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1 Introduction

To model various phenomena in climate systems, geophysical, environmental, and so on,
the Navier—Stokes equations may be coupled with other equations. Coupled with Navier—
Stokes equations and the transport equations for temperature, the Boussinesq equa-
tion as a two-dimensional coupled system of Navier—Stokes equations and temperature-
dependent transport equations can be used to describe the oceanic gravity currents [3, 9].

Recently there have been a few works related to the stochastic Boussinesq equation con-
centrating on various topics. For example, [13] and [18] are devoted to well-posedness
problems while using different types of solution to deal with low regularity. [1, 19], and
[15] study the random dynamics of the Boussinesq systems under diverse conditions on
noise or random boundary and show the existence of random attractor. [10] considers the
existence, uniqueness, and attraction properties of an ergodic invariant measure for the
Boussinesq equations with degenerate Gaussian noise. [7, 16], and [20] progress gradually
in the technical level and provide the large deviations principle for the Boussinesq equa-
tions with different random conditions. It is worth mentioning that all but a few works
above are done under various Gaussian noises. Due to low regularity caused by noise or
nonlinear terms, they may use weak, mild, or martingale solutions. However, we find that
Levy noise with the characteristic of jump is really special in influencing the driven Boussi-
nesq system, and the classical solution notion may not be appropriate, despite of [13] and
[20], especially for further problems like ergodicity. So we adopt the original idea of [8]
and put forward with “fragile solution”.

To be specific, this article is concerned with the Boussinesq equations perturbed by Levy
noise. The aim is to prove the existence and uniqueness of a special type of global solu-
tions on the condition that Poisson measure possesses a o -finite characteristic measure.
Then we show that the related system possesses invariant measures. The novelty is that we
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adopt a special type of solution definition (fragile solution) to conquer low regularity, then
we apply it successfully by obtaining well-posedness and studying statistically asymptotic
behavior. To accomplish this, we develop a novel progressive stopping time technique to
obtain the necessary a priori estimates. The critical point is that this method enables us
to decompose the difficulties into several parts and tackle with the crucial regular prob-
lems. We believe that the current results can be generalized to other nonlocal models or
the ones driven by more irregular noise. To illustrate this, in the last section we general-
ize the argument for stochastic Boussinesq equations to a class of abstract stochastic 2D
hydrodynamical type systems driven by Levy noise with suitable modification. Roughly
speaking, we can also obtain well-posedness for 2D magneto-hydrodynamic equation, 2D
Boussinesq model for the Benard convection, 2D magnetic Benard problem, and 3D Leray
a model for Navier—Stokes equations driven by Levy noise.

The rest of the paper is organized as follows. Section 2 is devoted to some preliminar-
ies on notations, lemmas, and especially the definition of fragile solutions. In Sect. 3, we
prove the existence and uniqueness of global fragile solution for the Boussinesq equa-
tion perturbed by Levy noise. In Sect. 4, we obtain the existence of equilibrium for the
considered system. Finally, some discussions on the generalizations to abstract stochastic
hydrodynamical equations driven by Levy noise are presented in Sect. 5.

2 Preliminary
In the current paper, we study the stochastic Boussinesq equations driven by Levy white

noises

Bt (u-Vu—vAu+Vp=0ey+ QudWi(t) + [, f (u(t-), w)N, (dt, dw),
B 4 (u-V)O —kAO = uy + QudWs(t) + fug(e(t—), w)Na(dt, dw),
V-u=0,

ulagp =0, u(0) = uy, 6(0) = 6y,

(2.1)

with velocity u = u(x, £) = (u1,uy) € R, salinity 6 = 0(x, t) € R, pressure p, x = (§,7) € D C
R?. e; € R? is a unit vector in the upward vertical direction. Q; and Q are of trace class.
W1(-) (Wa(-), respectively) is an (L%(D))? (L?(D), respectively)-valued cylindrical Wiener
process. f (g, respectively) is a measurable mapping from some measurable space U to
(L*(D))?* (L*(D), respectively). N; and N, are compensated Poisson measures on [0, 00) x U
with intensity measures A1 an A, being o -finite measures on Z(U). Assume that W;(¢) and
N;(dt, du) are independent.

Let L2(D) be the Hilbert space. Denote H = (L2(D))? x L2(D) with the scalar product and
the induced norm

G ) = fD SV 162 = (6 9), VéeH.

SetV =V x V, = (HY(D))? x H (D), then V is a product Hilbert space, of which the scalar

product and the induced norm are given by

(@ ¥)v = /DV¢> Vydx,  IIY = (@, 9y = Id1llT, + lleall,-
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By the classical interpolation inequality, there exists C; > 0 such that, for u € V1,0 € V;,

2

|l sy < Crlulllullvy, 10174y < C1IONIO vy (2.2)

Define an unbounded linear operator A = (VA;,kA;) : H— H by
(A1, v) = (w,u)vy,  (A20,m) = (0,m)v,, Y, v € D(A1), V0,1 € D(A,),

where D(4,) = V; N (H2(D))?, D(A3) = Vo N H*(D), and D(A) = D(A;) x D(A,).
Introduce the following bilinear operators By, B, for every u,v,w € V1,0,n € V5:

(B1(u,v), w) :/D[u~Vv]wdx: Z Luiaivjwjdx,

ij=1,2

(BZ(M’Q)’n) :‘/D[u've]ﬂdx: Z /Duiaiejnjdx.

ij=1,2

Denote
A = VA1u _ -vAu ’
10429 —-kAO
Bo - B (u, u) _ (u-Vu .
By(u,0) (u-V)o
We will need some lemmas with regard to the properties of A and B.

Lemma 2.1 ([1, Lemma 2.2]) A is a positive, self-adjoint operator satisfying

(Ad,¢) = plidllz,  p =min(v,k),¢ € D(A).

Lemma 2.2 ([7, Lemma 3.4]) For u,v,w € V1, 0,n € Vs, there holds
(1) (Bl(bt, V)’ V) =0, (BZ(M! 9)’ 6) =0,
(2) (Bl (M, V)’ W) = _(Bl(ur W)7 V)’ (BZ(M! 0)! 77) = _(BZ(M’ 77): 9)

Lemma 2.3 ([7, Lemma 3.5]) Forue Vi, 0,n € V,, ¢ = (u,0), there holds
(1) 1Bi(wv)ly; < lul7s < Crllulllul,

1 1 1 1
(2) 1Ba(u, 0), )| < llnll - lual s - 10110 < Culimll - Jaal2 [luel 2 - 102|612

To ease notation, set
() (@) ()
0 Q2 W,
Fww= (""", reo=(70),
g(G’W) —U

Nide,aw) = (N@ed) () oy mx= (0]
Nz(dt,dW) Ay 80
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Note that N(ds, dw) is the compensated Poisson measure with intensity measure A. We
will consider the following equivalent abstract stochastic evolution equation in the sequel:

X = /tAde—/t (X)ds—/R(X)ds
QdW; + (X,_, w)N(ds, dw). (2.3)
H[eane [ [r

Due to the low regularity of the noise, we cannot expect that the solution X to equation
(2.3) is square integrable in time with values in V. So we introduce the following uncon-
ventional definition.

Definition 2.1 A fragile solution to equation (2.3) is a progressively measurable stochastic
process X; in [0, T'] with

X(w) € C([0, T, H) N L*(0, T; 2(A1))

for a.e. w € §2, such that

(X:, ) + t(Xs,A¢)ds+ / t(B(XS,¢),XS) ds + f t(R(Xs,qb),XS) ds
0 0

0

)+ fo /u (F(X,0), )N (ds, dit) + (W;, Q)

a.e. forall £ € [0, T] and all ¢ € Z(A).

Note that this definition coincides with the generalized solution introduced by [8]. Here
we adopt the name “fragile” to distinguish from “weak”.

Now we impose some hypotheses on F, which are also included in [5]. Suppose that
{Ux}r>1 are the measurable subsets of U on the condition that Uy / U and A(Uj) < oo.
There exist positive constants C and K such that, for some « € [1/4,1/2),

(Hi1) Q:H — H is a linear bounded operator, whose range Z(Q) is dense in Q(A%"%)

and 2(A%*) c Z(Q) C Q(A%”%”) for some ¢ > 0;

(H) [y, |A“F(0,u)A(du) = C

(Hs) [y, [A%(F (e, ) = F(y, ) 2A(dun) < KIA® (x - )|

(Ha) sup,.py fuf,, |A*F(x, 1) |2A(du) — 0, as m — oo.

3 Global solutions

3.1 A(U) < o0

Throughout this subsection we suppose that A({/) < co. Noting that the character measure
A(U) is finite, we will rearrange the jump times of N(dt, du). Let the jump times of N (dt, du)
be 01(w) < 03(w) < - - - , then on [0, 1), equation (2.3) can be regarded as the equivalence
of the following deterministic integral equation:

X = /AX ds—/t (X)ds—/ R(X;)ds

/ Qdw; +/ / (Xs-, 2)A(ds, dz). (3.1)

Page 4 of 22
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It is well known that the Ornstein—Uhlenbeck process z is the solution of

dz; + Az, dt = QdW,,

Zo = 0.
Lemma 3.1 If hypothesis (H;) holds, then z € Co([0, T], Z2(AY**72)) a.s.

Proof Since A i*3+¢ is continuous in H by the closed graph theorem and A~ 2% is Hilbert—

Schmidt in H, A1+5+5 Q= A% A d+gre Q) is a Hilbert—Schmidt operator on H. Let ¢,

k € N be the normalized eigenfunctions corresponding to the eigenvalues 0 < A; < Ay <
- of A. Letting Qe, = Y _po; gukex and o = > 2, q>;, one finds that

00 1 00 00 1

2, —gtete 9 Jmgtate o lia,,
Dok =Y Y T = |ATEQ g <00
k=1 k=1 n=1

With this inequality, one can proceed similarly as [8, p. 411] did to obtain

n=1

1
4 2., —3tat2e0
E|Zt| l o 52 On’-‘-n
DAL 30y Z

for some gg < %8. O

By the change of variable Y; = X; — z;, we transform equation (2.3) into
t t t
Y, :x—/ Asts—/ B(Ys+zs)ds—/ R(Y; + zg)ds
0 0 0

+/0 /L[F(Xs+zs,z)k(dz,dt). (3.2)

Theorem 3.1 If hypotheses (H;1)—(H3) hold, then for Vx € P(AY), there exists a unique
solution X of (3.1) such that, for a.s. » € §2,

X (@) - z(w) € C([0, T], Z(A%)) N LT% (0, T; Z(A4+%)) N L*(0, T; 2(A3*)).
The transition semigroup associated with (3.2) is a Feller Markov process.

Proof Our strategy is to utilize the Galerkin method. Denote E, = span{e;,ey,...,e,},
P,:H — E, is an orthonormal projection. Consider the following ordinary differential

equation:
d n
% =—AY!" - P,B(Y! + 2!') - P,R(Y! + 2I') + qu(Ys" + 2z, u)\(du), (3.3)
Yy =Py,

where z} is the Ornstein—Uhlenbeck process satisfying

dz} + Az} dt = P,QdW,,

n _
z5 =0.
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Multiplying equation (3.3) by Y/ yields

A I

= (PB(Y! +2), YY)~ (PuR(Y +20), YP) + /U (E(Y + 20 u), Y'Y (du)
< |BOYn, YY) |+ |(B( Y2), 2) | + | ¥+ 2] | v | + /u (F(Y" + 2 u), V') 1 du)
1 n n n n
<11+ Cila vl + il + v + 20|y
/{Y"||F + 2, 1) — F(0,u) + F(0, u)| A(du)
1 n n n n
b e A A e A R A AR b
2K ()
AR
1, ; 2K
< P +[2+x(m+cl|ztyﬁ+ }|y| (1+ ka)|zt’
C
+C1|z;‘|j4+ﬁ,

where C; is a positive constant, whose value may change from one line to another. By the

way, we will abuse notation in this way in the sequel. By Gronwall’s inequality, we get

T
sup [v7+ [y an
0<t<T

4K
|2 fo [4+22( )+2C1|Zt|L4+ 1dt

[4+2A(L0)+2C1 |2} |+ 4’<1d 4K
/ B2 o 5[<2+A—a)|z:’| 2G el + 2 }dt (3.4
1

<l

From this we conclude that {Y}"},>; is bounded in L>(0, T;H) N L*(0, T; V), because z
has continuous trajectories with values in _@(A%) C [L*(0)]?. Consequently, Y cannot
explode in finite time.

Multiplying equation (3.3) by A**Y}" and applying the interpolation inequality

abei v < cilanyy||adyy) 39
we have

oyn l+Ol
L by

=—(P.B(Y} +2)),A*Y]") - (A°P,R(Y] +2]),A"Y})
+ / (A“F(Y] + 2/, u),A*Y]")A(du)

u

< AT E (V) 4 2)[P|A 21y |+ |(APLR(Y) + 20),4°Y)|

Page 6 of 22
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+

/(A“F(YS” +2),u), A°Y]" ) A(du)

u

< CATS (V) +2) A% 2 vp | + A% (Y7 + 2)) [JA Y| + M |ac 7
+2K[|AY! | + A2 "]+ C

<2C|AY]||A3 Y] ||AS 3 Y|+ 2C AR S 22 Pl vy
+ (24 2MU) +2K)[AY] P + QK + D]A%2 |} + C

< %|A%+a)/;“|2 + G| Y PlACY? [P + Colat 3 22" + (24 MU + 2K) [A°Y]
+ (2K +1)|AZ [P+ C

< %|A%+a1/;4|2 F (242U +2K + ColA2 Y ) Ay [P + Golad s 2t
+ (2K +1)|AZ![* + C.

Gronwall’s inequality implies

T
sup |A0‘Yt”|2+‘/0 |A%*°‘Yt”|2dt

0<t<T

1 T 1

2 (T 2 yn2 t 2 yn?2 1, a 4

< ‘Aax‘ efo [4+20(U)+4K+2Co|A2 Y[ 7] dt + / efo [4+20(U)+4K +2Co|A2 Y| ]ds[zCZ‘A4+ 22:1‘
0

+2(2K + 1)[A%2|* + 2C) dt. (3.6)

Since z} has continuous trajectories with values in Q(A%J'%) C Y(A%), we derive from
this and (3.4) that {Y}"},>1 is bounded in L*(0, T; Z(A%)) N L*(0, T; Q(A%"“)). Noting the
interpolation inequality

bty < alany| b jaber 67

wegetY € LT% 0, T;2(A4 it$ ). Utilizing weakly and weakly *-convergent subsequences
and noting that 2" is strongly convergent to z, one obtains the existence of a solution Y €
L0, T; 2(AY)N L0, T; (A 3 )N L ' 0, T; 92(A 1+8 ). By the classical argument (cf.
[17, Chap. 3]), we get Y € C(0, T; Z(A%)).

Finally, we examine the uniqueness. Suppose that YV and Y@ are two solutions, then

d(y” - v?)
dt

PRIV Y ¥ 4 2) + R + 2 Y~ YP)

+A(Yt(1) - Yt(z)) + B(Yt(l) - Yt@), Yt(l) + zt) + B(Yt(z) + 2, Yt(l) - Yt(z))

- / [F(Yt(z) + 24 1) — F(Yt(l) + 24, 1) | M (du).
u
Therefore, by Lemma 2.3,

1dY," -y,
2 dt

< (B = Y2, ¥ 4 2), YO ¥O)| 4 (B2 + 20 ¥~ ¥2), ¥~ )|

el

Page 7 of 22
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RV -Y2, Y0 +2), Y = v + | (RGP + 2, vV - ), ¥V - ¥
+ fu [(F(Y + zou) = F(YV + 2e,u), Y,V = Y2 |(dur)
e e AR A P AR
+ O - Y2 v = Y2 LY + 2]
T AR 2 7 R D7 2 B S Sl B D A B D A o
+ /;1|F(Yt(2) + 24, 1) —F(Yt(l) +z, u)‘ . ’Yt(l) - Yt(z)’)»(du)

1
L YO G PR 2l Gl YO 2

A

+ [|Yt(1) +zt| + |Yt(2) +zt|]|Yt(1) - Yt(z)‘2 + A(U)|Yt(1) - Yt(2)|2 + }%|Yt(l) - Yt(2)|2

1
0 X o P - v

+ Gl Y = x Y - x|V + 2y

IA

A [IYV 4 2]+ Y2 42|V = Y2 P+ a@ | YO - Y2 + )\%|Y§” — Y@

1
2

2

< SV -Y2 T G vzl [0 2] - v

+ [’Yt(l) +zt’ + ’Yt(z) +ztht(1) - Yt(z)‘z

1
YO -y + /\—a|1/§1> Y@

Applying Gronwall’s inequality, we arrive at the uniqueness. O

Theorem 3.2 If hypotheses (H;1)—(H3) hold, then for Vx € P(AY), there exists a unique
solution X of (2.3) such that, for a.s. € §2,

X (@) - z() € C([0, T], Z(A%)) N LT% (0, T; Z(A4+%)) N L*(0, T; Z(A3*)).
The transition semigroup associated with (2.3) is a Feller Markov process.
Proof Theorem 3.1 yields that for x € Z(A%), equation (3.2) has a unique solution X satis-

fying X -z, € C([0, T], Z(A%)) N LT (0, T; Z(A+%)) N L2(0, T; Z(A2*%)). Hence we can
define on [0, 1] that

X(l) _ X(t), t< o1,
Xo'l— +F(X01—1P0'1)’ =0y,

where P, is a stable Poisson point process on R* x U with intensity measure A(du) dt.

Next, on [07,0,) define

XO = X((Tll)[(01<oo)r 52 = (UZ - 01)101<oo + 001(171=oo)1

Fi= Tt P(t) = 00y PO (5, <o0)-
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B, is still a stable point process with intensity measure A(du) dt. Likewise, equation (3.2)
has a unique solution X satisfying X — z e C([0, T], Z(4%)) N L%E((), T; @(Ai*%)) N
L*(0,T; 2 (A%“")) corresponding to the initial value Xo. It is reasonable to define on [0, 03]
that

X(l)(t)! t S 01,
X2 = KXoy, o1 <t<oy,

j‘((0'2—01)— + F(X(az—al)—rpaz)) t=o0,.

Fixing T > 0, the Poisson point process P; has only finite jumps on [0, T']. Therefore, choos-
ing the first integer N to satisfy on,1 > T, the method above can be iterated finite times to
get Xt(N). It is straightforward to show that X;N) is the unique solution satisfying equation
(2.3). O

3.2 A(-) being the o -finite measure
Theorem 3.3 If hypotheses (H;)—(Hs) hold, then for Vx € 9(A%), there exists a unique
solution X of (2.3) such that, fora.s. w € £2,
X (@) - z(w) € C([0, T], Z(A%)) N LT% (0, T; Z(A1*%)) N L*(0, T; Z(A3+)).
The transition semigroup associated with (2.3) is a Feller Markov process.

Proof For every n > 1, consider the equation

ayl' + AY!"dt + B(Y] + z;)dt + R(Y]" + z;) dt = fun F(Y! + 2z, u)N(dt, du), (3.8)
Yy =x. '
Hereafter, we define 5 Z(t) := Z(t) — Z(t-). By It6’s formula in [12], one finds that

|7

t
~+ [ rar) s Y (E( v - erey)
0

s<t

| 2

W / (2Y7 —[AY" + B(Y" + ) + R(Y + 2,)] ds)
0
+/0 /W(ZYS"_,F(YS” +zs,u))N(ds,du)
! n n 2_ n 2
e[ 0 PO ) )G
_/t/ (Y2, F(Y] + z5,u) )N(ds, du)
0 JUy
= x| + / (Y, -[AY? + B(Y! + z5) + R(Y!" + z,) ] ds)

§

0
t
+/ |(2Y;‘_,F(Y"_+zs_,u))’]§[(ds,du)
o Ju,
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/ / f | S” +sF Y! +z,u )) F()’s’i+zs_,u))|ds/N(ds,du)
Uy
+/ |(2Y;‘_,F(Ys"_ +zs_,u))’N(ds,du).
o Ju,
Therefore,
2 t 2
vefen [ v as
< |x|? +2/| 7+ zy), |ds+2/| T+ z,), Y| ds
+6/ |(Y;’_,F(YS”_ +zs_,u))‘]§[(ds,du)
o Ju,
t
+2/ |F(YS”_ +zs_,u)|2N(ds,du)
o Juy,
t
+2/ |(Y;’_,F(YS”_ +zs_,u))|)»(du) ds
o Ju,
t 9 t 9 t
§|x|2+/ ||st|| ds+C1/ |st| |z 24ds+C1/ |zs|i4ds+Mt,
0 0 0
where
t
M, = 6/ |(YS”_,F(YS"_ +zs_,u))|N(ds,du)
o Ju,
+2/ ’F( Y! + 2z, u)|2N(ds,du)
+2/ | Y!,F s” +zs_,u))|k(du)ds
Uy
Let
t
Tty :inf{t> O;/ |zs|i4 ds>k1}, k> 1.
0
Lemma 3.1 yields 1, /' 00 as k; — oo. Gronwall’s inequality implies
n 2
E sup 17’ +E/ x| ds

S<tk1

‘L'kl/\t
< [|x|2 + CIE/ |z|}ads + E sup |Msl]eclk1
0

SSTkl NE

2 EESR Cik
<|Ix*+CGE |zs|7a ds [e1™
0

Tky Nt B
+ CzeclklE/ |(YS”_,F(YS”_ + 2o, u)) |N(ds, du)
0 U,

Tky Nt 9~
+ CzeclklE/ |F(Ys"_ + 2o, u)| N(ds, du)
0 U,
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‘L’kl/\t
+ CZeCIkIE/ |(YS”7,F(YS'1 +ZS,,u))|A(du) ds
0 Uy

‘L’kl/\t 2
+ CzeclklE/ |F(Y! + 2o, u)|"A(du) ds
0

Uy

2 TNty Cik
<|Ix*+CGE |zs| 74 ds [e1™
0

AL
+¢E sup |Y"| + Cs(A1s 8, kl)Ef kl |A°‘F(Ys”_+zs_,u)|2)»(du)ds

S<Thy At uy,

2 Tt Cik
<|lx"+CE |2s] 74 ds |1
0

AL
+¢E sup |Y”| +2C5(Ay, &, kl)E/ ' [I(|YS”+ZS|2+C]ds

s<rkl AL

2 EESR Cik
<|lx"+CGE |zs| 74 ds [e1™
0

Ty NE
+¢E sup |Y"| +4C3KE/ |Y”| ds+4C3KE/ ' |zs|* ds + 2C5Ct.

S<‘L’k1 Nt

This yields

Nt
(1-¢)E sup |Y”| +Ef ||YS"||2ds

S<‘rk Nt

2 Tant Cik
<||x|*+ CLE |2s] 74 ds |1
0

Tpy A 5 Tpy AL
+4C;KE /0 |Y?|" ds + 4C3KE /0 |zs|* ds + 2C5Ct
< Culx, &, A1, k1, K) + Cs(g, A1, k1, K)t. (3.9)
Applying It6’s formula to |A*Y/"|* implies
Ay

4% + /0 QAY™ A%, —[AY" 4 B(Y" +2) + R(Y" + 2,)] ds)
+ / t : (24%Y" - A%, F(Y" +z,_,u))N(ds, du)
o[ s B vz ) - vz s
—/t y (2A°Y7 - A%, F(Y]" + z,_,u))N(ds, du).
Accordingly,

t
|Aay;|2+2/ Ay ? g
0

¢ t
<A’ +2 fo (A2 B(Y? +2,), A2 | ds + 2 /0 (A“R(Y? + 2,), A°Y") | ds
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+6/: g |(A%Y", A*F(Y" + 2z, u))|N(ds, du)
+2 /0 t g |A“E(Y? +z,_,u)|"N(ds, du)
+2/0t y |(A*Y!, A*F (Y + 2z, u))|M(du)ds
<hasaf's [ clab sz Paiarase [ a0 )l ds W,
<bacaf v o [ Tacvzllabuzljacshur] o Jabo s fla byl as
o [l laeryaca s o
<faaf' s [atn P clabyiPlacyP « lat e as
+/0t[2|AaYS”|2+|A"‘zs|2]ds+1\_/1t
<hasa s [benPass [(@rclabnpan e
+/0t[c2|A%+%zs|‘*+(Aazsf]d“m,
where
M= [ t vz 4B (2 ) NG i)
+2 fo t i |A“F(Y" + 2, u)|"N(ds, du)
+2f0t un](A“Y;i,A“F(Y;“_ + 2, 1)) | M(du) ds.
Fixing k, first, let
=y =il [ P s an, kot

Equation (3.9) yields 7;) 7 7, as ko — co. By Gronwall’s inequality, we have

2 M 2
E sup |A°Y)| +E/ |Az* Y|  ds
0

551’,:’2 At

r At
= ’Aax|2+E/k2 [Cz‘Ai+%zs|4+|A°‘z5’2]ds+E sup |MS|]62+C2]‘2
L 0

sfr/:’ZAt

IA

r " At
|A"‘x|2 + E/ 2 [C2|A%+%Zs|4 + |A°‘zs|2] ds]ez+c2k2 + et ORE sup |M,)
L 0

sfr,':z At

IA

r ' At
|A"‘x|2 +E/ © [C2|A%*%zs|4 + |A°‘zs|2] ds]ez*CZ"2
L 0

Page 12 of 22
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S

At
+ C3e2+C2k2E/ © |(A"‘YS”_,A“F(Y”_ +zs_,u))|N(ds,du)
0 Uy
2+Cak: t]:le 25
+ Cze™™™2 ZE/ / |A°‘F(YS”_ +zs_,u)’ N (ds,du)
0 Uy,
'L'/:’ZAt
+ C3e* 2RE / |(A% Y, A“F(Y" + z,_,u))|A(du) ds
0 Uy
2+Cok o 2
+ Cye*t©2 ZE/ / |A°‘F(Ys”_ +zs,,u)| Mdu) ds
0 Uy

" At
< |:’A"‘x|2 +E/ © [Cz‘Ai"%zsrL + |A°‘zs’2] ds]ez+c2k2
0

' AE
+¢E sup |A"‘YS”|2+C4(8,k)E/ “ / |A°‘F(Ys”_ +zs,,u)|2)»(du) ds
0 Uy

sgr,fzm
a2 r]g/\t lie 14 a, |2 2+Cak:
< ’A x{ +E [C2|A4 2zs{ +|A zs| ]ds e“TvR2
0

o At
+¢E sup |A"‘YS”|2+2C4(8,/()E/ ° [I(|YS”+ZS|2+C]dS
0

s<tl’ At
=7,

n

T, AL
= |:|Aax{2 +E/ " [C2|A%+%Zs{4 + |A"‘zs|2] ds]ez*CZ’<2
0

T AL
veE sup 4y + O / “ v as
1 0

5511?2 At

'L',f A
+4C,KE / 2 |z2ds + 2C,Ct.
0
This yields

2 N 2
(1-¢)E sup |A*Y!| +Ef |Azry? |  ds
0

sfrz’zAt
a2 r,szt lia 14 a, |2 2+Cok
< ’A x| +E/ [CQ‘A4 Zzs| +|A zS’ ]ds e T2
0

4CyKky

1

= C5(x,£,a,)\1,k2,1() + C6(8)a1)\1; k211()t'

+

r,i’z At
+4C,KE f |z5|2 ds + 2C4Ct
0

(3.10)
For every m,m > 1, Y/" — Y/" satisfies the equation

Yy -Y") + A(Y} - Y")dt + B(Y]' + z;) dt
- B(Y]" +z)dt + R(Y] - Y]")dt
= Junu, FOL + 2, u)N(dt, du)
+ Ju [FOYF + 2 u) = F(Y]" + 2z, w)IN(dt, du),
Yo -Yy=0.

(3.11)
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Recall that £ Z(t) := Z(t) — Z(t-). Applying Ito’s formula to [A% (Y} — Y")[?, we have
(v - v
- [[an(rz vy and( - )
+;EPW ~Y) - (4 (YL - Y) - A% B (Y] - X))
- [ Az -z A7 -7 4B 4 2)
- B(Y]" +z;) + R(Y] - Y]")] ds)
/ /U (24% (v} ) - A% F(Y! +z,_,u))N(ds, du)
/ /u (24% (v ) - A% F(Y!" + z,_, u) )N(ds, du)
+/lﬁwu(Mguﬂi—ﬂﬂ+f(ﬂi+%4@ﬂ2—M@Oﬁ—)ﬁﬂﬂN@&d@

// |A°‘ —Y"’ +F(Y”+zs_ )—F(Ys’f+zs_,u))‘2
Um

- A (v - Y2)[*)N (s, du)
t
—/ QA*(Y! - Y]")- A%, F(Y]" +z,,u))N(ds,du)
o Ju,
t
+/ QAY(Y! = Y]") - A%, F(Y]" + z,_,u))N(ds, du).
o Ju,
Therefore
A% (Y] - Y]")| +2f a3 (yr -y ds
<2/| Ttz A2°‘( Y"‘ |ds+2/‘ Mtz Azo‘( Y"’))‘ds
+2/|Am A“(Y7 = Y™)|ds
+6/ f |(A% (Y - Y"), A*EF(Y" + 2., u))|N(ds, du)
0 JU\Upm
t
+6/ |(A"(Ys"_ - Y"),A*(F(Y] +z._,u) —F(Y]" +zs_,u)))|N(ds,du)
o Ju,
t
+2/ / |A“F(Y! +zs_,u)|2N(ds,du)
0 JU\Un
t
+ 2/ |A°‘ (F(Ys”_ + zs_,u) —F(Ys’f + zs_,u))|2N(ds,du)

t
+ 2/ f |(A“ (Y] = Y"),A“F(Y! + ze_,u)) |M(du) ds
0 J i\l
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+2/t A (= ), A (P ) = P2 2o ) s
R
x [|ad+s (v, +Zs)(+|A%+%(Y!”+Zs)|]ds+2/ A7y = ¥) [ ds + gma®)
/|A°f+z -y | ds
v [l - v

+

B
IR
e

+
IR
—
B
3
+
N

(Y +2)|+]A

+2/ |A“ (Y2 - Y") | ds + g (t),
where
Gmun(t) =6 / / |(A% (Y2 - Y"),A*F (Y] + 2y, u)) |N(ds, du)
Up\Upm
+6 / (A%(Y2 = Y7), A% (E(Y + 200 ) = E(Y + 20, u))) | N(ds, ds)
U
t
+2f / ’A"‘F(Ys”_ +zs_,u)}2N(ds,du)
0 JUu\Um
t
+2/ / |A°‘(F(Ys”_ +zs_,u) —F(YS’f+zs_,u))|2N(ds,du)
0 JU
t
+2/ / |(A°‘(Ys”_ - Ys’f),A"‘F(Y;‘_ +zs_,u))|k(du)ds
0 JUu\Um
t
+2/ [(A* (Y = Y™),A*(F(Y] +zgyu) = F(Y]" + z,_,u)) ) | M(du) dis.
0 JUn
Now fixing ki, k; consecutively, let

N LN
Ty = Thakaky

AT AT
:inf{t>();/ “ A
0

n m
ATy NTps k3> 1.

IS
+

SV e z)| 4 [AFE (17 4 2)[] T ds>k3]

Equations (3.5), (3.10), and Lemma 3.1 imply that ;""" Tk2 A ‘L'k2 as k3 — oo. By Gron-
wall’s inequality, one gets

LN
E sup |A°‘(YS”—Y;’”)|2+E/k3 las(yr -y [ ds
sfr,::‘”/\t 0

<e¥OBE sup !gm,,,(s)|

sgt,:';‘"/\t

tm,n
< C3€2+C2k3E/ s / ‘(A"‘(YS”_ - Ys’f),A"‘F(YS”_ + zs_,u)) ’N(ds, du)
0 1 \Um
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+ C3e**OE & / |A°‘F(YS"_ + 2z, u) |2N(ds, du)
Uy \Um
r,g"’/\
+ C362+C2k3E/ / |(A°‘(Ys"_ - YS’f),AO‘F(Y;‘_ + 2o, u)) |A(du) ds
0 Un\Um

r/:”‘”At
+ Cgez*cmE/ ’ / |A°‘F(Y;ﬂ + 2z, u) |2)»(du) ds
Up\Um

2+C2k3E/ ‘ AO[ n }/Sr:l),ActF(YSn_ + Zs_;u)
—A“F(Y]! +2z,,u)) |N(ds, du)
T]:g‘"/\t 2~
+ C3e**2E / / |A“F(Y? +z,_,u) = A“F(Y" + zy_, u)| "N(ds, du)
0 m
+ Cg,ez*cmE/ / [(A* (Y = Y!"),A®F (Y + 2z, u)
0 Upn

—A“F(Y”_ + 2z, u))‘)» (du)ds

2+C2k3E/ ‘A"‘F s” + 25, u) —A"‘F(Y"_ + zs_,u) |2k(du) ds

s

sft/::”

<¢E sup |A"‘( Y’”)| + Cy(e, k)E / / |A°‘ Tt z,u )|2A(du)ds.
Un\Upm

AL

Noting hypothesis (H4), we have

m,n

78 t
(1-2)E sup A< (v Ym)’ Ef’s |A%+a(YSn_YSm)’2dS
0

s<tk N

< Cytsup |A°‘F(x, u)|2k(du) — 0,
xeH J U,

as m — Q.

Since

E sup |A* (Y] -Y)|

S<Ik1 AL

[

<(E swp 47— v)) o (B sup [an(v - ) P) [p(es o)

s<rk N S=Ty AL

and

Thq AL 1
B[ abe (- vy
0

n

r]:;’ Nt 1 9 %
<(e[" bl e)
0

‘L'kl/\t 1 9 %
(B[ b as) e )
0

[
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we conclude that, for any fixed £ >0 and k; > 1,

Ty NE
lim |E sup |A“(Y!-Y/)|+ E/ " |A%+“(YS” - Y;”)|d{| =0.
0

m—>00,n>m |: ST AL

So {Yr"k1 s} is a Cauchy sequence in the space 27, which is the space of all Z(A*)-valued
adapted cadlag processes Y; with E(sup,. [A%Y;| + fOT |A%+“YS| ds) < oo for any positive

. —k
number 7. Consequently, there exists a process Y ' € &7 such that

NE

—k Thy
lim |:E sup |AY(Y!-Y,)] +E/
0

n>0|  s<g AT

]A%W(}/S”—Yfl)\ds] =0.

It is straightforward to examine that Ykl is a weak solution of (2.3) on [0, ti, ] (cf. [6]). Set

oo
—ky
Y= Z Y I{[Tklfpfkl)}’
k1=1

where 7 = 0. Since 1, — oo(k — 00), Y is a weak solution of (2.3). O

4 Invariant measure

This section aims to show that, although the fragile solution is in a somewhat weaker sense
than the classical weak solution, we can utilize it to prove the existence of an invariant
measure following classical routes, say by making use of the Krylov—Bogoliubov averaging

procedure with energy (compactness) estimates.

Theorem 4.1 Assume that hypotheses (H1)—(Ha) hold, then there exists an invariant mea-

sure y for the transition semigroup P, associated with (2.3).

Proof Let X, = X(t,ty) be the solution of the following equation:

t t t t
X:=X:O—/ AXsds—/ B(Xs)ds—/ R(Xs)ds+/ QdWw;
4]

t to to

+ft0 /L[F(XS,M)N(ds,du). (4.1)

Consider the Ornstein-Uhlenbeck process z, satisfying dz] = (-A — y)z} dt + QdW,.
Make Ornstein—Uhlenbeck transformation of (4.1) by letting X (¢, o) = Z7 (¢, to) + 2 , then
Z! = Z7 (t, t,) satisfies

dz] = -AZ] dt -B(Z] +2))dt - R(Z] +z))dt
+ [, F(Z] +2),u)N(dt, du), (4.2)

Y o_ Y
Ziy = ~Zg-
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Recall that £ Z(t) := Z(¢) — Z(¢t-). Applying Itd’s formula to |A*Z) (£)|? yields

laezy|* = |a“z; | + ftt(zAaz;_ LA%,dZ))
0
+ > (8(jazr[*) - 2472, - A%, 527))
s<t
= ez P + /tt(ZA"‘ZZ_ A%, —[AZ + B(Z! +2) + R(Z! +2))]ds)
0
+ /tt/ (24°ZY_ - A*,F(ZY_+2"_,u))N(ds, du)
0
+ /tt/. (|A*(z2 + F(zr + z;/_,u))|2 - |A°‘Z§’_|2)N(ds, du)
0

t
—/ / (2A°ZY - A*,F(Z!_ + 2/, u))N(ds, du)
to

t
= |A“Zf0|2+/ (24°Z7 - A®,-[AZ! + B(Z! +2!) +R(Z! +2!)]ds) + M,,

to

where
= ‘ YAYZ o ~
Mt / /( VLA , F(ZS): ;/’ ))N( S,du)
to U d
/ / | V V V ))| |‘l Zsy,i )N(ds,du)
to

- / f (24°ZY - A, F(Z)_+2),u))N(ds,du).
to

In the following proof, we will utilize the interpolation inequality

|(B(u,v), A**w)| < C0|A%+“w| |A%+%u’ |A}T+%v|, (4.3)

the proof of which refers to [8, Lemma 4.1]. Therefore,
2 t 1 .2
|A*Z | + 2/ |A** 227 | ds
to
t
<laezy |’ + le a3 zy||AS 4 (27 + 27) [P ds
to
t
+ CI/ (|a“zy |* + |a*zy||A%2! |) ds + M,
to
t
<|A*zZ |+ C2/ [lac3zy||AS+izy [P + |arizy ||AS iz
to

v |AzZy P+ A%z [P ds + M,

t
<|azi P+ f [|aezy || A=t 2y % 4 |a=dzy||aS ey P
0
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+lawzy | v A [ ds+ b,
t t
< |A°‘h|2+/ |A“+%z;|2ds+c4/ la«zy | ds
to to
t
+ C4/ (|AO‘ZZ|2 + |A%+%z;”2) ds+ M,.
to
Hence
t
Bz [ ok [ Jalz o
s<t f
t t
< |A°‘ZZO|2+C4E/ |A“Z}”|2ds+C4E/ (|a“2r|” + |A%*3 27 %) ds
to to
t
+ E/ / (2A“ZSV_ .Aa,F(Z;’_ +z;’_,u))]§[(ds, du)
to JU
t
+E / / (|a* (27 + F(27 + 2 ,u))|” - |A*Z7 |*)N(ds, du)
to JU
t
-E / f (24“ZY)_- A*,F(ZY_ +z)_,u))N(ds, du)
to JU
t t
< ‘A"‘ZZ)‘2+C4E/ ]A“Z;’|2ds+C4E/ (a2 |” +|A%*327 ") ds
to to
t
+E/t /U|(2Aazg_.Aa,F(ZSV_+z;_,u))|1§z(ds,du)
0

t
+E//
to JU

F(zl +7/, u)) ds'

1
/ (24%(Z_s +S'F(ZL + 21, u)) - A%,
0

N(ds, du)

t
+E/ / |(24°Z7_ - A®,F(Z!_ + 2!, u))|N(ds, du)
to JU

t t
fiAaZZ)|2+C4E/t |A°‘Z;’|2ds+C4E/t (|Aazsy|2+|A%+%;Z;/|2)ds
0 0

t
+C5|:E/ /!A"‘ZS‘”Z- |A“F(zY +z§’,u)‘2k(du)ds]
to JU

(S

t
+C5[E/ /’A"‘F(Zg’ +z§’,u)|2 - |A“F(zY +z§’,u)|2k(du)ds]
to JU
t
<laezy |’ +8Esu1[)]A°‘Zf|2 + CE /t la“zy |* ds
s< o

t
+ C6E/ (‘A"‘z;"z + ’A%J'%zﬂz) ds,
to

where ¢ € (0, 1) and the last inequality is derived by combining hypotheses (H,), (H3) with
the Young inequality.
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Henceforth,
2 ! 1,12
(1-¢)Esup|A*Z! | +E/ |A** 2z | ds
s<t to

t t
< \A“zfo|2+cﬁEf ]A“ZSV|2ds+C6E/ (|a%zr|” + |A%*12 [*) ds. (4.4)
to

to

Ifty < -1,

E|Z7(0,t0)|” < &% [|A"‘ZV(—1, to)|* + CSE /

0
(|A°‘z§”|2 + IA%+%:Z;’|2) dsi|
1

0
< €2C7|:|A%Zy(—1,t0)|2 + C6E/ (|A0‘z;’|2 + |A%+%Z;/|2)dS:|.
-1

Repeating the argument similarly in Lemma 3.1, (H;) implies that z; has a continuous
version in 7 (A%N%), and therefore, also has a continuous version in Z(A%). Furthermore,
E f_01(|A"‘z§/ 2+ |A5* 12! ?)ds is finite. Following almost the same argument as [4, Propo-
sition15.4.3], it can be proved that there exists y > 0 such that |A%ZV(—1, to)|? is finite a.e.
for tp < -1.

Therefore, both sup, . ; E[A*Z7 (0, )| and sup,, . ; E[A*X(0,%)|* are finite. Following
the classical arguments (cf. [12]), we can prove the tightness of {ir(-) = % f_OT P(s,x,-), T >

0}, which implies the existence of an invariant measure p. O

5 Discussion

In this section, we will generalize the result of well-posedness for stochastic Boussinesq
equation (2.1) to some of the stochastic hydrodynamical systems, such as 2D-stochastic
Navier—Stokes equation, 2D magneto-hydrodynamic equation, 2D Boussinesq model for
the Bénard convection, 2D magnetic Bénard problem, and so on. We adopt the notations
and assumptions proposed in [2] and refer to [11, 14, 21, 22] for more examples.

We will introduce an abstract framework for the stochastic hydrodynamical systems. Let
H be a separable Hilbert space with the norm | - |, and the operator A be an unbounded self-
adjoint positive linear operator on H. Denote V = Dom(A%) with the norm ||v|| = |A%v|.
Let V' be the dual of V. For any u € V, v € V’, the duality product between V and V’
is denoted by (u,v). Suppose that the mapping B: V x V — V' satisfies the following
assumptions:

— (H()) B(-,+): V x V — V' is a continuous bilinear mapping.

— (H(ii)) For any u; € V, i =1,2,3, there holds

(Bu1, 12), us) = —(B(uy, uz), us). (5.1)
— (H(iii)) There exists a Banach space .7 which satisfies
(ili-1) VC s C H;

(ili-2) there exists a positive constant og such that

V%, <aolvl- v, foranyve V; (5.2)
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(iii-3) for any n > 0, there exists a positive constant C, such that
|(B(u1, u2), us)| < mllusll® + Cyllma 1% -zl wi € V,i=1,2,3. (5.3)

As we will see, the majority of stochastic hydrodynamical systems with Lévy noise,
such as stochastic two-dimensional Navier—Stokes equation, stochastic two-dimensional
Boussinesq equations, stochastic two-dimensional magnetic Bénard equations, and
stochastic two-dimensional magneto-hydrodynamic equations, can be represented uni-

formly as the following stochastic evolution equation (see [20]):

du(t) + [Au(t) + B(u(t), u(t)) + R(u(t))] dt
= QdW(t) + [, F(u(t-),x)N(dt,dx), (5.4)
u(0) = uo,

where R(-) and Q are linear bounded operators in H, W(-) is an H-valued Brownian mo-
tion, F is a measurable mapping from some measurable space X to H, N is a compensated
Poisson measure on [0,00) x X with intensity measure v. Additionally, we need

— (H(iv)) There exist positive constants C and K such that, for some « € [1/4,1/2),

— (H(iv-1)) v is a o -finite measure on #(X), Q: H — H is a linear bounded operator
with range Z(Q) dense in @(A%*%) and 2(A%) c Z(Q) C @(A%+%*’3) for some
e>0;

— (H(iv-2)) [,; |A*F(0,u)|*A(du) = C;

— (H(iv-3)) f;; |A*(F(x, u) — F(y, w))|*A(du) < K|A*(x - y)|%

— (H(iv-4)) sup,czy fon |AYF(x, u)|*A(du) — 0, as m — o0.

Repeating similar arguments within Sect. 3 and Sect. 4 with minor modification, we can

obtain the following result.

Theorem 5.1 Assume that hypotheses H(i)—H(iv) hold. For every ug € Z(A%), there exists
a unique fragile solution u to equation (5.4). Denote by P, the Markov semigroup on H
generated by the solution flow. Then P, is a Feller Markov process. Furthermore, there exists

at least one invariant measure | for the transition semigroup P;.
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