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Abstract
This paper investigates the new stability criteria for the asymptotic stability of
time-delay systems via integral inequalities and Jensen inequalities. Firstly, not only
the known constant time delay, but also the unknown time-varying delay is
considered for the linear system. Secondly, the new delay-dependent
Lyapunov–Krasovskii functional based on the double integral inequalities and Jensen
inequalities is introduced, such that the linear system with time-delay is
asymptotically stable. Thirdly, two classes of delay-dependent stability conditions in
terms of linear matrix inequalities (LMIs) are derived, such that the control design
conditions are relaxed and computation complexity is reduced. Compared with
previous works, the larger feasible solution region and less conservative results are
obtained. Finally, some numerical examples are performed to show the effectiveness
and advantage of the proposed method.
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1 Introduction
Time delays exist in many dynamic systems, such as the chemical or process control sys-
tems, and often result in poor performance and instability [1–4]. Thus, it is necessary to
investigate the stability analysis of the time-delay systems. For the practical applications,
it may be important to determine the time-delay ranges or the numbers of decision vari-
ables (NoDv) for the time-delay systems, see [5–8] and the references therein. According
to the dependence of time delay, the stability conditions of the time-delay systems can
be classified into two categories: delay-independent ones and delay-dependent ones. It is
well known that the delay-independent stability conditions tend to be conservative, espe-
cially for the small size time delay [9, 10]. Thus, the objective of this paper is to derive the
less conservative delay-dependent stability conditions for the linear systems with constant
time delay and time-varying delay, respectively.

The nonlinearities and uncertainties are often caused by the time delays. Due to the ex-
istence of time delay, the system performance may decline significantly. The time delay has
become one of the most important reasons for producing the non-minimum phase [11,
12]. Especially, some stability conditions of the expected global exponential stability were
proposed under high frequency sampling for the nonlinear globally Lipschitz time-delay
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systems [13]. With the above reasons, many effective control strategies were proposed to
deal with the time delay, see [14, 15] and the references therein. For example, some novel
inequalities have been proposed, such as the auxiliary function-based inequality and the
Bessel–Legendre inequality, which can be obtained by choosing the Legendre polynomi-
als as auxiliary functions [16]. These inequalities have been applied to the constant time-
delay systems successfully. However, there are some difficulties in the applications of the
time-varying delay system, because the bounds of the solutions contain the reciprocal
convexity [16]. The integral inequalities method, as a class of effective control strategies,
has attracted much attention for the theory research and practical applications [17, 18].
However, some free weighting matrices should be introduced to relax the matrix cross
products in the stability analysis.

Recently, some integral terms have been introduced in the Lyapunov–Krasovskii func-
tional to derive some less conservative stability conditions [6, 19]. In addition, due to the
existence of function combinations with squared convex parameters, the double integral
terms were not partitioned and cannot be handled easily [10, 20]. Thus, a novel method
was proposed to handle the above problem by introducing some new integral terms with
delay-dependent coefficients, such as 1

h(t)–h1

∫ t–h1
t–h(t) x(α) dα in the augmented term [21].

However, there still exist some conservative results, because the aforementioned approx-
imation is still used in the derivation process of the stability conditions. To handle this
problem, most of the existing delay-dependent stability conditions have been obtained
by employing the Lyapunov–Krasovskii functional method. By employing the Lyapunov–
Krasovskii functional, some less conservative stability conditions in terms of LMIs were
obtained in the control system design [10, 22]. Recently, a new Lyapunov–Krasovskii func-
tional with free weighting matrix was introduced in the stability analysis by employing the
time delay x(t – h(t)) and marginally time delay x(t – h), (0 ≤ d(t) ≤ h) [23]. Note that the
free weighting matrices make the stability conditions complicated, and the above stability
conditions for the time-delay system are only applicable to the case that the lower bound
of time delay is zero [24, 25]. Moreover, it should be pointed out that most of the above
literature did not consider the Jensen inequalities. However, the Jensen inequalities play
an important role in reducing the NoDv and computation complexity [26, 27]. The Jensen
inequality is one of the most important results for convex (concave) functions defined in
an interval with a natural geometrical interpretation. In order to obtain a characterization
of the Jensen inequalities for the generalized Sugeno integral, it is clear that the classical
conditions must be changed [28]. Thus, the Jensen inequalities for the generalized Sugeno
integral were presented by maintaining the condition of convexity [28]. Besides, Jensen in-
equalities have the better ability to derive the delay-dependent results in the form of LMIs
for the linear time-delay systems [29]. Thus, the improved Jensen inequalities were pro-
posed based on the Wirtinger inequalities, and the improved integral inequalities in the
form of infinite series were presented, such that the delay-dependent stability conditions
in the form of LMIs were derived [29]. Particularly, if the linear system contains time delay,
the system model will contain more uncertainties. Then the system output will become
uncertain in values, and the required design conditions will become more conservative.
Thus, dealing with the trade-off between the less conservative conditions and increased
computation complexity remains an important subject. Thus, not only the Lyapunov–
Krasovskii functional, but also the double integral inequalities and Jensen inequalities are
introduced in this paper for the stability analysis.
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This paper investigates the new stability criteria for the asymptotic stability of time-
delay systems via integral inequalities and Jensen inequalities. The contributions of this
paper are listed as follows: (1) The known constant time delay h > 0 and the unknown
time-varying delay 0 ≤ h1 ≤ h(t) ≤ h2 are both considered in the linear system. (2) The
delay-dependent Lyapunov–Krasovskii functional based on the double integral inequali-
ties and Jensen inequalities is introduced, then the linear system is asymptotically stable
and the larger feasible solution region is obtained. (3) Two classes of delay-dependent sta-
bility conditions are derived, then the control design conditions are relaxed, computation
complexity is reduced, and less conservative results are obtained.

Notations. The notations in this paper are presented as follows. Rn denotes the n-
dimensional Euclidean space. Rn×m denotes the set of the n × m real matrices. R > 0
(≥ 0) and R < 0 (≤ 0) denote the positive definite (semi-positive definite) and negative
definite (semi-negative definite) matrices, respectively. “I “and “0” denote the identity and
the zero matrix with appropriate dimensions, respectively. The superscripts “T” and “–1”
denote the matrix transposition and matrix inverse, respectively. diag{· · · } denotes the
block-diagonal matrix. max{•} denotes the maximum value of the term “•”. “*” denotes
the vector term that is induced by symmetry.

2 Preliminaries
In this section, we introduce some lemmas useful to proving our main results in the next
section.

Lemma 1 ([22]) For a given matrix R > 0 and a differentiable function x : [a, b] →R
n, the

following inequalities hold:

∫ b

a
ẋT (s)Rẋ(s) ds ≥ 1

b – a
ΩT

1 RΩ1 +
3

b – a
ΩT

2 RΩ2 +
5

b – a
ΩT

3 RΩ3, (1)

∫ b

a

∫ b

u
ẋT (s)Rẋ(s) ds du ≥ 2ΩT

4 RΩ4 + 4ΩT
5 RΩ5, (2)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω1 = x(b) – x(a),

Ω2 = x(b) + x(a) – 2
b–a

∫ b
a x(s) ds,

Ω3 = x(b) – x(a) + 6
b–a

∫ b
a x(s) ds – 12

(b–a)2

∫ b
a

∫ b
u x(s) ds du,

Ω4 = x(b) – 1
b–a

∫ b
a x(s) ds,

Ω5 = x(b) + 2
b–a

∫ b
a x(s) ds – 6

(b–a)2

∫ b
a

∫ b
u x(s) ds du.

Lemma 2 is presented to reduce the conservatism of (2) in Lemma 1.

Lemma 2 For a given matrix R > 0 and a differentiable function x : [a, b] → R
n, the fol-

lowing double integral inequality holds:

∫ b

a

∫ b

u
ẋT (s)Rẋ(s) ds du ≥ 2ΩT

4 RΩ4 + 4ΩT
5 RΩ5 + 6ΩT

6 RΩ6, (3)
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where Ω4 and Ω5 are defined in (2), and

Ω6 = x(b) –
3

b – a

∫ b

a
x(s) ds +

24
(b – a)2

∫ b

a

∫ a

u
x(s) ds du

–
60

(b – a)3

∫ b

a

∫ b

u

∫ b

s
x(r) dr ds du. (4)

Proof Let us define
⎧
⎨

⎩

pi =
∫ b

a
∫ b

u ϕ2
i (s) ds du,

Ωi(w) =
∫ b

a
∫ b

u ϕi(s)w(s) ds du,
(5)

where ϕ(s) and w(s) are the differentiable functions in [a, b] →R
n.

If there exists
∫ b

a

∫ b

u
ϕi(s)ϕj(s) ds du = 0, i = 1, 2, 3 . . . and i �= j, (6)

one can obtain

0 ≤
∫ b

a

∫ b

u

(
w(s) – z(s)

)T R
(
w(s) – z(s)

)
ds du = W –

∞∑

i=1

1
pi

ΩT
i (w)RΩi(w), (7)

where
⎧
⎨

⎩

z(s) =
∑∞

i=1
1
pi

ϕi(s)Ωi(w),

W =
∫ b

a
∫ b

u wT (s)Rw(s) ds du,

which leads to

∫ b

a

∫ b

u
wT (s)Rw(s) ds du ≥

∞∑

i=1

1
pi

ΩT
i (w)RΩi(w). (8)

Let
⎧
⎪⎪⎨

⎪⎪⎩

ϕ1 = 1,

ϕ2 = s – 2b+a
3 ,

ϕ3 = (s – 3b+2a
5 )2 – 3(b–a)2

20 .

(9)

From (9), it can be seen that ϕi (i = 1, 2, 3) satisfies (6), then one has

⎧
⎪⎪⎨

⎪⎪⎩

p1 = (b–a)2

2 ,

p2 = (b–a)4

36 ,

p3 = (b–a)6

600 .

(10)

With (8) and (10), one has

V ≥ 2
(b – a)2 ΩT

1 RΩ1 +
36

(b – a)4 ΩT
2 RΩ2 +

600
(b – a)6 ΩT

3 RΩ3. (11)
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Let w(s) = ẋ(s), one has

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ω1(ẋ) = (b – a){x(b) – 1
b–a

∫ b
a x(s) ds},

Ω2(ẋ) = (b–a)2

3 {x(b) + 2
b–a

∫ b
a x(s) ds – 6

(b–a)2

∫ b
a

∫ b
u x(s) ds du},

Ω3(ẋ) = (b–a)3

10 {x(b) – 3
b–a

∫ b
a x(s) ds + 24

(b–a)2

∫ b
a

∫ b
u x(s) ds du

– 60
(b–a)3

∫ b
a

∫ b
u

∫ b
s x(r) dr ds du}.

(12)

Then substituting (12) into (11), inequality (3) is obtained. This completes the proof of
Lemma 2. �

Lemma 3 ([30]) For a given matrix R > 0 and a differentiable function ϕ : [a, b] →R
n, the

following inequality holds:

Iq
R(ϕ) ≥ 1

b – a

(∫ b

a
ϕ(s) ds

)T

R
(∫ b

a
ϕ(s) ds

)

, (13)

where Iq
R(ϕ) =

∫ b
a ϕT (s)Rϕ(s) ds.

Lemma 4 ([24]) For a given matrix R > 0 and a differentiable function ϕ : [a, b] →R
n, the

following inequality holds:

Jg
R(ϕ) ≥ 3

b – a
ζ T

1 Rζ1 (14)

with
⎧
⎨

⎩

ζ1 =
∫ b

a ϕ(s) ds – 2
b–a

∫ b
a

∫ s
a ϕ(u) du ds,

Jg
R(ϕ) = Iq

R(ϕ) – ((b – a)ζ T
0 Rζ0)–1,

where

ζ0 =
∫ b

a
ϕ(s) ds.

Lemma 5 For a given matrix R > 0 and a differentiable function ϕ : [a, b] → R
n, the fol-

lowing Jensen inequality holds:

Jg
R(ϕ) ≥ 1

b – a

[
ζ1

ζ2

]T [
3R 0
0 5R

][
ζ1

ζ2

]

, (15)

where ζ1 is defined in (14), and

ζ2 =
∫ b

a
ϕ(s) ds –

6
b – a

∫ b

a

∫ s

a
ϕ(u) du ds +

12
(b – a)2

∫ b

a

∫ s

a

∫ u

a
ϕ(v) dv du ds. (16)

Remark 1 From the proof of Lemma 5, it can be seen that the vector term [ ζT
1 ζT

2 ]T in (15)
contains single and double integrals. Thus, for ϕ : [a, b] →R

n, the extra information of the
time delay can be used in the system design, such as introducing the double integrals into
the augmented vectors [26].



Zheng et al. Journal of Inequalities and Applications         (2019) 2019:30 Page 6 of 15

Proof The proof is divided into three steps.
Step 1: For any ϕ : [a, b] →R

n, the approximation function ψ : [a, b] →R
n of ϕ is defined

as follows:

ψ(t) = ϕ(t) –
1

b – a

∫ b

a
ϕ(s) ds + p(t)χ , (17)

where p(t) is a real-valued function for t ∈ [a, b]. χ ∈ R
n defined as χ = –λ

(α(b–a)2)ζ1
, where

α and λ are the scalars.
Let

Jg
R(ψ) = Jg

R(ϕ) + (b – a)
(
m1

(
p2) – m2

1(p)
)
χT Rχ

+ 2χT R
(

(
p(b) – m1(p)

)
∫ b

a
ϕ(s) ds – p′(b)

∫ b

a

∫ u

a
ϕ(v) dv du

+
∫ b

a
p′′(s)

∫ s

a

∫ u

a
ϕ(v) dv du ds

)

, (18)

where

m1(p) =
1

b – a

∫ b

a
p(s) ds.

Step 2: For any p ∈ P1[a, b], let us define p(t) = αt + β , where α �= 0 and β are the scalars.
Then from (18), one has

Jg
R(ψ) = Jg

R(ϕ) +
α2(b – a)3

12
χT Rχ + α(b – a)χT Rζ1. (19)

According to Lemmas 3–4, one has

⎧
⎨

⎩

Jg
R(ϕ) ≥ –α(b – a)χT Rζ1 – α2(b–a)3

12 χT ,

Rχ =: R(Jg
R(ϕ)),

(20)

then one can obtain

R
(
Jg
R(ϕ)

)
=

1
(b – a)(λ – λ2/12)ζ T

1 Rζ1
.

It is easy to verify that max{ λ–λ2

12 } = 3 for λ = 6, thus, one can obtain

Jg
R(ϕ) ≥ R

(
Jg
R(ϕ)

)
=

3
b – a

ζ T
1 Rζ1. (21)

Via the similar approach of Step 1 with

ψ(t) = ϕ(t) –
2

(b – a)2

∫ b

a

∫ b

s
ϕ(u) du ds + p(t)χ , (22)



Zheng et al. Journal of Inequalities and Applications         (2019) 2019:30 Page 7 of 15

one can obtain

∫ b

a

∫ b

s
ϕT (u)Rϕ(u) du ds

≥ 2
(b – a)2

(∫ b

a

∫ b

s
ϕ(u) du ds

)T

R
(∫ b

a

∫ b

s
ϕ(u) du ds

)

+
4

(b – a)2 γ T Rγ , (23)

where

γ = 2
∫ b

a

∫ b

s
ϕ(u) du ds –

6
b – a

∫ b

a

∫ b

s

∫ b

u
ϕ(v) dv du ds.

Step3: With (21), one has

Jg
R(ψ) ≥ 3

b – a

(∫ b

a
ψ(t) dt –

2
b – a

∫ b

a

∫ s

a
ψ(u) du ds

)

. (24)

With (18) and (24), one has

Jg
R(ϕ) ≥ R

(
Jg
R(ϕ)

)
:= κχT Rχ + 2χT Rζ̃2 +

3
b – a

ζ T
1 Rζ1 (25)

with

κ = (b – a)
(
3
(
m1(p) – m2(p)

)2 + m2
1(p) – m1

(
p2)), (26)

ζ̃2 = r1

∫ b

a
ϕ(s) ds + r2

∫ b

a

∫ s

a
ϕ(u) du ds – p′′

∫ b

a

∫ s

a

∫ u

a
ϕ(v) dv du ds, (27)

where

⎧
⎪⎪⎨

⎪⎪⎩

m2(p) = 2
(b–a)2

∫ b
a

∫ s
a p(u) du ds,

r1 = 4m1(p) – 3m2(p) – p(b),

r2 = p′(b) – 6
b–a (m1(p) – m2(p)).

Then from (25), one has

R
(
Jg
R(ϕ)

)
=

1
b – a

(
3ζ T

1 Rζ1 + Lλζ
T
2 Rζ2

)
, (28)

where Lλ = 2λ–λ2

5 . Note that Lλ – 5 = – 1
5(λ–5)2 ≤ 0 for any λ. Thus, R(Jg

R(ϕ)) achieves the
maximum value. This completes the proof of Lemma 5. �

Remark 2 It should be pointed out that inequality (21) does not depend on the selection
of first-order polynomial p(t). That is, the proposed approximation function (17) leads
to (21) for any first-order polynomial p(t). In [31], the particular first-order polynomial
p(t) = 3(a + b – 2t)/(b – a)2 was introduced and the similar proof in Step 2 was presented
to derive a similar inequality as (21).
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Lemma 6 ([31]) For some positive definite symmetric matrices R1 ∈R
n×n and R2 ∈R

m×m,
if there exists a matrix X ∈R

n×m such that

[
R1 X
∗ R2

]

≥ 0, (29)

then

[
1
α

R1 0
0 1

1–α
R2

]

≥
[

R1 X
∗ R2

]

, α ∈ (0, 1). (30)

3 Stability analysis
In this section, two classes of stability analysis are presented. The stability analysis is pre-
sented for the linear system with known constant time delay h in Sect. 3.1. The stabil-
ity analysis is presented for the linear system with unknown time-varying delay h(t) in
Sect. 3.2.

3.1 Linear system with known constant time delay
Consider the linear system with known constant time delay

⎧
⎨

⎩

ẋ(t) = Ax(t) + Adx(t – h) + AD
∫ t

t–h x(s) ds,

x(t) = φ(t), t ∈ [–h, 0],
(31)

where x(t) ∈ R
n is the state vector, A, Ad , AD ∈ R

n×n are the system gain matrices, φ(t)
is the continuous vector-valued initial function, and h is the known constant time delay
satisfying h > 0.

Theorem 1 For system (31), if there exist the positive definite matrices P ∈ R
4n×4n and

Q, S, R ∈R
n×n such that

ψ = sym
(
ΠT

1 PΠ2
)

+ eT
1 Qe1 – eT

2 Qe2 + h2eT
0 Se0 +

h2

2
eT

0 Re0

– ΠT
3 SΠ3 – 3ΠT

4 SΠ4 – 5ΠT
5 SΠ5 – 2ΠT

6 RΠ6 – 4ΠT
7 RΠ7 – 6ΠT

8 RΠ8 < 0, (32)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Π1 = [eT
1 , eT

3 , eT
4 , eT

5 ]T , Π2 = [eT
0 , eT

1 – eT
2 , heT

1 – eT
3 , h2

2 eT
1 – eT

4 ]T ,

Π3 = e1 – e2, Π4 = e1 + e2 – 2
h e3,

Π5 = e1 – e2 + 6
h e3 – 12

h2 e4, Π6 = e1 – 1
h e3,

Π7 = e1 + 2
h e3 – 6

h2 e4, Π8 = e1 – 3
h e3 + 24

h2 e4 – 60
h3 e5,

⎧
⎨

⎩

e0 = Ae1 + Ade2 + ADe3,

ei = [0n×(i–1)n, In, 0n×(5–i)n], ei ∈R
n×5n and i = 1, 2, . . . , 5.

Then system (31) is asymptotically stable for the known constant time delay h > 0.
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Proof For system (31), consider the Lyapunov–Krasovskii functional

V (t) =
4∑

i=1

Vi(t) (33)

with
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

V1(t) = ηT (t)Pη(t),

V2(t) =
∫ t

t–h xT (s)Qx(s) ds,

V3(t) = h
∫ t

t–h
∫ t

u ẋT (s)Sẋ(s) ds du,

V4(t) =
∫ t

t–h
∫ t

u
∫ t

s ẋT (r)Rẋ(r) dr ds du,

where

η(t) =
[

xT (t),
∫ t

t–h
xT (s) ds,

∫ t

t–h

∫ t

u
xT (s) ds du,

∫ t

t–h

∫ t

u

∫ t

s
xT (r) dr ds du

]T

.

Taking the time derivative of V (t) along (31), one has

V̇ (t) =
4∑

i=1

V̇i(t)

= 2η̇T (t)Pη(t) + xT (t)Qx(t) – xT (t – h)Qx(t – h) + h2ẋT (t)Sẋ(t)

– h
∫ t

t–h
ẋT (s)Sẋ(s) ds + 0.5h2ẋT (t)Rẋ(t) –

∫ t

t–h

∫ t

u
ẋT (s)Rẋ(s) ds du. (34)

For the problem formulated, equality (34) is rewritten as

V̇ (t) =
4∑

i=1

V̇i(t)

= ξT (t)
{

sym
(
ΠT

1 PΠ2
)

+ eT
1 Qe1 – eT

2 Qe2 + h2eT
0 Se0 +

h2

2
eT

0 Re0

}

ξ (t)

– h
∫ t

t–h
ẋT (s)Sẋ(s) ds –

∫ t

t–h

∫ t

u
ẋT (s)Rẋ(s) ds du, (35)

where ξ (t) is defined as

ξ (t) =
[

xT (t), xT (t – h),
∫ t

t–h
xT (s) ds,

∫ t

t–h

∫ t

u
xT (s) ds du,

∫ t

t–h

∫ t

u

∫ t

s
xT (r) dr ds du

]T

.

Applying Lemmas 1–2 to (35), one has

–h
∫ t

t–h
ẋT (s)Sẋ(s) ds ≤ ξT (t)

(
–ΠT

3 SΠ3 – 3ΠT
4 SΠ4 – 5ΠT

5 SΠ5
)
ξ (t), (36)

–
∫ t

t–h

∫ t

u
ẋT (s)Rẋ(s) ds du ≤ ξT (t)

(
–2ΠT

6 RΠ6 – 4ΠT
7 RΠ7 – 6ΠT

8 RΠ8
)
ξ (t). (37)

Thus, one can obtain V̇ (t) ≤ ξT (t)ψξ (t). This completes the proof of Theorem 1. �
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Remark 3 The objective of this paper is to derive some new refinements of the integral
inequalities and Jensen inequalities to use the available forms of Lyapunov–Krasovskii
functionals. Thus, based on equality (18), we only consider: p(t) is a polynomial and the
order of p(t) is at most two. It should be pointed out that inequality (15) can be derived for
any p ∈ [a, b] as shown in Step 3 of the proof for Lemma 5. From Theorem 1, it can be seen
that the stability analysis of the linear system with known constant time delay is presented.
However, the stability analysis in Theorem 1 is more conservative, because the stability
analysis of the linear system with unknown time-varying delay h(t) is not considered in
Theorem 1. Thus, Theorem 2 is presented in Sect. 3.2.

3.2 Linear system with unknown time-varying delay
Consider the linear system with unknown time-varying delay

⎧
⎨

⎩

ẋ(t) = Ax(t) + Adx(t – h(t)),

x(t) = φ(t), t ∈ [–h2, 0],
(38)

where x(t) ∈ R
n is the state vector, A, Ad are the system gain matrices, φ(t) is the con-

tinuous vector-valued initial function, h(t) is the unknown time-varying delay satisfying
0 ≤ h1 ≤ h(t) ≤ h2 and ḣ(t) ≤ μ. h1 and h2 are the lower bound and the upper bound of
h(t), μ is the upper bound of ḣ(t).

Theorem 2 For system (38), if there exist positive definite symmetric matrices P ∈ R
4n×4n,

Qi, Ri, S ∈ R
n×n (i = 1, 2), and matrices X, F with appropriate dimensions such that

Φ =

[
R̃2 X
∗ R̃2

]

≥ 0 (39)

Ω(h) = Ξ0(h) + Ξ1 + Ξ2 – Ξ3 – Ξ4 – Γ TΦΓ < 0 (40)

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃i = diag{Ri, 3Ri, 5Ri}, i = 1, 2.

Ξ0(h) = GT (h)PG0 + GT
0 PG(h),

Ξ1 = eT
1 Q1e1 – eT

2 Q1e2 + eT
2 Q2e2 – eT

4 Q2e4,

Ξ2 = AT (h2
1R1 + h2

12R2 + 1/2h2
12S)A,

Ξ3 = GT
1 FT R̃1FG1,

Ξ4 = 2GT
4 ŜG4 + 4GT

5 ŜG5,

Γ = col{FG2, FG3},

(41)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G0 =

[ A
e1–e2
e2–e4

h1(e1–e5)

]

G(h) =

[ e1
h1e5

(h–h1)e6+(h2–h)e7
h2

1/2e8

]

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1 = col{e1, e2, e5, e8},
G2 = col{e2, e3, e6, e9},
G3 = col{e3, e4, e7, e10},
G4 = col{e2 – e6, e3 – e7},
G5 = col{e2 + 2e6 – 3e9, e3 + 2e7 – 3e10},
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⎧
⎪⎪⎨

⎪⎪⎩

A = Ae1 + Ade3,

Ŝ = diag{S, S},
h12 = h2 – h1,

in which ei ∈R
n×10n, ei = [0n×(i–1)n, In, 0n×(10–i)n], i = 1, 2, . . . , 10.

Then system (38) is asymptotically stable for the unknown time-varying delay 0 ≤ h1 ≤
h(t) ≤ h2.

Proof For system (38), consider the Lyapunov–Krasovskii functional

V (xt , ẋt) = x̃T (t)Px̃(t) +
∫ t

t–h1

xT (s)Q1x(s) ds +
∫ t–h1

t–h2

xT (s)Q2x(s) ds

+ h1

∫ 0

–h1

∫ t

t+s
ẋT (u)R1ẋ(u) du ds

+ h12

∫ –h1

–h2

∫ t

t+s
ẋT (u)R2ẋ(u) du ds

+
∫ –h1

–h2

∫ –h1

s

∫ t

t+u
ẋT (θ )Sẋ(θ ) dθ du ds, (42)

where

x̃(t) =

⎡

⎢
⎢
⎢
⎢
⎣

x(t)
∫ t

t–h1
x(s) ds

∫ t–h1
t–h2

x(s) ds
∫ 0

–h1

∫ t
t+s x(u) du ds

⎤

⎥
⎥
⎥
⎥
⎦

.

Taking the time derivative of V (xt , ẋt) along (38), one has

V̇ (xt , ẋt) = χT
0 (t)

(
Ξ0(h) + Ξ1 + Ξ2

)
χ0(t) – h1

∫ t

t–h1

ẋT (s)R1ẋ(s) ds

– h12

∫ t–h1

t–h2

ẋT (s)R2ẋ(s) ds –
∫ –h1

–h2

∫ t–h1

t+s
ẋT (u)Sẋ(u) du ds, (43)

where

χ0(t) = col

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

x(t)
x(t – h1)

x(t – h(t))
x(t – h2)

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎣

1
h1

∫ t
t–h1

x(s) ds
1

h(t)–h1

∫ t–h1
t–h(t) x(s) ds

1
h2–h(t)

∫ t–h(t)
t–h2

x(s) ds

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

2
h2

1

∫ 0
–h1

∫ t
t+s x(u) du ds

2
(h(t)–h1)2

∫ –h1
–h(t)

∫ t
t+s x(u) du ds

2
(h2–h(t))2

∫ –h(t)
–h2

∫ t
t+s x(u) du ds

⎤

⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

According to Lemma 5, one has

–h1

∫ t

t–h1

ẋT (s)R1ẋ(s) ds ≤ –χT
1 (t)FT R̃1Fχ1(t), (44)
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where χ1(t) = G1χ0(t). Substituting χ1(t) = G1χ0(t) into (44), one has

–h1

∫ t

t–h1

ẋT (s)R1ẋ(s) ds ≤ –χT
0 (t)GT

1 FT R̃1FG1χ0(t). (45)

It is easy to verify that

∫ t–h1

t–h2

ẋT (s)R2ẋ(s) ds =
∫ t–h1

t–h(t)
ẋT (s)R2ẋ(s) ds +

∫ t–h(t)

t–h2

ẋT (s)R2ẋ(s) ds. (46)

Applying Lemmas 5–6 to the integral term –h12
∫ t–h1

t–h2
ẋT (s)R2ẋ(s) ds in (43), one has

–h12

∫ t–h1

t–h2

ẋT (s)R2ẋ(s) ds ≤ –

[
χ2(t)
χ3(t)

]T [
R̃2 X
∗ R̃2

][
χ2(t)
χ3(t)

]

, (47)

where
⎧
⎨

⎩

χ2(t) = FG2χ0(t),

χ3(t) = FG3χ0(t),
(48)

which leads to

–h12

∫ t–h1

t–h2

ẋT (s)R2ẋ(s) ds ≤ –χT
0 (t)Γ TΦΓ χ0(t). (49)

Note

∫ –h1

–h2

∫ t–h1

t+s
ẋT (u)Sẋ(u) du ds

≥
∫ –h1

–h(t)

∫ t–h1

t+s
ẋT (u)Sẋ(u) du ds +

∫ –h(t)

–h2

∫ t–h(t)

t+s
ẋT (u)Sẋ(u) du ds. (50)

With (23) and (50), one has

–
∫ –h1

–h2

∫ t–h1

t+s
ẋT (u)Sẋ(u) du ds ≤ –χT

0 (t)Ξ4χ0(t). (51)

Thus, with (43)–(51), one can obtain V̇ (xt , ẋt) ≤ χT
0 (t)Ω(h)χ0(t). This completes the proof

of Theorem 2. �

4 Numerical examples
4.1 Example 1
Consider system (31) with the system gain matrices

A =

[
–2 0
0 –0.9

]

, Ad =

[
0 1
0 0

]

, AD =

[
–1 0
–1 –1

]

.

The comparison results are computed by the LMIs toolbox and listed in Table 1. For
comparison purpose, the time-delay ranges and numbers of decision variables (NoDv) are
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Table 1 The comparison results of time-delay ranges and NoDv (Example 1)

Method Delay range NoDv

W.H. Chen et al. [5] Theorem 1 [0.2001, 1.6440] 86
K. Liu et al. [14] [0.2000, 1.8960] 15
O. Solomon et al. [17] [0.2000, 1.9615] 58
A. Seuret et al. [24] Theorem 6 [0.2000, 2.0206] 46
M.J. Park et al. [32] Theorem 1 [0.2000, 2.0538] 36
Theorem 1 [0.2000, 2.1071] 29
Analytical range [0.2000, 2.1200] –

Table 2 The comparison results of upper bounds h2 with different h1 for μ = 0.2 (Example 2)

Method (h2) h1

1.05 1.10 1.15 1.20 1.25 1.30 1.35

E. Fridman et al. [9] Theorem 1 1.1640 2.2189 2.2566 2.3110 2.3523 2.3677 2.4596
H.Y. Shao [6] Theorem 1 1.1894 2.2357 2.2780 2.3360 2.3716 2.3880 2.4755
J. Sun et al. [10] Theorem 2 1.2033 2.2505 2.2892 2.3537 2.3990 2.4015 2.4981
P.G. Park et al. [26] Theorem 2 1.2202 2.2781 2.3075 2.3701 2.4211 2.4301 2.5181
A. Seuret et al. [31] Theorem 1 1.2498 2.2901 2.3316 2.3900 2.4491 2.4573 2.5306
Theorem 2 1.2690 2.3160 2.3569 2.4206 2.4662 2.4792 2.5610

shown in Table 1. From Table 1, it can be seen that the larger time-delay range is obtained
by employing Theorem 1 compared with [5, 14, 17, 24, 32]. This implies that the larger
stability region is obtained in this paper. That is, the proposed method is effective, and the
proposed Theorem 1 provides much larger feasible solution region and a limited number
of matrix variables.

Remark 4 Different from [5, 14, 17, 24, 32], the new delay-dependent Lyapunov–
Krasovskii functional based on the double integral inequalities and Jensen inequalities is
introduced, such that the linear system with constant time-delay is asymptotically stable.
Moreover, unlike [5, 14, 17, 24, 32], since the Lyapunov–Krasovskii functional includes
the triple integral term, the integral term is extended in the augmented vector ξ (t). Thus,
Theorem 1 is proposed to obtain a tighter lower bound of the double integral term.

4.2 Example 2
Consider system (38) with the system gain matrices

A =

[
–1 0
0 –1.5

]

, Ad =

[
–1 0
–1 –1

]

.

The comparison results are computed by the LMIs toolbox and listed in Tables 2–3. For
comparison purpose, the intervals of lower bounds h1 are chosen as h1 ∈ {1.05, 1.10, 1.15,
1.20, 1.25, 1.30, 1.35} and h1 ∈ {1, 2, 3, 4, 5, 6, 7} for Table 2 and Table 3, respectively. By
computing the upper bounds h2 with different h1, the comparison results are shown in
Tables 2–3. From Tables 2–3, it can be seen that the larger upper bound h2 is obtained by
employing Theorem 2 compared with [6, 9, 10, 26, 31], even if the different upper bounds
of time derivatives μ = 0.2 and μ = 0.5 are considered. This implies that the larger stability
region is obtained in this paper. That is, the proposed method is effective, and Theorem 2
has better ability to provide some less conservative conditions and less conservative re-
sults.
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Table 3 The comparison results of upper bounds h2 with different h1 for μ = 0.5 (Example 2)

Method (h2) h1

1 2 3 4 5 6 7

E. Fridman et al. [9] Theorem 1 1.5652 2.3987 3.1450 4.2225 5.1607 6.0109 7.2547
H.Y. Shao [6] Theorem 1 1.7586 2.5006 3.2061 4.3531 5.2209 6.1313 7.3135
J. Sun et al. [10] Theorem 2 1.9186 2.6112 3.3472 4.4845 5.3925 2.2204 7.4996
P.G. Park et al. [26] Theorem 2 2.1011 2.7831 3.4879 4.5249 5.4029 6.3007 7.5505
A. Seuret et al. [31] Theorem 1 2.2960 2.8016 3.5111 4.6919 5.6212 6.5492 7.7713
Theorem 2 2.4811 2.9931 3.6080 4.8150 5.7930 6.7219 7.9716

Remark 5 Compared with the existing results [6, 9, 10, 26, 31], the proposed Lyapunov
functional contains some double integral terms and triple integral terms. The above Lya-
punov functional is very effective to reduce the conservatism of the system [10]. This is
one reason why Theorem 2 is less conservative than the existing ones. Another reason
is that the lower bound h1 and the upper bound h2 of the time-varying delay are pre-
sented in the Lyapunov functional by introducing the integral terms

∫ t
t–h1

xT (s)Q1x(s) ds
and

∫ t–h1
t–h2

xT (s)Q2x(s) ds.

5 Conclusions
This paper investigates the new stability criteria for the asymptotic stability of time-delay
systems via integral inequalities and Jensen inequalities. The known constant time delay
h > 0 and unknown time-varying delay 0 ≤ h1 ≤ h(t) ≤ h2 are both considered in the lin-
ear system. By introducing the delay-dependent Lyapunov–Krasovskii functional based
on the double integral inequalities and Jensen inequalities, the asymptotic stability of the
linear system with time-delay is guaranteed and the larger feasible solution region is ob-
tained. By deriving two classes of delay-dependent stability conditions, the control design
conditions are relaxed, computation complexity is reduced, and less conservative results
are obtained. Finally, some numerical examples are performed to show the effectiveness
and advantage of the proposed method. And the proposed method will be extended to
the time-varying delay system with some novel Lyapunov–Krasovskii functionals in the
future.
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