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Abstract
Inspired by symmetric Cauchy tensors, we define fourth-order partially symmetric
Cauchy tensors with their generating vectors. In this article, we focus on the
necessary and sufficient conditions for the M-positive semi-definiteness and
M-positive definiteness of fourth-order Cauchy tensors. Moreover, the necessary and
sufficient conditions of the strong ellipticity conditions for fourth-order Cauchy
tensors are obtained. Furthermore, fourth-order Cauchy tensors are M-positive
semi-definite if and only if the homogeneous polynomial for fourth-order Cauchy
tensors is monotonically increasing. Several M-eigenvalue inclusion theorems and
spectral properties of fourth-order Cauchy tensors are discussed. A power method is
proposed to compute the smallest and the largest M-eigenvalues of fourth-order
Cauchy tensors. The given numerical experiments show the effectiveness of the
proposed method.
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1 Introduction
Let R

n be an n-dimensional real Euclidean space and denote the set consisting of all
natural numbers by N . Suppose that m and n are positive natural numbers and write
[n] = {1, 2, . . . , n}. The nonlinear elastic materials analysis and entanglement studies in
quantum physics can be formulated as the following optimization problem:

⎧
⎪⎪⎨

⎪⎪⎩

max f (x, y) =
∑

i,k∈[m]
∑

j,l∈[n] cijklxiyjxkyl,

s.t. xT x = 1, yT y = 1,

x ∈ R
m, y ∈R

n,

(1.1)

where the coefficients cijkl satisfy the following symmetric property:

cijkl = ckjil = cilkj = cklij, i, k ∈ [m], j, l ∈ [n].
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Then, the tensor C = (cijkl) is called to be a partially symmetric fourth-order tensor. In
the nonlinear elastic materials analysis, one approach is to consider an elastic material in
terms of a fourth-order three-dimensional elastic module tensor that satisfies the partially
symmetric property [1]. Thus, the partially symmetric property of tensor is becoming to
be an interesting subject. Inspired by Cauchy matrix and Cauchy tensor, we will construct
a new kind of tensor which satisfies the partially symmetric property.

An m × n Cauchy matrix assigned to m + n parameters x1, x2, . . . , xm, y1, . . . , yn was in-
troduced by [2] as follows:

C =
[

1
xi + yj

]

, i ∈ [m], j ∈ [n]. (1.2)

The Cauchy matrix has played an important role in algorithm designing [3–5]. If xi = yi and
m = n in (1.2), then it reduces to a real symmetric Cauchy matrix. Motivated by symmetric
Cauchy matrices, Chen and Qi [6] proposed the definition of Cauchy tensors.

Definition 1 Let a vector c = (c1, c2, . . . , cn) ∈ R
n. Suppose that a real tensor C = (ci1i2···im )

is defined by

ci1i2···im =
1

ci1 + ci2 + · · · + cim
, ij ∈ [n], j ∈ [m].

Then C is called an order m dimension n symmetric Cauchy tensor and the vector c ∈R
n

is called the generating vector of C .

Following the ideas of Cauchy matrix [2] and Cauchy tensor [6], we present the definition
of fourth-order Cauchy tensors.

Definition 2 Let a vector a = (a1, a2, . . . , am) ∈ R
m and a vector b = (b1, b2, . . . , bn) ∈ R

n.
Suppose that a real tensor C = (cijkl) is defined by

cijkl =
1

ai + bj + ak + bl
, i, k ∈ [m], j, l ∈ [n].

Then we claim that C is a fourth-order Cauchy tensor and the vectors a ∈ R
m, b ∈ R

n are
called generating vectors of C .

Obviously, the fourth-order Cauchy tensor has the following partially symmetric prop-
erty:

cijkl = ckjil = cilkj = cklij =
1

ai + bj + ak + bl
, i, k ∈ [m], j, l ∈ [n].

Furthermore, if a = b and m = n, then the fourth-order partially symmetric Cauchy tensor
reduces to the fourth-order symmetric Cauchy tensor. In Definition 2, we point out that,
for the generating vectors a and b, it should satisfy

ai + bj + ak + bl �= 0, i, k ∈ [m], j, l ∈ [n].
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In this paper, we always consider the fourth-order real partially symmetric Cauchy tensors.
Hence, they can be called fourth-order Cauchy tensors for simplicity.

Recently, a lot of researchers have focused on structured tensors [6–28] such as M-
tensors, Hankel tensors, Hilbert tensors, Cauchy tensors, completely positive tensors,
B-tensors, and P-tensors. These papers not only gave some results on positive semi-
definiteness property and spectral theory of structured tensors, but also revealed some
important applications in data fitting and stochastic process [10, 29].

In this article, we focus on the M-positive semi-definiteness and M-positive definite-
ness conditions for fourth-order Cauchy tensors. Several spectral properties of M-positive
semi-definite fourth-order Cauchy tensors are discussed. A power method is proposed to
compute the smallest and the largest M-eigenvalues of fourth-order Cauchy tensors. In
Sect. 2, the necessary and sufficient conditions for M-positive semi-definiteness and M-
positive definiteness of fourth-order Cauchy tensors are obtained. Moreover, the neces-
sary and sufficient conditions of the strong ellipticity condition for fourth-order Cauchy
tensors are obtained. Furthermore, fourth-order Cauchy tensors are M-positive semi-
definite if and only if the homogeneous polynomial of fourth-order Cauchy tensors is
monotonically increasing in the nonnegative orthant of Rm × R

n, and the homogeneous
polynomial is strictly monotone increasing when fourth-order Cauchy tensors are M-
positive definite. In Sect. 3, several spectral inequalities are presented on the M-eigenvalue
of fourth-order Cauchy tensors. We introduce a power method to compute the smallest
and the largest M-eigenvalues of fourth-order Cauchy tensors, and numerical experiments
show the effectiveness of the proposed method in Sect. 4.

At the end of the introduction, we make some notations that will be applied to the se-
quel. Denote vectors by lowercase boldface letters, i.e., x, y, . . . , and tensors are written
to calligraphic capitals such as A, T , . . . . For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), x ≥ y
(x ≤ y) means xi ≥ yi (xi ≤ yi) for all i ∈ [n].

2 M-positive semi-definiteness and M-positive definiteness of fourth-order
Cauchy tensors

Let

f (x, y) = Cxyxy =
∑

i,k∈[m],j,l∈[n]

cijklxiyjxkyl.

The tensor C is called M-positive semi-definite if f (x, y) ≥ 0 for any vectors x ∈R
m, y ∈R

n.
The tensor C is called M-positive definite if f (x, y) > 0 for any vectors x ∈R

m, x �= 0, y ∈R
n,

y �= 0. Similarly, the tensor C is M-negative semi-definite (M-negative definite) if f (x, y) ≤ 0
for any vectors x ∈R

m, y ∈ R
n (f (x, y) < 0 for any vectors x ∈R

m, x �= 0, y ∈R
n, y �= 0).

Now, we will show some necessary and sufficient conditions for fourth-order Cauchy
tensors to be M-positive semi-definite.

Theorem 2.1 Let the vectors a ∈ R
m, b ∈ R

n be generating vectors of the fourth-order
Cauchy tensor C . Then the tensor C is M-positive semi-definite if and only if ai + bj > 0
for all i ∈ [m], j ∈ [n].
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Proof From the fact that the Cauchy tensor C is M-positive semi-definite, taking x = ei ∈
R

m and y = ej ∈R
n, we have

f (ei, ej) = Ceiejeiej

=
1

2(ai + bj)
≥ 0, i ∈ [m], j ∈ [n],

where ei and ej are the ith and jth coordinate vectors, respectively. Thus, we have ai +bj > 0
for all i ∈ [m], j ∈ [n].

On the other hand, suppose that ai + bj > 0 for all i ∈ [m], j ∈ [n]. For any x ∈R
m, y ∈R

n,
one has

f (x, y) = Cxyxy =
∑

i,k∈[m],j,l∈[n]

cijklxiyjxkyl

=
∑

i,k∈[m],j,l∈[n]

xiyjxkyl

ai + bj + ak + bl

=
∑

i,k∈[m],j,l∈[n]

∫ 1

0
tai+bj+ak +bl–1xiyjxkyl dt

=
∫ 1

0

(∑

i∈[m]

tai– 1
4 xi

)2(∑

j∈[n]

tbj– 1
4 yj

)2

dt

≥ 0,

which means that the tensor C is M-positive semi-definite and the conclusion follows. �

From Theorem 2.1, we deduce the following corollary directly.

Corollary 2.1 Assume that the fourth-order Cauchy tensor C and its generating vectors
a ∈ R

m, b ∈ R
n are defined in Theorem 2.1. Then the tensor C is M-negative semi-definite

if and only if ai + bj < 0 for all i ∈ [m], j ∈ [n].

Corollary 2.2 Assume that the fourth-order Cauchy tensor C and its generating vectors
a ∈R

m, b ∈R
n are defined in Theorem 2.1. Then the tensor C is not M-positive semi-definite

if and only if there exist at least i ∈ [m], j ∈ [n], ai + bj < 0 holds.

Next, we will reveal some necessary and sufficient conditions for fourth-order Cauchy
tensors to be M-positive definite.

Theorem 2.2 Assume that the vectors a ∈ R
m, b ∈ R

n are generating vectors of the fourth-
order Cauchy tensor C . For all i ∈ [m], j ∈ [n], if ai + bj > 0 and the elements of generating
vectors a, b are mutually distinct, respectively, then the tensor C is M-positive definite.

Proof It follows from Theorem 2.1 that the tensor C is M-positive semi-definite. We prove
by contradiction that the tensor C is M-positive definite. Assume that there exists nonzero
vectors x ∈R

m, y ∈R
n such that

f (x, y) = Cxyxy = 0.
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Following the proof of Theorem 2.1, we deduce

∫ 1

0

(∑

i∈[m]

tai– 1
4 xi

)2(∑

j∈[n]

tbj– 1
4 yj

)2

dt = 0,

which implies

∑

i∈[m]

tai– 1
4 xi ≡ 0, t ∈ (0, 1],

or

∑

j∈[m]

tbj– 1
4 yj ≡ 0, t ∈ (0, 1].

Without loss of generality, we can assume

∑

i∈[m]

tai– 1
4 xi ≡ 0, t ∈ (0, 1].

Then

x1 + ta2–a1 x2 + · · · + tam–a1 xm ≡ 0, t ∈ (0, 1].

By the continuity and the fact that a1, a2, . . . , am are mutually distinct, it yields that

x1 = 0,

and

x2 + ta3–a2 x3 + · · · + tam–a2 xm ≡ 0, t ∈ (0, 1].

Applying the same argument, one has

x1 = x2 = · · · = xm = 0,

which is a contradiction with x �= 0. So, we conclude that the tensor C is M-positive defi-
nite. �

Moreover, the following conclusion shows that the conditions in Theorem 2.2 are nec-
essary and sufficient conditions.

Theorem 2.3 Assume that the fourth-order Cauchy tensor C and its generating vectors a,
b are defined in Theorem 2.2. The tensor C is M-positive definite if and only if ai + bj > 0
for all i ∈ [m], j ∈ [n], and the elements of generating vectors a, b are mutually distinct,
respectively.
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Proof From Theorem 2.2, if ai + bj > 0 for all i ∈ [m], j ∈ [n] and the elements of generating
vectors a, b are mutually distinct, respectively, then we can obtain that the tensor C is M-
positive definite. Next, suppose that the tensor C is M-positive definite, we will reveal that
ai + bj > 0 for all i ∈ [m], j ∈ [n] and the elements of generating vectors a, b are mutually
distinct, respectively. Indeed, from Theorem 2.1, we know that the tensor C is M-positive
semi-definite; therefore, ai + bj > 0 for all i ∈ [m], j ∈ [n]. By contradiction, we can assume
that two elements of the vector a are equal. Without loss of generality, suppose that a1 =
a2 = a. Let x = (1, –1, 0, . . . , 0) ∈ R

m and y = (1, 0, 0, . . . , 0) ∈R
n. Thus, we have

Cxyxy =
∑

i,k∈[m],j,l∈[n]

cijklxiyjxkyl

=
∑

i,k∈[m],j,l∈[n]

xiyjxkyl

ai + bj + ak + bl

=
1

2(a + b1)
∑

i,k∈[2]

xixk

=
1

2(a + b1)
[
1 · 1 + (–1) · 1 + 1 · (–1) + (–1) · (–1)

]

= 0,

which contradicts the assumption that the tensor C is M-positive definite and the proof is
completed. �

In what follows, we will give the definition of the monotonicity of a homogeneous poly-
nomial with respect to fourth-order Cauchy tensors.

For any x, x ∈ R
m and y, y ∈ R

n, if f (x, y) ≥ f (x, y) when x ≥ x and y ≥ y, (x ≤ x and y ≤
y), then f (x, y) is called monotonically increasing (monotonically decreasing respectively).
If f (x, y) > f (x, y) when x ≥ x, x �= x and y ≥ y, y �= y (x ≤ x, x �= x and y ≤ y, y �= y), then
f (x, y) is called strictly monotone increasing (strictly monotone decreasing respectively).

The following conclusions reveal the relationships between M-positive semi-
definiteness of fourth-order Cauchy tensor and the monotonicity of a homogeneous poly-
nomial with respect to the proposed Cauchy tensor.

Theorem 2.4 Let C be a fourth-order Cauchy tensor with generating vectors a ∈ R
m and

b ∈ R
n. Then the tensor C is M-positive semi-definite if and only if the homogeneous poly-

nomial f (x, y) is monotonically increasing in R
m
+ ×R

n
+.

Proof For sufficiency, let x = ei ∈R
m
+ , x = 0 ∈R

m
+ and y = ej ∈R

n
+, y = 0 ∈ R

n
+, one has

1
2(ai + bj)

= Cxyxy = f (x, y) ≥ f (x, y) = Cxyxy = 0,

which implies that ai + bj > 0 for all i ∈ [m], j ∈ [n]. By Theorem 2.1, it yields that the tensor
C is M-positive semi-definite.
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On the other hand, suppose x, x ∈R
m
+ , y, y ∈R

n
+, and x ≥ x and y ≥ y. From Theorem 2.1,

we obtain that ai + bj > 0 for all i ∈ [m], j ∈ [n]. Furthermore,

f (x, y) – f (x, y) = Cxyxy – Cxyxy

=
∑

i,k∈[m],j,l∈[n]

cijkl(xiyjxkyl – xiyjxkyl)

=
∑

i,k∈[m],j,l∈[n]

1
ai + bj + ak + bl

(xiyjxkyl – xiyjxkyl)

≥ 0,

which implies that f (x, y) is monotonically increasing in R
m
+ × R

n
+ and the desired result

holds. �

Theorem 2.5 Let C be a fourth-order Cauchy tensor with generating vectors a ∈ R
m and

b ∈ R
n. If the tensor C is M-positive definite, then the homogeneous polynomial f (x, y) is

strictly monotone increasing in R
m
+ ×R

n
+.

Proof From Theorem 2.3, one has, for all i ∈ [m], j ∈ [n],

ai + bj > 0.

For any x ≥ x, x �= x and y ≥ y, y �= y, then there exist indexes i0 ∈ [m] and j0 ∈ [n] such
that

xi0 > xi0 ≥ 0

and

yj0 > yj0 ≥ 0.

Thus,

f (x, y) – f (x, y) = Cxyxy – Cxyxy

=
∑

i,k∈[m],j,l∈[n]

cijkl(xiyjxkyl – xiyjxkyl)

=
∑

i,k∈[m],j,l∈[n],(i,j,k,l) �=(i0,j0,i0,j0)

cijkl(xiyjxkyl – xiyjxkyl)

+ ci0j0i0j0
(
x2

i0 y2
j0 – x2

i0 y2
j0

)

=
∑

i,k∈[m],j,l∈[n],(i,j,k,l) �=(i0,j0,i0,j0)

1
ai + bj + ak + bl

(xiyjxkyl – xiyjxkyl)

+
1

2(ai0 + bj0 )
(
x2

i0 y2
j0 – x2

i0 y2
j0

)

> 0,
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which means that the homogeneous polynomial f (x, y) is strictly monotone increasing in
R

m
+ ×R

n
+. �

Now, we are in a position to propose an example to reveal that the strictly monotone
increasing property for the polynomial f (x, y) is only a necessary condition for the M-
positive definiteness property of the tensor C but not a sufficient condition.

Example 2.1 Let the tensor C = (cijkl) be a fourth-order Cauchy tensor with generating
vectors a = (2, 2, 2) and b = (4, 4, 4, 4). Then one has

cijkl =
1

12
, i, k ∈ [3], j, l ∈ [4]

and the homogeneous polynomial

f (x, y) = Cxyxy =
1

12
∑

i,k∈[3],j,l∈[4]

xiyjxkyl.

It is easy to check that f (x, y) is strictly monotone increasing in R
3
+ × R

4
+. However, it

follows from Theorem 2.3 that the tensor C is not M-positive definite.

Copositive tensors have some important applications in polynomial optimization [18],
vacuum stability of a general scalar potential [30], tensor generalized eigenvalue com-
plementarity problem [31], and tensor complementarity problem [32, 33]. The tensor C
is called copositive if Cxm ≥ 0 for all x ∈ R

n
+. Consider the tensor complement problem

(TCP(q,C)) of finding a vector x ∈R
n such that

x ≥ 0, q + Cxm–1 ≥ 0, xT(
q + Cxm–1) = 0.

Applying the above definitions, we have the following technical conclusion.

Theorem 2.6 Let C be a fourth-order Cauchy tensor with generating vectors a, b ∈ R
n
+.

Then the following statements are equivalent:
(i) the tensor C is copositive;

(ii) for every q > 0, TCP(q,C) has a unique solution;
(iii) for every index set N ⊂ [n], the system

C|N |(xN)3 < 0, xN ≥ 0

has no solution, where xN ∈R
|N |;

(iv) for all i ∈ [n], ai + bi > 0.

Proof (i) ⇒ (ii). It follows from q > 0 that 0 is a solution of TCP(q,C). Suppose, to the
contrary, that there exists a vector q′ > 0 such that TCP(q′,C) has a solution x �= 0. Since C
is copositive, for x ∈ R

n
+, one has

Cx4 ≥ 0.
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On the other hand,

(
Cx3)

i =
∑

k,j,k∈[n]

cijklxjxkxl

=
∑

k,j,k∈[n]

xjxkxl

ai + bj + ak + bl

≥ 0,

which means q′ + Cx3 > 0. Then

xT(
q′ + Cx3) = xT q′ + Cx4 > 0,

which contradicts the assumption that x solves TCP(q′,C). Thus, for every q > 0, we obtain
TCP(q,C) has a unique solution.

(ii) ⇒ (iii). Following the proof of Theorem 3.1 [34], we have the desired result.
(iii) ⇒ (iv). Let N = {i}, i ∈ [n], xN = 1. Then

(
C|N |(xN)3)

i = ciiiix3
i = ciiii =

1
2(ai + bi)

> 0.

Then, for all i ∈ [n], one has ai + bi > 0.
(iv) ⇒ (i). By Theorem 2.1, we obtain that the tensor C is M-positive semi-definite, which

means that the tensor C is copositive. �

3 Spectral properties for fourth-order Cauchy tensors
In this section, we discuss M-eigenvalue inclusion theorems and spectral properties of
fourth-order Cauchy tensors. M-eigenvalue problem has a close relationship with the
strong ellipticity condition, which plays an important role in nonlinear elasticity and in
materials, since it can ensure an elastic material to satisfy some mechanical properties.
Thus, to identify whether the strong ellipticity condition of a given material holds or not
becomes an important problem in mechanics [29, 35–38].

The strong ellipticity condition for a partially symmetric fourth-order tensor C is stated
by

f (x, y) = Cxyxy =
∑

i,k,j,l∈[n]

cijklxiyjxkyl > 0

for any vectors x ∈R
n, x �= 0, y ∈R

n, y �= 0. In [39], Qi, Dai, and Han revealed the necessary
and sufficient condition of the strong ellipticity condition by introducing the following
definition of an M-eigenvalue of the tensor C . For λ ∈R, x ∈R

m, y ∈ R
n, it holds that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C · yxy = λx,

Cxyx· = λy,

xT x = 1,

yT y = 1,

(3.1)
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where (C · yxy)i =
∑

k∈[m],j,l∈[n]cijklyjxkyl , and (Cxyx·)l =
∑

i,k∈[m],j∈[n]cijklxiyjxk . The scalar
λ is called an M-eigenvalue of the tensor C , and x and y are called left and right M-
eigenvectors of C , respectively, associated with the M-eigenvalue λ. When m = n, Qi, Dai,
and Han [39] gave the following technical theorem.

Theorem 3.1 ([39]) The strong ellipticity condition holds if and only if the smallest M-
eigenvalue of the elasticity tensor is positive.

From Theorems 2.3 and 3.1, we can obtain the necessary and sufficient conditions of the
strong ellipticity condition for fourth-order Cauchy tensors.

Theorem 3.2 Let the vectors a ∈ R
n, b ∈ R

n be generating vectors of the fourth-order
Cauchy tensor C . The strong ellipticity condition holds if and only if the smallest M-
eigenvalue of the tensor C is positive.

Theorem 3.3 Let the vectors a ∈ R
n, b ∈ R

n be generating vectors of the fourth-order
Cauchy tensor C . The strong ellipticity condition holds if and only if ai +bj > 0 for all i, j ∈ [n],
and the elements of generating vectors a, b are mutually distinct, respectively.

The spectral radius ρ(C) of C is defined as

ρ(C) = max
{|λ| : λ ∈ σ (C)

}
,

where σ (C) is the spectrum of C , which contains all M-eigenvalues of C .
Now, inspired by the idea of H-eigenvalue inclusion theorem [40], we establish the fol-

lowing M-eigenvalue inclusion theorems for fourth-order Cauchy tensors.

Theorem 3.4 Suppose that the tensor C is a fourth-order Cauchy tensor with generating
vectors a ∈R

m, b ∈R
n. Then

σ (C) ⊆ Γ (C) =
⋃

i∈[m]

Γi(C),

where Γi(C) = {z ∈C : |z| ≤ ∑
k∈[m],j,l∈[n]

1
ai+bj+ak +bl

}.

Proof Let λ be an M-eigenvalue of the tensor C with left M-eigenvector x ∈ R
m and right

M-eigenvector y ∈ R
n. Since x is a left M-eigenvector of the tensor C with xT x = 1, we

know that it has at least one nonzero component. Assume that

|xt| = max
i∈[m]

|xi| > 0.

It follows from (3.1) that

λxt = (C · yxy)t

=
∑

k∈[m],j,l∈[n]

ctjklyjxkyl

=
∑

k∈[m],j,l∈[n]

yjxkyl

at + bj + ak + bl
.
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Since yT y = 1, we obtain |yj| ≤ 1 for any j ∈ [n]. Furthermore,

|λ| ≤
∑

k∈[m],j,l∈[n]

1
|at + bj + ak + bl|

|xk|
|xt| |yjyl|

≤
∑

k∈[m],j,l∈[n]

1
|at + bj + ak + bl| .

This implies that λ ∈ Γ (C). �

Theorem 3.5 Suppose that the tensor C is a fourth-order Cauchy tensor with generating
vectors a ∈R

m, b ∈R
n. If there exists an index i ∈ [m] such that ci1i1 = ci2i2 = · · · = cinin = d,

then

σ (C) ⊆K(C) =
⋃

i∈[m]

Ki(C),

where Ki(C) = {z ∈C : |z – d| ≤ ∑
j,l∈[n],j �=l

1
|ai+bj+ai+bl | +

∑
k �=i,k∈[m],j,l∈[n]

1
ai+bj+ak +bl

}.

Proof Let λ be an M-eigenvalue of the tensor C with corresponding left M-eigenvector x ∈
R

m with xT x = 1 and right M-eigenvector y ∈ R
n with yT y = 1. Then left M-eigenvector x

has at least one nonzero component. Assume that

|xt| = max
i∈[m]

|xi| > 0.

It follows from (3.1) that

λxt = (C · yxy)t

=
∑

k∈[m],j,l∈[n]

ctjklyjxkyl

=
∑

j∈[n]

ctjtjy2
j xt +

∑

j,l∈[n],j �=l

ctjtlyjxtyl +
∑

k �=t,k∈[m],j,l∈[n]

ctjklyjxkyl

= dxt +
∑

j,l∈[n],j �=l

ctjtlyjxtyl +
∑

k �=t,k∈[m],j,l∈[n]

ctjklyjxkyl.

Furthermore,

|λ – d| ≤
∑

j,l∈[n],j �=l

1
|at + bj + at + bl| |yjyl| +

∑

k �=t,k∈[m],j,l∈[n]

1
|at + bj + ak + bl|

|xk|
|xt| |yjyl|

≤
∑

j,l∈[n],j �=l

1
|at + bj + at + bl| +

∑

k �=t,k∈[m],j,l∈[n]

1
|at + bj + ak + bl| .

This implies that λ ∈K(C). �

Next, we will reveal several spectral properties for fourth-order Cauchy tensors.
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Theorem 3.6 Suppose that the tensor C is a fourth-order Cauchy tensor with generating
vectors a ∈ R

m, b ∈R
n, and for all i ∈ [m], j ∈ [n] such that ai + bj > 0. Then the tensor C is

M-positive definite if and only if its M-eigenvalues are positive.

Proof Suppose that λ, x, and y satisfy (3.1). It is easy to obtain that λ = Cxyxy. Further-
more, (3.1) is the optimality condition of

min
{
Cxyxy : xT x = 1, yT y = 1, x ∈ R

m, y ∈R
n}. (3.2)

From the feasible set is compact and the objective function is continuous, we obtain
that the global maximizer and minimizer always exist. This shows that C always has M-
eigenvalues. Since C is M-positive definite (M-positive semidefinite) if and only if the op-
timal value of (3.2) is positive (nonnegative), we obtain the desired result. �

Theorem 3.7 Suppose that the fourth-order Cauchy tensor C and its generating vectors
a, b are defined as in Theorem 3.6 with the elements of generating vectors a, b mutually
distinct, respectively. If λ ∈ σ (C) is an M-eigenvalue of the tensor C with non-negative left
M-eigenvector x or non-negative right M-eigenvector y, then λ �= 0.

Proof Since x ≥ 0 and x �= 0, we know that it has at least one nonzero component xt > 0.
From the definitions of M-eigenvalue and M-eigenvector of the tensor C , one has

λxi = (C · yxy)i

=
∑

k∈[m],j,l∈[n]

yjxkyl

at + bj + ak + bl

=
∑

k∈[m],j,l∈[n]

∫ 1

0
tat+bj+ak +bl–1yjxkyl dt

=
∫ 1

0
tat– 1

4

( ∑

k∈[m]

tak – 1
4 xk

)(∑

j∈[n]

tbj– 1
4 yj

)2

dt. (3.3)

Suppose, to the contrary, that the tensor C has M-eigenvalue λ = 0 with left M-
eigenvector x. Then, from (3.3), we have

∫ 1

0
tat– 1

4

( ∑

k∈[m]

tak – 1
4 xk

)(∑

j∈[n]

tbj– 1
4 yj

)2

dt ≡ 0.

Using the properties of integration, one has

( ∑

k∈[m]

tak – 1
4 xk

)(∑

j∈[n]

tbj– 1
4 yj

)2

≡ 0, t ∈ (0, 1],

which implies

∑

k∈[m]

tak – 1
4 xk ≡ 0, t ∈ (0, 1],
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or

∑

j∈[n]

tbj– 1
4 yj ≡ 0, t ∈ (0, 1].

Without loss of generality, we assume

∑

k∈[m]

tak – 1
4 xk ≡ 0, t ∈ (0, 1].

Furthermore,

x1 + ta2–a1 x2 + · · · + tam–a1 xm ≡ 0, t ∈ (0, 1].

By the continuity and the fact that a1, a2, . . . , am are mutually distinct, it yields that

x1 = 0

and

x2 + ta3–a2 x3 + · · · + tam–a2 xm ≡ 0, t ∈ (0, 1].

Applying the same argument, one has

x1 = x2 = · · · = xm = 0,

which contradicts with xT x = 1. Then the tensor C has no zero M-eigenvalue. Similarly, if
right M-eigenvector y ≥ 0, using the second equation of (3.1), we can also obtain that the
tensor C has no zero M-eigenvalue and the desired conclusion follows. �

4 Power method of fourth-order Cauchy tensors
In this section, a power method is proposed to compute the smallest and the largest M-
eigenvalues of fourth-order Cauchy tensors. It is well known that the power method is an
efficient method to solve the largest eigenvalue of a matrix [41]. The method has success-
fully extended to compute the largest Z-eigenvalue in magnitude of higher-order tensors
[40] and the largest M-eigenvalue of a fourth-order partially symmetric tensor [42]. Mo-
tivated by these, we first propose a power method to compute the smallest M-eigenvalue
of fourth-order Cauchy tensors.

We introduce the following identity tensor I ∈R
m×n×m×n:

Iijkl =

⎧
⎨

⎩

1, if i = k and j = l,

0, otherwise.

Choose a suitable α ∈R such that α > |λ|, where λ ∈ σ (C), and take

f (x, y) = αIxyxy – Cxyxy � Cxyxy.
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It is easy to check that the tensor C is M-positive definite on R
m × R

n with the same
symmetry property of the tensor C . Moreover, Theorem 3.4 suggests that we can take

α = (1 + ε) max
i∈[m]

∑

k∈[m],j,l∈[n]

|cijkl|,

where ε > 0 is a sufficiently small number. Furthermore, if x and y constitute a pair of M-
eigenvectors of the tensor C associated with M-eigenvalue λ, then they are also a pair of
M-eigenvectors of tensor C associated with M-eigenvalue α – λ.

Now, we are in a position to propose a power method to compute the smallest M-
eigenvalue of a fourth-order Cauchy tensor C .

Algorithm 4.1
Initialization step: Choose initial points x0 ∈R

m, y0 ∈R
n, and let k = 0.

Iterative step: Carry out the following formula alternatively until certain convergence
criterion is satisfied and output x∗, y∗:

xk+1 = C · ykxkyk , xk+1 =
xk+1

‖xk+1‖ ,

yk+1 = Cxk+1ykxk+1·, yk+1 =
yk+1

‖yk+1‖
,

k = k + 1.

Final step: Output the smallest M-eigenvalue α – f (x∗, y∗) of the tensor C and the asso-
ciated M-eigenvectors x∗, y∗.

Similarly, we can compute the largest M-eigenvalue of fourth-order Cauchy tensors.
Take

α = (1 + ε) max
i∈[m]

∑

k∈[m],j,l∈[n]

|cijkl|

and define

f̂ (x, y) = αIxyxy + Cxyxy � Ĉxyxy.

Obviously, if x and y constitute a pair of M-eigenvectors of the tensor Ĉ associated with
M-eigenvalue λ̂, then they are also a pair of M-eigenvectors of the tensor C associated
with M-eigenvalue λ̂ – α. Thus, we can apply Algorithm 4.1 to compute the largest M-
eigenvalue of a fourth-order Cauchy tensor C .

The following numerical experiments show the effectiveness of the proposed method.
The whole program was written in Matlab 7.0. All the numerical results were carried
out on a personal Lenovo Thinkpad computer with Intel(R) Core(TM) i7-6500U CPU
2.50 GHz and RAM 8.00 GB. In the implementation, we choose ‖xk+1 – xk‖+‖yk+1 – yk‖ ≤
10–10 as the stopping criterion, and take the parameter ε = 0.0001.
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Figure 1 Numerical result of Example 4.1

Figure 2 Numerical result of Example 4.2

Example 4.1 Consider a fourth-order Cauchy tensor C with generating vectors a = [4, 5, 3]
and b = [–1, –2, 1]. The variation of the objective function value corresponding to the ten-
sor C during the iteration process can be shown in Fig. 1. For the tensor C , its smallest
M-eigenvalue is 0.0221 and the largest M-eigenvalue is 1.6397.

Example 4.2 Consider a fourth-order Cauchy tensor C with generating vectors a =
[1.4424, 1.1837, 1.2492] and b = [0.0285, 0.0530, 0.0560, 0.0415]. The variation of the ob-
jective function value corresponding to the tensor C during the iteration process can be
shown in Fig. 2. For the tensor C , its smallest M-eigenvalue is 0.0069 and the largest M-
eigenvalue is 4.5117.

Example 4.3 Consider a fourth-order Cauchy tensor C with generating vectors a =
rand(20, 1) + 10 and b = 30 ∗ rand(30, 1). The variation of the objective function value
corresponding to the tensor C during the iteration process can be shown in Fig. 4. For the
tensor C , its smallest M-eigenvalue is 0.0594 and the largest M-eigenvalue is 12.4184.

Example 4.4 Consider a fourth-order Cauchy tensor C with generating vectors a = 5 ∗
rand(30, 1) + 10 and b = rand(40, 1) + 8. The variation of the objective function value cor-
responding to the tensor C during the iteration process can be shown in Fig. 4. For the
tensor C , its smallest M-eigenvalue is 0.0229 and the largest M-eigenvalue is 28.9232.
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Figure 3 Numerical result of Example 4.3

Figure 4 Numerical result of Example 4.4

Figures 1, 2, 3, and 4 show that the smallest M-eigenvalue sequence generated by Algo-
rithm 4.1 is decreasing, and the largest M-eigenvalue sequence generated by Algorithm 4.1
is nondecreasing. From Theorems 3.2 and 3.3, it is easy to see that M-eigenvalues always
exist and the strong ellipticity condition holds if and only if the smallest M-eigenvalue of
C is positive; thus Example 4.1 verifies the strong ellipticity condition. From Theorem 2.3,
we know that the tensor C is M-positive definite if it satisfies that ai + bj > 0 for all i, j ∈ [n]
and the elements of generating vectors a, b are mutually distinct, respectively; then Ex-
ample 4.2 shows that the tensor C is M-positive definite. Furthermore, Examples 4.3 and
4.4 reclaim that our algorithm is also suitable for the tensors with high dimensions.

5 Final remarks
In this article, the necessary and sufficient conditions for the M-positive semi-definiteness
and M-positive definiteness of fourth-order Cauchy tensors are discussed. Moreover, the
necessary and sufficient conditions of the strong ellipticity condition for fourth-order
Cauchy tensors are obtained. Furthermore, we reveal that fourth-order Cauchy tensors
are M-positive semi-definite if and only if there is a monotone increasing homogeneous
polynomial defined in the nonnegative orthant ofRm ×R

n. Several M-eigenvalue inclusion
theorems and spectral properties of fourth-order Cauchy tensors are discussed. A power
method is proposed to compute the smallest and the largest M-eigenvalues of fourth-order
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Cauchy tensors. The given numerical experiments show the effectiveness of the proposed
method.

However, there are still some questions that we are not sure about now. Can we have
the type of Cauchy–Toeplitz tensors with the partially symmetric property? If so, how
about their spectral properties? What are the necessary and sufficient conditions for their
M-positive semi-definiteness?
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