities and Applications         (2019) 2019:45 Page 15 of 16

6 Conclusions
In this paper, a nonsmooth fractional semi-infinite optimization problem under data un-
certainty in the constraint function (UFP) is considered. Under a new robust type con-
straint qualification (RCQ), some approximate optimality conditions and approximate du-
ality results are established by using the framework of robust optimization approach. The
obtained results encompass as special cases some optimization problems considered in
the recent literature. It would be interesting to consider other concepts of approximate
solutions for fractional semi-infinite optimization problems with data uncertainty. These
may be the topic of some of our forthcoming papers.

Acknowledgements
We would like to express our sincere thanks to the anonymous referees for many helpful comments and constructive
suggestions which have contributed to the final preparation of this paper.

Funding
This research was supported by the Basic and Advanced Research Project of Chongqing (cstc2016jcyjA0219,
cstc2016jcyjA0178), the National Natural Science Foundation of China (71501162), the Science and Technology Research
Program of Chongqing Municipal Education Commission (KJQN201800837), and the Program for University Innovation
Team of Chongqing (CXTDX201601026).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All the authors have contributed equally to this paper. All the authors have read and approved the final manuscript.

Author details
1Chongqing Key Laboratory of Social Economy and Applied Statistics, College of Mathematics and Statistics, Chongqing
Technology and Business University, Chongqing, China. 2China Research Institute of Enterprise Governed by Law,
Southwest University of Political Science and Law, Chongqing, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 December 2018 Accepted: 11 February 2019

References
1. Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13, 492–498 (1967)
2. Schaible, S.: Duality in fractional programming: a unified approach. Oper. Res. 24, 452–461 (1976)
3. Craven, B.D.: Fractional Programming. Heldermann, Berlin (1988)
4. Lai, H.C., Liu, J.C., Tanaka, K.: Duality without a constraint qualification for minimax fractional programming. J. Math.

Anal. Appl. 230, 311–328 (1999)
5. Liang, Z.A., Huang, H.X., Pardalos, P.M.: Optimality conditions and duality for a class of nonlinear fractional

programming problems. J. Optim. Theory Appl. 110, 611–619 (2001)
6. Yang, X.M., Teo, K.L., Yang, X.Q.: Symmetric duality for a class of nonlinear fractional programming problems. J. Math.

Anal. Appl. 271, 7–15 (2002)
7. Yang, X.M., Yang, X.Q., Teo, K.L.: Duality and saddle-point type optimality for generalized nonlinear fractional

programming. J. Math. Anal. Appl. 289, 100–109 (2004)
8. Long, X.J.: Optimality conditions and duality for nondifferentiable multiobjective fractional programming problems

with (C,α,ρ ,d)-convexity. J. Optim. Theory Appl. 148, 197–208 (2011)
9. Sun, X.K., Long, X.J., Chai, Y.: Sequential optimality conditions for fractional optimization with applications to vector

optimization. J. Optim. Theory Appl. 164, 479–499 (2015)
10. Sun, X.K., Tang, L.P., Long, X.J., Li, M.H.: Some dual characterizations of Farkas-type results for fractional programming

problems. Optim. Lett. 12, 1403–1420 (2018)
11. Jeyakumar, V., Li, G.Y.: Robust duality for fractional programming problems with constraint-wise data uncertainty.

J. Optim. Theory Appl. 151, 292–303 (2011)
12. Jeyakumar, V., Li, G.Y., Srisatkunarajah, S.: Strong duality for robust minimax fractional programming problems. Eur.

J. Oper. Res. 228, 331–336 (2013)
13. Sun, X.K., Chai, Y.: On robust duality for fractional programming with uncertainty data. Positivity 18, 9–28 (2014)
14. Sun, X.K., Long, X.J., Fu, H.Y., Li, X.B.: Some characterizations of robust optimal solutions for uncertain fractional

optimization and applications. J. Ind. Manag. Optim. 13, 803–824 (2017)



Zeng et al. Journal of Inequalities and Applications         (2019) 2019:45 Page 16 of 16

15. Li, X.B., Wang, Q.L., Lin, Z.: Optimality conditions and duality for minimax fractional programming problems with data
uncertainty. J. Ind. Manag. Optim. https://doi.org/10.3934/jimo.2018089

16. Loridan, P.: Necessary conditions for ε-optimality. Math. Program. 19, 140–152 (1982)
17. Son, T.Q., Strodiot, J.J., Nguyen, V.H.: ε-Optimality and ε-Lagrangian duality for a nonconvex programming problem

with an infinite number of constraints. J. Optim. Theory Appl. 141, 389–409 (2009)
18. Sun, X.K., Guo, X.L., Zeng, J.: Necessary optimality conditions for DC infinite programs with inequality constraints.

J. Nonlinear Sci. Appl. 9, 617–626 (2016)
19. Long, X.J., Xiao, Y.B., Huang, N.J.: Optimality conditions of approximate solutions for nonsmooth semi-infinite

programming problems. J. Oper. Res. Soc. China 6, 289–299 (2018)
20. Kim, D.S., Son, T.Q.: An approach to ε-duality theorems for nonconvex semi-infinite multiobjective optimization

problems. Taiwan. J. Math. 22, 1261–1287 (2018)
21. Lee, J.H., Lee, G.M.: On ε-solutions for robust fractional optimization problems. J. Inequal. Appl. 2014, 501 (2014)
22. Sun, X.K., Li, X.B., Long, X.J., Peng, Z.Y.: On robust approximate optimal solutions for uncertain convex optimization

and applications to multi-objective optimization. Pac. J. Optim. 13, 621–643 (2017)
23. Lee, J.H., Lee, G.M.: On ε-solutions for robust semi-infinite optimization problems. Positivity (2018).

https://doi.org/10.1007/s11117-018-0630-1
24. Sun, X., Fu, H., Zeng, J.: Robust approximate optimality conditions for uncertain nonsmooth optimization with infinite

number of constraints. Mathematics 7, 12 (2019)
25. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
26. Goberna, M.A., López, M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998)
27. Jeyakumar, V.: Asymptotic dual conditions characterizing optimality for convex programs. J. Optim. Theory Appl. 93,

153–165 (1997)
28. Boţ, R.I.: Conjugate Duality in Convex Optimization. Springer, Berlin (2010)
29. Sun, X.K., Li, S.J., Zhao, D.: Duality and Farkas-type results for DC infinite programming with inequality constraints.

Taiwan. J. Math. 17, 1227–1244 (2013)
30. Sun, X.K.: Regularity conditions characterizing Fenchel–Lagrange duality and Farkas-type results in DC infinite

programming. J. Math. Anal. Appl. 414, 590–611 (2014)

https://doi.org/10.3934/jimo.2018089
https://doi.org/10.1007/s11117-018-0630-1

	On robust approximate optimal solutions for fractional semi-inﬁnite optimization with uncertainty data
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Robust approximate optimality conditions
	Mixed type approximate duality results
	Applications
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


