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Abstract
The present paper deals with the limit behavior of iterates of Lupaş q- and
(p,q)-Bernstein operators. We obtain the convergence for Lupaş q- and (p,q)-Bernstein
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1 Introduction and preliminaries
For any f ∈ C[0, 1], the sequence of operators Bn : C[0, 1] → C[0, 1] defined by

Bn(f , x) =
n∑

k=0

(
n
k

)
xk(1 – x)n–kf

(
k
n

)
, x ∈ [0, 1], n ∈N, (1.1)

is known as Bernstein polynomials [6].
Lupaş [18] defined the first q-analogue of Bernstein operators (rational) for q > 0 as

follows:

Ln(f , q; x) =
n∑

k=0

f
(

[k]q

[n]q

)
bn,k(x; q), (1.2)

where

bn,k(x; q) =

[ n
k
]

q q
n(n–1)

2 xk(1 – x)n–k

∏n–1
j=0 {(1 – x) + qjx} .

Later Phillips [32] proposed another q-analog of Bernstein operators.
For q = 1, both are reduced to the original ones. However, for q �= 1, there are consid-

erable differences between them. The convergence properties for iterates of q-Bernstein
polynomials have been investigated in [5, 29, 30, 33, 37], and [38].

For elementary properties of q-analogs of Bernstein polynomials, we refer to [12, 18, 19,
31].
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The q-integer [k]q for k ∈N and a fixed real number q > 0 is defined by

[k]q =

⎧
⎨

⎩

1–qk

1–q if q �= 1,

k if q = 1.

Set [0]q = 0. The q-factorial coefficients are defined by

[k]q! =

⎧
⎨

⎩
[k]q[k – 1]q · · · [1]q if k ∈N,

1 if k = 0,

and the q-binomial coefficients by

[
n
k

]

q

=
[n]q!

[k]q![n – k]q!
, 0 ≤ k ≤ n,

with
[ n

0
]

q = 1 and
[ n

k
]

q = 0 for k > n.
Also,

(x – a)n
q =

⎧
⎨

⎩
1 if n = 0,

(x – a)(x – qa) · · · (x – qn–1a) if n ≥ 1.

For any function f , the divided differences are denoted by �0
qfi = fi for i = 0, 1, 2, . . . , n – 1

and, recursively, by �k+1
q fi = �k

qfi+1 – qk�k
qfi for k � 0, where fi denotes f ( [i]

[m] ). It is estab-
lished by induction that

�k
qfi =

k∑

r=0

(–1)rq
r(r–1)

2

[
k
r

]
fi+k–r

(see [36] and [17]).
Note that (1.2) may be written in the q-difference form

Ln(f , q; x) =
n∑

k=0

[
n
k

]

q

�k
qf0xk . (1.3)

We may deduce that

Ln(ax + b, q; x) = ax + b, a, b ∈ R.

Also, we can see that these operators verify for the test functions ej(x) = xj, j = 0, 1, 2.
In 1993, Rus [34] introduced and developed the theory of (weakly) Picard operators,

which is one of the most strong tools of fixed point theory with several applications to
operator equations and inclusions. Berinde [8] showed that an almost contraction is more
general than most of the contractions in the literature.

We now recall some basic features from fixed point theory (see [34]).
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Definition 1.1 The operator S on a metric space (X, d) is called a weakly Picard operator
(WPO) if the sequence of iterates (Sm(x))m � 1 converges to a fixed point of S for all x ∈ X.

We denote, as usual, S0 = IX , Sm+1 = S ◦ Sm, m ∈N.
Let FS = {ξ ∈ X : S(ξ ) = ξ}. If an operator B is a WPO and FS has exactly one element,

then S is called a Picard operator (PO).
First, we give a characterization for WPOs.

Theorem 1.2 ([33]) The operator S on a metric space (X, d) is a weakly Picard operator ⇔
there exists a partition {Xλ : λ ∈ �} such that for every λ ∈ � one has Xλ ∈ I(S) and S|Xλ

:
Xλ → Xλ is a PO, where I(S) := {∅ �= Y ⊂ X : S(Y ) ⊂ Y } denotes the collection of all non-
empty subsets invariant under S.

Moreover, for a WPO S, we take S∞ ∈ X defined as

S∞(x) = lim
m→∞ Sm(x), x ∈ X.

Clearly, S∞(x) = FS . Also, if S is WPO, then we have Fm
S = FS �= ∅, m ∈ N.

2 Iterates of Lupaş q-Bernstein operators
In the last decades the iterates of positive linear operators in various classes were inten-
sively investigated. The study of convergence of iterates of Bernstein operators has con-
nections to probability theory, matrix theory, spectral theory, and so on. We emphasize
here the importance of the works of some mathematicians such as [1, 7, 9–11, 13, 14, 16,
20, 25], and [35].

We want to extend the study of the iterates of Bernstein operators using (p, q)-calculus.
Our aim is to study the convergence for iterates of Lupaşş (p, q)-Bernstein operators using
the contraction principle (theory of weakly Picard operators).

Theorem 2.1 ([15]) For f ∈ C[0, 1] and fixed n ∈N
∗, we have

lim
M→∞ LM

n (f ; x) = f (0) +
(
f (1) – f (0)

)
x, x ∈ C[0, 1].

Rus [35] proved this result by using the contraction principle.
In [29] the authors defined

LM+1
n (f , q; x) = Ln

(
LM

n (f , q; x)
)
, M = 1, 2, . . . ,

and

L1
n(f , q; x) = Ln(f , q; x).

In the same paper, the authors proved the convergence of iterates of q-Bernstein opera-
tors for q > 0 using q-differences, Stirling polynomials, and matrix techniques. Ostrovska
[30] used eigenvalues and Radu [33] used the contraction principle to prove the conver-
gence of these iterates. The following result gives the convergence of Lupaş q-Bernstein
operators by using also the contraction principle. The following result gives the conver-
gence of Lupaş q-Bernstein operators by using the contraction principle.
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Theorem 2.2 Let Ln(f , q; x) be the Lupaş q-Bernstein operators defined in (1.2). Then for
all q > 0,

lim
M→∞ LM

n (f , q; x) = f (0) +
(
f (1) – f (0)

)
x (2.1)

for all f ∈ C[0, 1] and x ∈ [0, 1].

Proof First, we define Xα,β = {f ∈ C[0, 1] : f (0) = α, f (1) = β}, α,β ∈ R. Clearly, every Xα,β

is a closed subset of C[0, 1], and {Xα,β , (α,β) ∈R×R} is a partition of the space C[0, 1].
It follows directly from the definition that Lupaş q-Bernstein polynomials possess the

end-point interpolation property.
So we have that Xα,β is an invariant subset of f 
→ Ln(f , q; ·) for all (α,β) ∈ R×R and

n ∈N.
We show that the restriction of f 
→ Ln(f , q; ·) to Xα,β is a contraction for any α,β ∈ R.

Put tn = minx∈[0,1](bn,0(x; q) + bn,n(x; q)), that is,

tn = min
x∈[0,1]

(
(1 – x)n

∏n–1
j=0 {(1 – x) + qjx} +

q
n(n–1)

2 xn
∏n–1

j=0 {(1 – x) + qjx}
)

= min
x∈[0,1]

(
(1 – x)n + q

n(n–1)
2 xn

∏n–1
j=0 {(1 – x) + qjx}

)
.

Then 0 < tn ≤ 1.
Let f , g ∈ Xα,β . Then

∣∣Ln(f , q; x) – Ln(g, q; x)
∣∣

=

∣∣∣∣∣

n–1∑

k=1

bn,k(x; q)(f – g)
(

[k]q

[n]q

)∣∣∣∣∣

≤
n–1∑

k=1

bn,k(x; q)‖f – g‖[0,1] =
(
1 – bn,0(x; q) – bn,n(x; q)

)‖f – g‖[0,1]

=
(

1 –
(1 – x)n

∏n–1
j=0 {(1 – x) + qjx} –

q
n(n–1)

2 xn
∏n–1

j=0 {(1 – x) + qjx}
)

‖f – g‖[0,1]

=
(

1 –
((1 – x)n + q

n(n–1)
2 xn)

∏n–1
j=0 {(1 – x) + qjx}

)
‖f – g‖[0,1]

≤ (1 – tn)‖f – g‖[0,1],

and, finally,

∥∥Ln(f , q; x) – Ln(g, q; x)
∥∥

[0,1] ≤ (1 – tn)‖f – g‖[0,1].

The restriction of f 
→ Ln(f , q; x) to Xα,β is a contraction.
On the other hand, K∗

α,β = αe0 + (β – α)e1 ∈ Xα,β . Since Ln(e0, q; x) = e0 and Ln(e1, q; x) =
e1, it follows that K∗

α,β is a fixed point of Ln(f , q; ·). For any f ∈ C[0, 1], we have f ∈ Xf (0),f (1),
and by using the contraction principle we obtain the desired result (2.1). �
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In terms of WPOs, using (1.3), we can formulate the above theorem as follows.

Theorem 2.3 The Lupaş q-Bernstein operator f 
→ Ln(f , q; ·) is WPO, and

L∞
n (f , q; x) = f (0) +

(
f (1) – f (0)

)
x. (2.2)

Proof The operator S : X → X is WPO if the sequence (SM(x))M≥1 converges to a fixed
point of S for all x ∈ X.

For a WPO, we consider the operator S∞ : X → X defined as

S∞(x) = lim
M→∞ SM(x). (2.3)

Now, using Theorem 2.2 and (2.3), we get the result (2.2). �

3 Lupaş (p, q)-Bernstein operator
Mursaleen et al. [23] defined the (p, q)-analogs of Bernstein operators and studied their
approximation properties (see [2, 3, 21, 22, 24–28]). For further reading, we refer to [4, 21,
22, 26, 27].

For any p > 0 and q > 0, we have

[n]p,q = pn–1 + pn–2q + pn–3q2 + · · · + pqn–2 + qn–1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pn–qn

p–q when p �= q �= 1,

npn–1 when p = q �= 1,

[n]q when p = 1,

n when p = q = 1,

n = 0, 1, 2, 3, 4, . . . . Also,

[k]p,q! = [k]p,q[k – 1]p,q . . . [1]p,q, k = 1, 2, 3, . . . ,
[

n
k

]

p,q

=
[n]p,q!

[k]p,q![n – k]p,q!
, k = 1, 2, 3, . . . ,

and

(ax + by)n
p,q =

n∑

k=0

p
(n–k)(n–k–1)

2 q
k(k–1)

2

[
n
k

]

p,q

an–kbkxn–kyk ,

(x + y)n
p,q = (x + y)(px + qy)

(
p2x + q2y

)
. . .

(
pn–1x + qn–1),

(1 – x)n
p,q = (1 – x)(p – qx)

(
p2 – q2x

)
. . .

(
pn–1 – qn–1x

)
.

Khan et al. [16] introduced the following Lupaş-type (p, q)-analog of Bernstein operators
(rational):

For any p > 0 and q > 0, we get

Ln(f , p, q; x) =
n∑

k=0

f
(

pn–k[k]p,q

[n]p,q

)
bn,k(x; p, q), x ∈ [0, 1], (3.1)
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where

bn,k(x; p, q) =

[ n
k
]

p,q p
(n–k)(n–k–1)

2 q
k(k–1)

2 xk(1 – x)n–k

∏n–1
j=0 {pj(1 – x) + qjx} ,

and bn,0(x; p, q), bn,1(x; p, q), . . . , bn,n(x; p, q) are the Lupaş (p, q)-Bernstein basis functions
[12]. We recall the following auxiliary results:

Ln(e0, p, q; x) = 1,

Ln(e1, p, q; x) = x,

Ln(e2, p, q; x) =
pn–1x
[n]p,q

+
q2x2

p(1 – x) + qx
[n – 1]p,q

[n]p,q
.

4 Iterates of Lupaş (p, q)-Bernstein operator
Now we extend the study of the iterates of Bernstein operators in the framework of (p, q)-
calculus. The iterates of the Lupaş (p, q)-Bernstein polynomial are defined as

LM+1
n (f , p, q; x) = Ln

(
LM

n (f , p, q; x)
)
, M = 1, 2, . . . ,

and

L1
n(f , p, q; x) = Ln(f , p, q; x).

We study the convergence of the iterates of Lupaş (p, q)-Bernstein operators.

Theorem 4.1 Let Ln(f , p, q; x) be the Lupaş (p, q)-Bernstein operators defined in (3.1),
where p > 0, q > 0.

Then the Lupaş (p, q)-Bernstein operator is a weakly Picard operator, and its sequence
(LM

n )M≥1 of iterates satisfies

lim
M→∞ LM

n (f , p, q; x) = f (0) +
(
f (1) – f (0)

)
x. (4.1)

Proof The proof follows the same steps as in Theorem 2.2. Let

Xα,β =
{

f ∈ C[0, 1] | f (0) = α, f (1) = β
}

, α,β ∈R.

The Lupaş (p, q)-Bernstein polynomial possess the end-point interpolation property

Ln(f , p, q; 0) = f (0), Ln(f , p, q; 1) = f (1).

Then Xα,β is an invariant subset of f 
→ Ln(f , p, q; ·) for all (α,β) ∈R×R and n ∈ N.
We prove that the restriction of f 
→ Ln(f , p, q; ·) to Xα,β is a contraction for any α ∈R and

β ∈R. Let (α,β) ∈R and f , g ∈ Xα,β . From the definition of the (p, q)-Bernstein operator,

∣∣Ln(f , p, q; x) – Ln(g, p, q; x)
∣∣ =

∣∣∣∣∣

n–1∑

k=1

bn,k(x; p, q)(f – g)
(

pn–k[k]p,q

[n]p,q

)∣∣∣∣∣
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≤
n–1∑

k=1

bn,k(x; p, q)‖f – g‖[0,1]

=
(
1 – bn,0(x; p, q) – bn,n(x; p, q)

)‖f – g‖[0,1].

Let wn = minx∈[0,1](bn,0(x; p, q) + bn,n(x; p, q)), that is,

wn = min
x∈[0,1]

(
p

n(n–1)
2 (1 – x)n

∏n–1
j=0 {pj(1 – x) + qjx} +

q
n(n–1)

2 xn
∏n–1

j=0 {pj(1 – x) + qjx}
)

.

Then 0 < wn ≤ 1. Therefore

∣∣Ln(f , p, q; x) – Ln(g, p, q; x)
∣∣ =

(
1 –

(p
n(n–1)

2 (1 – x)n + q
n(n–1)

2 xn)
∏n–1

j=0 {pj(1 – x) + qjx}
)

‖f – g‖[0,1]

≤ (1 – wn)‖f – g‖[0,1]

for any f , g ∈ Xα,β , that is, the restriction of f 
→ Ln(f , p, q; ·) to Xα,β is a contraction.
On the other hand, K∗

α,β = αe0 + (β – α)e1 ∈ Xα,β , where e0(x) = 1 and e1(x) = x for all
x ∈ [0, 1]. Since Ln(e0, p, q; x) = e0, and Ln(e1, p, q; x) = e1, it follows that K∗

α,β is a fixed point
of Ln(f , p, q; ·).

By Theorem 1.2 the Lupaş (p, q)-Bernstein operator is a WPO, and using the contraction
principle, we obtain the claim (4.1). �

5 Conclusion
In this paper, we have studied the convergence for Lupaş q-Bernstein operators by us-
ing the contraction principle. We further extended the study of the iterates of Bernstein
operators using (p, q)-calculus.
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