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Abstract
We first establish q-non uniform difference versions of the integral inequalities of
Hölder, Cauchy–Schwarz, and Minkowski of classical mathematical analysis and then
integral inequalities of Grönwall and Bernoulli based on the Lagrange method of
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1 Introduction
Considering the most general divided difference derivative [1, 2],

Df
(
t(s)

)
=

f (t(s + 1
2 )) – f (t(s – 1

2 ))
t(s + 1

2 ) – t(s – 1
2 )

, (1)

admitting the property that if f (t) = Pn(t(s)) is a polynomial of degree n in t(s), then
Df (t(s)) = P̃n–1(t(s)) is a polynomial in t(s) of degree n – 1, one is led to the following most
important canonical forms for t(s) in order of increasing complexity:

t(s) = t(0); (2)

t(s) = s; (3)

t(s) = qs; (4)

t(s) =
qs + q–s

2
; q ∈C, s ∈ Z. (5)

When the function t(s) is given by (2)–(4), the divided difference derivative (1) leads to the
ordinary differential derivative Df (t) = d

dt f (t), finite difference derivative

�f (s) = f (s + 1) – f (s) =
(
e

d
ds – 1

)
f (s), (6)
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and q-difference derivative (or Jackson derivative [3])

Dqf (t) =
f (qt) – f (t)

qt – t
=

q
d
dt – 1

qt – t
f (t), (7)

respectively (see also [4–6]). When t(s) = x(qs) is given by (5), the corresponding derivative
is usually referred to as the Askey–Wilson first order divided difference operator [7] that
one can write as follows:

Df
(
x(z)

)
=

f (x(q 1
2 z)) – f (x(q– 1

2 z))
x(q 1

2 z) – x(q– 1
2 z)

, (8)

where x(z) = z+z–1

2 is the well-known Joukowski transformation and z = qs.
The calculus related to the differential derivative, the continuous or differential calcu-

lus, is clearly the classical one. The one related to derivatives (6),(7), (8) (difference, q-
difference, and q-non uniform difference, respectively) is referred to as the discrete calcu-
lus. Its interest is twofold: On the one hand, it generalizes the continuous calculus; on the
other hand, it uses a discrete variable.

This work is concerned with the q-non uniform difference calculus. We particularly aim
to establish q-non uniform difference versions of the well-known in differential calculus
integral inequalities of Hölder, Cauchy–Schwarz, Minkowski, Grönwall, Bernoulli, and
Lyapunov. Another captivating work on the raised inequalities can be found in [8] for
a calculus based on a derivative also generalizing (6) and (7), but one will remark that
even if that work greatly inspired us, there is not any hierarchic relationship between the
calculus considered there (see [9] for a general theory) and the one considered here (see
also [10–12]) based on (8). We will note also that (8) is at our best knowledge the most
general known divided difference derivative having the property of sending a polynomial
of degree n in a polynomial of degree n – 1.

In the following lines, we first introduce basic concepts of q-non uniform difference
calculus necessary for the sequel, and then study the mentioned integral inequalities. The
functions that are considered in the q-non uniform difference calculus are clearly defined
on the set

T =
{

x
(
qk), k ∈ Z

2
=

{
n
2

}

n∈Z

}
. (9)

2 q-Non uniform difference calculus
In this section, we discus the essential elements of q-non uniform integral calculus and
q-non uniform linear difference equations of first order.

2.1 q-Non uniform integral calculus
2.1.1 Integration
We consider the q-non uniform divided difference derivative defined by (from now on
q ∈R

+, s ∈ Z
+, as indicated below)

Df
(
x(z)

) def=
f (x(q 1

2 z)) – f (x(q– 1
2 z))

x(q 1
2 z) – x(q– 1

2 z)
, (10)
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x(z) =
z + z–1

2
= x

(
qs) =

qs + q–s

2
, q ∈ R

+, s ∈ Z
+. (11)

A function f (x(z)) is said to be q-non uniform differentiable on x(z) iff the ratio on the
r.h.s. (right-hand side) of (10) exists and is finite. Clearly, every continuous function on T

(in the topology of R) is q-non uniform differentiable on that set.
Let us suppose that DF(x(z)) = f (x(z)); z = qs or equivalently

F(x(qs+ 1
2 )) – F(x(qs– 1

2 ))
x(qs+ 1

2 ) – x(qs– 1
2 )

= f
(
x
(
qs)). (12)

We have

F
(
x
(
qs– 1

2
))

– F
(
x
(
qs+ 1

2
))

=
[
x
(
qs– 1

2
)

– x
(
qs+ 1

2
)]

f
(
x
(
qs)),

then we have

F
(
x
(
qs)) – F

(
x
(
qs+1)) =

[
x
(
qs) – x

(
qs+1)]f

(
x
(
qs+ 1

2
))

F
(
x
(
qs+1)) – F

(
x
(
qs+2)) =

[
x
(
qs+1) – x

(
qs+2)]f

(
x
(
qs+ 3

2
))

...

F
(
x
(
qN–1)) – F

(
x
(
qN))

=
[
x
(
qN–1) – x

(
qN)]

f
(
x
(
qN– 1

2
))

.

By adding member by member, we get

F
(
x
(
qs)) – F

(
x
(
qN))

=
N–1∑

r=s

[
x
(
qr) – x

(
qr+1)]f

(
x
(
qr+ 1

2
))

.

Hence

∫ x(z)

x(qN )
f
(
x(z)

)
dqx(z) def=

x(qN–1)∑

x(t)=x(z)

[
x(t) – x(qt)

]
f
(
x
(
tq

1
2
))

=
qN–1
∑

t=z

[
x(t) – x(qt)

]
f
(
x
(
tq

1
2
))

. (13)

This integral sends a polynomial (in x(z)) of degree n in a polynomial of degree n + 1
[12].

Replacing x(z) = z+z–1

2 in this last equation, we have

∫ x(z)

x(qN )
f
(
x(z)

)
dqx(z) =

1
2

(1 – q)
qN–1
∑

t=z
t
(

1 –
1

qt2

)
f
(
x
(
tq

1
2
))

. (14)

Let us stop for a moment on the appropriate writing of (14) to verify in particular
whether in these equations the integral on the left-hand side has a lower bound, actually
lower than the upper bound. Note first that the function x(z) = z+z–1

2 , z ∈R
+, is decreasing

for 0 < z < 1 and increasing for 1 < z < ∞.
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Assume first that 0 < q < 1. In this case, according to the construction N ≥ s ≥ 0, one
will have qN ≤ z = qs and x(z) ≤ x(qN ), and the convenient writing of (14) is

∫ x(qN )

x(z)
f
(
x(z)

)
dqx(z) =

1
2

(1 – q)
qN–1
∑

t=z
t
(

1
qt2 – 1

)
f
(
x
(
tq

1
2
))

. (15)

On the other hand, if 1 < q < ∞, we will have z ≤ qN and x(z) ≤ x(qN ) and (14) becomes
(15) again. On the other side, in (15), the factor

h(t) = (1 – q)t
(

1
qt2 – 1

)
; t = qs, s ∈ Z

+

is always positive regardless of whether 0 < q < 1 or 1 < q < ∞ (let us agree from now on
that 0 < q < 1 and therefore 0 ≤ z ≤ 1). This leads us to the following fundamental positivity
property of the integral in (15).

Property 2.1 If f (x(z)) ≥ 0 and a = x(qα) ≤ b = x(qβ ), then

∫ b

a
f
(
x(z)

)
dqx(z) ≥ 0.

Corollary 2.1 If f (x(z)) ≥ g(x(z)) and a = x(qα) ≤ b = x(qβ ), then

∫ b

a
f
(
x(z)

)
dqx(z) ≥

∫ b

a
g
(
x(z)

)
dqx(z).

2.1.2 Connection between the q-integral and q-non uniform integral
We have

∫ x(qN )

x(z)
f
(
x(z)

)
dqx(z) =

1
2

∫ z

qN

(
1

qz2 – 1
)

f
(
x
(
q

1
2 z

))
dqz. (16)

For N → ∞,
∫ ∞

x(z)
f
(
x(z)

)
dqx(z) =

1
2

∫ z

0

(
1

qz2 – 1
)

f
(
x
(
q

1
2 z

))
dqz

=
1
2

(1 – q)z
∞∑

i=0

(
1

q2i+1z2 – 1
)

f
(
x
(
qi+ 1

2 z
))

, (17)

and the integral with lower and upper finite bound can be written as follows:

∫ b

a
f
(
x(z)

)
dqx(z) =

∫ ∞

a
f
(
x(z)

)
dqx(z) –

∫ ∞

b
f
(
x(z)

)
dqx(z) (18)

a = x(qα) ≤ b = x(qβ ) (if the integrals on the r.h.s. of (18) exist).
A function f (x(z)) defined on T is said to be q-non uniform integrable on a finite interval

[x(z), x(qN )] iff the sum on the r.h.s. of (15) exists and is finite. If the upper bound is infinite,
the q-non uniform integrability means the convergence of the infinite series on the r.h.s.
of (17). Every continuous function on T (in the topology of R) is clearly q-non uniform
integrable on any finite interval on that set.
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Remark 2.1 It is not difficult to notice that to deal with the case where s ≥ N ≥ 0 it would
suffice to replace in the preceding formulas z = qs by qN and vice versa.

In this case, from (13), we obtain

∫ x(qN )

x(z)
f
(
x(z)

)
dqx(z) def=

x(zq–1)∑

x(t)=x(qN )

[
x(t) – x(qt)

]
f
(
x
(
q

1
2 t

))

=
zq–1
∑

t=qN

[
x(t) – x(qt)

]
f
(
x
(
q

1
2 t

))
(19)

or by replacing x(z) = z+z–1

2 in (19)

∫ x(qN )

x(z)
f
(
x(z)

)
dqx(z) =

1
2

(1 – q)
zq–1
∑

t=qN

t
(

1 –
1

qt2

)
f
(
x
(
q

1
2 t

))
. (20)

Passing to the q-integral, we will have

∫ x(qN )

x(z)
f
(
x(z)

)
dqx(z) =

1
2

∫ z

qN

(
1

qt2 – 1
)

f
(
x
(
q

1
2 t

))
dqt. (21)

For N → 0,

∫ x(z)

1
f
(
x(z)

)
dqx(z) =

1
2

(q – 1)
1∑

t=q–1z

t
(

1 –
1

qt2

)
f
(
x
(
q

1
2 t

))

=
1
2

(q – 1)
s–1∑

i=0

qi
(

1 –
1

q2i+1

)
f
(
x
(
qi+ 1

2
))

=
1
2

∫ z

1

(
1 –

1
qt2

)
f
(
x
(
q

1
2 t

))
dqt. (22)

Finally, if a = x(qα) ≤ b = x(qβ ),

∫ b

a
f
(
x(z)

)
dqx(z) def=

∫ b

1
f
(
x(z)

)
dqx(z) –

∫ a

1
f
(
x(z)

)
dqx(z)

=
∫ 1

a
f
(
x(z)

)
dqx(z) –

∫ 1

b
f
(
x(z)

)
dqx(z). (23)

2.1.3 Fundamental principles of analysis
(i) We can formulate the statement of the fundamental principle of analysis as follows:

“The q-non uniform derivative of the integral of a function is this function itself ”.
This corresponds to the formula

D
[∫ x(z)

x(qN )
f
(
x(z)

)
dqx(z)

]
= f

(
x(z)

)
. (24)
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(ii) This is the q-non uniform version of the Newton–Leibnitz formula

∫ x(z)

x(qN )
[Df ]

(
x(z)

)
dqx(z) = f

(
x(z)

)
– f

(
x
(
qN))

. (25)

2.1.4 Integration by parts
By integrating the formula

f
(
x
(
q

1
2 z

))
Dg

(
x(z)

)
= D[fg]

(
x(z)

)
– g

(
x
(
q– 1

2 z
))
Df

(
x(z)

)
(26)

and using the second fundamental principle of the analysis, one obtains

∫ x(z)

x(qN )

[
f
(
x
(
q

1
2 z

))
Dg

(
x(z)

)]
dqx(z)

= [fg]x(z)
x(qN ) –

∫ x(z)

x(qN )
g
(
x
(
q– 1

2 z
))
Df

(
x(z)

)
dqx(z). (27)

2.2 Linear q-non uniform difference equations of first order
The general linear q-non uniform difference equation of first order is given by

Dy
(
x(z)

)
= a

(
x(z)

)
y
(
x
(
q– 1

2 z
))

+ b
(
x(z)

)
(28)

or

Dỹ
(
x(z)

)
= ã

(
x(z)

)
ỹ
(
x
(
q

1
2 z

))
+ b̃

(
x(z)

)
, (29)

where a(x(z)), b(x(z)), ã(x(z)), and b̃(x(z)) are known, while y(x(z)) and ỹ(x(z)) are unknown
functions to be determined.

Consider first the homogeneous equation corresponding to (28):

Dy0
(
x(z)

)
= a

(
x(z)

)
y0

(
x
(
q– 1

2 z
))

. (30)

Detailing, we get

y0(x(q 1
2 z)) – y0(x(q– 1

2 z))
x(q 1

2 z) – x(q– 1
2 z)

= a
(
x(z)

)
y0

(
x
(
q– 1

2 z
))

,

which gives

y0
(
x
(
q

1
2 z

))
= p

(
x(z)

)
y0

(
x
(
q– 1

2 z
))

,

where

p
(
x(z)

)
= 1 +

(
x
(
zq

1
2
)

– x
(
zq– 1

2
))

a
(
x(z)

)

= 1 +
q 1

2 – q– 1
2

2
(
z – z–1)a

(
x(z)

)
. (31)
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Using the recursion

y0
(
x(z)

)
=

[
p
(
x
(
q

1
2 z

))]–1y0
(
x(qz)

)
,

we obtain

y0
(
x(z)

)
= y0

(
x(z0)

) z∏

t=q–1z0

[
p
(
x
(
tq

1
2
))]–1 (32)

or

y0
(
x(z)

)
=

N–1∏

i=0

[
p
(
x
(
qi+ 1

2 z
))]–1y0

(
x
(
qN z

))
. (33)

For N −→ ∞ (or z0 −→ 0), we obtain

y0
(
x(z)

)
=

( ∞∏

i=0

[
p
(
x
(
zqi+ 1

2
))]–1

)

y0
(
x(0)

)
. (34)

Let us define the exponential function

E
a,q

1
2

(
x(z0); x(z)

) def=
z∏

t=q–1z0

[
p
(
x
(
tq

1
2
))]–1. (35)

It is clear that

E
a,q– 1

2

(
x(0); x(z)

)
=

∞∏

i=0

[
p
(
x
(
zqi+ 1

2
))]–1 (36)

and

E
a,q– 1

2

(
x(z0);∞)

=
∞∏

i=0

[
p
(
x
(
q–iz0q– 1

2
))]–1. (37)

Similarly, for the homogeneous equation corresponding to (29)

Dỹ0
(
x(z)

)
= ã

(
x(z)

)
ỹ0

(
x
(
q

1
2 z

))
, (38)

developing, we have

ỹ0
(
x
(
q

1
2 z

))
p̃
(
x(z)

)
= ỹ0

(
x
(
q– 1

2 z
))

, (39)

where

p̃
(
x(z)

)
= 1 –

(
x
(
q

1
2 z

)
– x

(
q– 1

2 z
))

ã
(
x(z)

)

= 1 –
q 1

2 – q– 1
2

2
(
z – z–1)ã

(
x(qz)

)
. (40)
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Using the recursion

ỹ0
(
x(z)

)
= p̃

(
x
(
q

1
2 z

))
ỹ0

(
x(qz)

)
,

we obtain

ỹ0
(
x(z)

)
= ỹ0

(
x(z0)

) z∏

t=q–1z0

[
p̃
(
x
(
tq

1
2
))]

(41)

or

ỹ0
(
x(z)

)
=

N–1∏

i=0

[
p̃
(
x
(
zqi+ 1

2
))]

ỹ0
(
qN x

)
. (42)

For N −→ ∞ (or z0 −→ 0), we have

ỹ0
(
x(z)

)
=

∞∏

i=0

[
p̃
(
x
(
zqi+ 1

2
))]

ỹ0
(
x(0)

)
. (43)

Let us now define the second exponential function

E
ã;q

1
2

(
x(z0), x(z)

) def=
z∏

t=q–1z0

[
p̃
(
x
(
tq

1
2
))]

. (44)

We have

E
ã;q

1
2

(
x(0), x(z)

)
=

∞∏

i=0

[
p̃
(
x
(
tqi+ 1

2
))]

(45)

and

E
ã,q

1
2

(
x(z0);∞)

=
∞∏

i=0

[
p̃
(
x
(
qiz0q

1
2
))]–1. (46)

From (35) and (44) we obtain that:
If ã(x(z)) = –a(x(z)), then p̃(x(z)) = p(x(z)) and y0(x(z))ỹ0(x(z)) = y0(x(z0))ỹ0(x(z0)). Hence

we have the following.

Theorem 2.1 If y(x(z)) and ỹ(x(z)) are solutions of

Dy
(
x(z)

)
= a

(
x(z)

)
y
(
x
(
q– 1

2 z
))

and

Dỹ
(
x(z)

)
= –a

(
x(z)

)
ỹ
(
x
(
q

1
2 z

))
,

respectively, and satisfy y(x(z0))ỹ(x(z0)) = 1, then y(x(z))ỹ(x(z)) = 1.
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Direct proof

D(ỹy) = y
(
x
(
q– 1

2 z
))
Dỹ

(
x(z)

)
+ ỹ

(
x
(
zq

1
2
))
Dy

(
x(z)

)

= –a
(
x(z)

)
ỹ
(
x
(
zq

1
2
))

y
(
x
(
zq– 1

2
))

+ a
(
x(z)

)
ỹ
(
x
(
zq

1
2
))

y
(
x
(
zq– 1

2
))

= 0

⇒D(ỹy) = 0; ỹy = const.

As well y(x(z0))ỹ(x(z0)) = 1, then y(x(z))ỹ(x(z)) = 1. �

Corollary 2.2

E
a,q– 1

2

(
x(z0); x(z)

)
.E

–a,q
1
2

(
x(z0); x(z)

)
= 1 = E

–a,q– 1
2

(
x(z0); x(z)

)
.E

a,q
1
2

(
x(z0); x(z)

)
.

Let us consider now the non-homogeneous equations (28) and (29). To find the solution
of the non-homogeneous equation

Dy
(
x(z)

)
= a

(
x(z)

)
y
(
x
(
zq– 1

2
))

+ b
(
x(z)

)
, (47)

we assume that y0(x(z)) is the solution of the corresponding homogeneous equation

Dy
(
x(z)

)
= a

(
x(z)

)
y
(
x
(
zq– 1

2
))

, (48)

and use the Lagrange method (variation of constants method) by taking

y
(
x(z)

)
= y0

(
x(z)

)
c
(
x(z)

)
(49)

as the solution of (47), where c(x(z)) is unknown. By placing (49) in (47), we have

D
[
y0

(
x(z)

)
c
(
x(z)

)]
= a

(
x(z)

)
c
(
x
(
zq– 1

2
))

y0
(
x
(
zq– 1

2
))

+ b
(
x(z)

)

or

D
[
c
(
x(z)

)]
y0

(
x
(
zq

1
2
))

+ c
(
x
(
zq– 1

2
))
D

[
y0

(
x(z)

)]

= a
(
x(z)

)
c
(
x
(
zq– 1

2
))

y0
(
x
(
zq– 1

2
))

+ b
(
x(z)

)
.

Then, since

Dy0
(
x(z)

)
= a

(
x(z)

)
y0

(
x
(
zq– 1

2
))

,

we get

D
[
c
(
x(z)

)]
y0

(
x
(
zq

1
2
))

+ c
(
x
(
zq– 1

2
))

a
(
x(z)

)
y0

(
x
(
zq– 1

2
))

= a
(
x(z)

)
c
(
x
(
zq– 1

2
))

y0
(
x
(
zq– 1

2
))

+ b
(
x(z)

)

or

D
[
c
(
x(z)

)]
y0

(
x
(
zq

1
2
))

= b
(
x(z)

)
, (50)
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then

D
[
c
(
x(z)

)]
= y–1

0
(
x
(
zq

1
2
))

b
(
x(z)

)
. (51)

This gives us the following relation:

c
(
x(z)

)
= c

(
x(z0)

)
+

∫ x(z)

x(z0)
y–1

0
(
x
(
tq

1
2
))

b
(
x(t)

)
dqx(t). (52)

Placing (52) in (49), we obtain

y
(
x(z)

)
= y0

(
x(z)

)
c
(
x(z0)

)
+

∫ x(z)

x(z0)
y0

(
x(z)

)
y–1

0
(
x
(
tq

1
2
))

b
(
x(t)

)
dqx(t), (53)

hence

c
(
x(z0)

)
= y–1

0
(
x(z0)

)
y
(
x(z0)

)
. (54)

The relations (53)–(54) give

y
(
x(z)

)
= Φ

(
x(z), x(z0)

)[
y
(
x(z0)

)
+

∫ x(z)

x(z0)
Φ

(
x(z0), x

(
tq

1
2
))

b
(
x(t)

)
dqx(t)

]
, (55)

where

Φ(a, b) = y0(a)y–1
0 (b). (56)

We do the same with the equation associated to (28), equation (29), using the Lagrange
method with

ỹ
(
x(z)

)
= c̃

(
x(z)

)
ỹ0

(
x(z)

)
, (57)

where c̃(x(z)) is an unknown function. Placing (57) in (29), we have

c̃
(
x(z)

)
= c̃

(
x(z0)

)
+

∫ x(z)

x(z0)
ỹ–1

0
(
x
(
tq– 1

2
))

b̃
(
x(t)

)
dqx(t). (58)

Placing (58) in (57), we obtain

ỹ
(
x(z)

)
= ỹ0

(
x(z)

)
c̃
(
x(z0)

)
+

∫ x(z)

x(z0)
ỹ0

(
x(z)

)
ỹ–1

0
(
x
(
tq– 1

2
))

b̃
(
x(t)

)
dqx(t), (59)

hence

c̃
(
x(z0)

)
= ỹ–1

0
(
x(z0)

)
ỹ
(
x(z0)

)
. (60)

Now we can write the general solution of (29) like

ỹ
(
x(z)

)
= Φ̃

(
x(z), x(z0)

)[
ỹ
(
x(z0)

)
+

∫ x(z)

x(z0)
Φ̃

(
x(z0), x

(
tq– 1

2
))

b̃
(
x(t)

)
dqx(t)

]
, (61)
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where

Φ̃(a, b) = ỹ0(a)ỹ–1
0 (b). (62)

3 q-Non uniform difference integral inequalities
In this section, we will first establish q-non uniform versions of some integral inequali-
ties of classical mathematical analysis such as the integral inequalities of Hölder, Cauchy–
Schwarz, and Minkowski. It can be seen that the techniques used in classical analysis re-
main valid here. Then we establish q-non uniform versions of some other integral inequal-
ities based on the linear q-non uniform difference equations of first order and the corre-
sponding Lagrange resolution method: the inequalities of Grönwall, Bernoulli; and finally
we prove the Lyapunov inequality for the solutions of the q-non uniform Sturm–Liouville
equation.

3.1 q-Non uniform Hölder and Cauchy–Schwarz inequalities
Theorem 3.1 (q-non uniform Hölder inequality) Let a, b ∈ [1,∞[∩T. For all real-valued
functions f , g , defined and q-non uniform integrable on [a, b], we have

∫ b

a

∣∣f
(
x(z)

)
g
(
x(z)

)∣∣dqx(z)

≤
(∫ b

a

∣
∣f

(
x(z)

)∣∣α dqx(z)
) 1

α
(∫ b

a

∣
∣g

(
x(z)

)∣∣β dqx(z)
) 1

β

(63)

with α > 1 and 1
α

+ 1
β

= 1.

Proof Let us first show that for A, B ∈ [1,∞[ we have

A
1
α B

1
β ≤ A

α
+

B
β

. (64)

Indeed, since 1
α

+ 1
β

= 1, A, B ∈ [1,∞[ , Aα

α
+ Bβ

β
runs through the segment [Aα , Bβ ], while

log Aα

α
+ log Bβ

β
runs through the segment linking the points (Aα , log Aα) and (Aβ , log Aβ ).

By concavity of the logarithm function, we conclude that log( Aα

α
+ Bβ

β
) ≥ log Aα

α
+ log Bβ

β
=

log(AB). By applying the exponential to the two members of this inequality, we obtain (64).
Let us now take

A
(
x(z)

)
=

|f (x(z))|α
∫ b

a |f (x(z))|α dqx(z)
and B

(
x(z)

)
=

|g(x(z))|β
∫ b

a |g(x(z))|β dqx(z)
,

considering that

(∫ b

a

∣
∣f

(
x(z)

)∣∣α dqx(z)
)(∫ b

a

∣
∣g

(
x(z)

)∣∣β dqx(z)
)

	= 0 (65)

(otherwise, clearly f ≡ 0 or g ≡ 0 and (63) becomes equality). Due to Property 2.1 and its
Corollary on the positivity of the integral, by substituting A(x(z)) and B(x(z)) in (64) and
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integrating on [a, b], we have

∫ b

a

|f (x(z))|
(
∫ b

a |f (x(z))|α dqx(z)) 1
α

|g(x(z))|
(
∫ b

a |g(x(z))|β dqx(z))
1
β

dqx(z)

=
∫ b

a
A

1
α B

1
β dqx(z)

≤
∫ b

a

{
A
α

+
B
β

}
dqx(z)

=
∫ b

a

{
1
α

|f (x(z))|α
∫ b

a |f (x(z))|α dqx(z)
+

1
β

|g(x(z))|β
∫ b

a |g(x(z))|β dqx(z)

}
dqx(z)

=
1
α

∫ b

a

{ |f (x(z))|α
∫ b

a |f (x(z))|α dqx(z)

}
dqx(z) +

1
β

∫ b

a

{ |g(x(z))|β
∫ b

a |g(x(z))|β dqx(z)

}
dqx(z)

=
1
α

+
1
β

= 1,

which gives us directly the q-non uniform Hölder inequality

∫ b

a

∣∣f
(
x(z)

)
g
(
x(z)

)∣∣dqx(z) ≤
(∫ b

a

∣∣f
(
x(z)

)∣∣α dqx(z)
) 1

α
(∫ b

a

∣∣g
(
x(z)

)∣∣β dqx(z)
) 1

β

. (66)

�

If we take α = β = 2 in the q-non uniform Hölder inequality (63), we have the q-non
uniform Cauchy–Schwarz inequality.

Corollary 3.1 (q-non uniform Cauchy–Schwarz inequality) Let a, b ∈ [1,∞[∩T. For
all real-valued functions f , g , defined and q-non uniform integrable on [a, b], we have

∫ b

a

∣
∣f

(
x(z)

)
g
(
x(z)

)∣∣dqx(z) ≤
√(∫ b

a

∣
∣f

(
x(z)

)∣∣2 dqx(z)
)(∫ b

a

∣
∣g

(
x(z)

)∣∣2 dqx(z)
)

. (67)

3.2 q-Non uniform Minkowski inequality
We can now use the q-non uniform Hölder inequality to deduce the q-non uniform
Minkowski inequality.

Theorem 3.2 (q-non uniform Minkowski inequality) Let a, b ∈ [1,∞[∩T. For all real-
valued functions f , g , defined and q-non uniform integrable on [a, b], we have

(∫ b

a

∣
∣(f + g)

(
x(z)

)∣∣α dqx(z)
) 1

α

≤
(∫ b

a

∣
∣f

(
x(z)

)∣∣α dqx(z)
) 1

α

+
(∫ b

a

∣∣g
(
x(z)

)∣∣α dqx(z)
) 1

α

(68)

with 1
α

+ 1
β

= 1, where α > 1 and β > 1.



Bangerezako et al. Journal of Inequalities and Applications         (2019) 2019:28 Page 13 of 22

Proof We have

∫ b

a

∣
∣(f + g)

(
x(z)

)∣∣α dqx(z) =
∫ b

a

∣
∣(f + g)

(
x(z)

)∣∣α–1∣∣(f + g)
(
x(z)

)∣∣dqx(z)

≤
∫ b

a

∣∣(f + g)
(
x(z)

)∣∣α–1∣∣f
(
x(z)

)∣∣dqx(z)

+
∫ b

a

∣∣(f + g)
(
x(z)

)∣∣α–1∣∣g
(
x(z)

)∣∣dqx(z). (69)

Using the q-non uniform Hölder inequality with β = α
α–1 , we will obtain

∫ b

a

∣∣(f + g)
(
x(z)

)∣∣α dqx(z)

≤
{∫ b

a

∣∣f
(
x(z)

)∣∣α dqx(z)
} 1

α
{∫ b

a

∣∣(f + g)
(
x(z)

)∣∣(α–1)β |dqx(z)
} 1

β

+
{∫ b

a

∣
∣g

(
x(z)

)∣∣α dqx(z)
} 1

α
{∫ b

a

∣
∣(f + g)

(
x(z)

)∣∣(α–1)β |dqx(z)
} 1

β

=
[{∫ b

a

∣∣f
(
x(z)

)∣∣α dqx(z)
} 1

α

+
{∫ b

a

∣∣g
(
x(z)

)∣∣α dqx(z)
} 1

α
]

×
{∫ b

a

∣
∣(f + g)

(
x(z)

)∣∣α|dqx(z)
} 1

β

. (70)

Dividing both sides of this inequality by {∫ b
a |(f + g)(x(z))|α|dqx(z)} 1

β , we have

(∫ b

a

∣∣(f + g)
(
x(z)

)∣∣α dqx(z)
)1– 1

β ≤
{∫ b

a

∣∣f
(
x(z)

)∣∣α dqx(z)
} 1

α

+
{∫ b

a

∣
∣g

(
x(z)

)∣∣α dqx(z)
} 1

α

. (71)

As 1 – 1
β

= 1
α

, this gives us the q-non uniform Minkowski inequality. �

3.3 q-Non uniform Grönwall inequality
Let us first introduce the following inequalities based on the Lagrange method for the
linear q-non uniform difference non-homogeneous equations.

Lemma 3.1 Let y, f be real-valued functions defined and q-non uniform integrable on
[c, d], ∀c, d ∈ [1,∞[∩T. Let a(x(z)) such that p(x(z)) = 1 + (q 1

2 – q– 1
2 )(z – z–1)a(x(z)) > 0.

That means a(x(z)) ≥ 0.
Suppose that y0(x(z)) is a solution of

Dy0
(
x(z)

)
= a

(
x(z)

)
y0

(
q– 1

2 x(z)
)

(72)

such that y0(x(z0)) = 1.
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If

Dy
(
x(z)

) ≤ a
(
x(z)

)
y
(
x
(
zq– 1

2
))

+ f
(
x(z)

) ∀x(z) ∈ [1,∞[, (73)

then

y
(
x(z)

) ≤ y0
(
x(z)

)
y
(
x(z0)

)
+ y0

(
x(z)

)∫ x(z)

x(z0)
y–1

0
(
x
(
tq

1
2
))

f
(
x(t)

)
dqx(t). (74)

Proof Let y0(x(z)) be the solution of the homogeneous equation

Dy0
(
x(z)

)
= a

(
x(z)

)
y0

(
x
(
zq– 1

2
))

(75)

such that y0(x(z0)) = 1. By looking for the function y(x(z)) satisfying (73) by the Lagrange
method

y
(
x(z)

)
= c

(
x(z)

)
y0

(
x(z)

)
, (76)

where c(x(z)) is indeterminate, we replace (76) in (73) and we have

D
[
c
(
x(z)

)
y0

(
x(z)

)] ≤ a
(
x(z)

)[
c
(
x
(
zq

1
2
))

y0
(
x
(
zq– 1

2
))]

+ f
(
x(z)

)
(77)

or

y0
(
x
(
zq

1
2
))
Dc

(
x(z)

)
+ c

(
x
(
zq– 1

2
))
Dy0

(
x(z)

)

≤ a
(
x(z)

)
c
(
x(z)

)
y0

(
x
(
zq

1
2
))

+ f
(
x(z)

)
. (78)

Using (75), we have

y0
(
x
(
zq

1
2
))
Dc

(
x(z)

)
+ c

(
x
(
zq– 1

2
))

a
(
x(z)

)
y0

(
x
(
zq– 1

2
))

≤ a
(
x(z)

)
c
(
x
(
zq– 1

2
))

y0
(
x
(
zq– 1

2
))

+ f
(
x(z)

)
. (79)

Simplifying this gives

y0
(
x
(
zq

1
2
))
Dc

(
x(z)

) ≤ f
(
x(z)

)
(80)

or

Dc
(
x(z)

) ≤ y–1
0

(
x
(
zq

1
2
))

f
(
x(z)

)
, (81)

since a(x(z)) ∈ R
+ implies y0(x(z)) > 0. By integrating the two members of the equality

from x(z0) to x(z), we will have

c
(
x(z)

)
– c

(
x(z0)

) ≤
∫ x(z)

x(z0)
y–1

0
(
x
(
tq

1
2
))

f
(
x(t)

)
dqx(t). (82)
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However, from (76) follows c(x(z0)) = y(x(z0)), given that y0(x(z0)) = 1. Hence

c
(
x(z)

) ≤ y
(
x(z0)

)
+

∫ x(z)

x(z0)
y–1

0
(
x
(
tq

1
2
))

f
(
x(t)

)
dqx(t). (83)

Placing (83) in (76), we get

y
(
x(z)

)
= c

(
x(z)

)
y0

(
x(z)

)

≤ y0
(
x(z)

)[
y
(
x(z0)

)
+

∫ x(z)

x(z0)
y–1

0
(
x
(
tq

1
2
))

f
(
x(t)

)
dqx(t)

]
, (84)

which gives the desired result

y
(
x(z)

) ≤ y0
(
x(z)

)
y
(
x(z0)

)
+ y0

(
x(z)

)∫ x(z)

x(z0)
y–1

0
(
x
(
tq

1
2
))

f
(
x(t)

)
dqx(t). (85)

�

Taking account of Corollary 2.2 and the fact that by the definition E
a,q– 1

2
(x(z0); x(z0)) =

E
a,q

1
2

(x(z0); x(z0)) = 1, we obtain the following.

Corollary 3.2 If y, f , and a are functions satisfying the conditions of Lemma 3.1, then

y
(
x(z)

) ≤ E
a;q– 1

2

(
x(z0), x(z)

)
y
(
x(z0)

)

+ E
a;q– 1

2

(
x(z0), x(z)

)∫ x(z)

x(z0)
E

–a;q
1
2

(
x(z0), x

(
tq

1
2
))

f
(
x(t)

)
dqx(t). (86)

Lemma 3.2 Let y, f be real-valued functions defined and q-non uniform integrable on
[c, d], ∀c, d ∈ [1,∞[∩T. Let a(x(z)) such that

p
(
x(z)

)
= 1 –

(
q

1
2 – q– 1

2
)(

z – z–1)a
(
x(z)

)
> 0.

This means that a(x(z)) ≤ 0.
Suppose that y0(x(z)) is a solution of

Dy0
(
x(z)

)
= a

(
x(z)

)
y0

(
x
(
zq

1
2
))

such that y0(x(z0)) = 1.
In that case, if

Dy
(
x(z)

) ≤ a
(
x(z)

)
y(

(
x
(
zq

1
2
))

+ f
(
x(z)

)
, ∀x(z) ∈ [1,∞[ , (87)

then, for all x(z) ∈ [1,∞[, we have

y
(
x(z)

) ≤ y0
(
x(z)

)
y
(
x(z0)

)
+ y0

(
x(z)

)∫ x(z)

x(z0)
y–1

0
(
x
(
tq– 1

2
))

f
(
x(t)

)
dqx(t). (88)
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Proof Let y0(x(z)) be a solution of the homogeneous equation

Dy0
(
x(z)

)
= a

(
x(z)

)
y0

(
x
(
zq

1
2
))

, y0
(
x(z0)

)
= 1. (89)

Looking for the function y(x(z)) satisfying (87) by the Lagrange method

y
(
x(z)

)
= c

(
x(z)

)
y0

(
x(z)

)
, (90)

where c(x(z)) is indeterminate, we replace the function y(x(z)) in (87) and we have

D
[
c
(
x(z)

)
y0

(
x(z)

)] ≤ a
(
x(z)

)
c
(
x
(
zq

1
2
))

y0
(
x
(
zq

1
2
))

+ f
(
x(z)

)

or

c
(
x
(
zq

1
2
))
Dy0

(
x(z)

)
+ y0

(
x
(
zq– 1

2
))
Dc

(
x(z)

)

≤ a
(
x(z)

)
c
(
x
(
zq

1
2
))

y0
(
x
(
zq

1
2
))

+ f
(
x(z)

)
.

Using (89), we have

c
(
x
(
zq

1
2
))

a
(
x(z)

)
y0

(
x
(
zq

1
2
))

+ y0
(
x
(
zq– 1

2
))
Dc

(
x(z)

)

≤ a
(
x(z)

)
c
(
x
(
zq

1
2
))

y0
(
x
(
zq

1
2
))

+ f
(
x(z)

)
. (91)

Simplifying this gives

y0
(
x
(
zq– 1

2
))
Dc

(
x(z)

) ≤ f
(
x(z)

)
(92)

or

Dc
(
x(z)

) ≤ y–1
0

(
x
(
zq– 1

2
))

f
(
x(z)

)
(93)

since a(x(z)) ≤ 0 implies y0(x(z)) > 0. By integrating the two members of the equality above
from x(z0) to x(z), we will have

c
(
x(z)

)
– c

(
x(z0)

) ≤
∫ x(z)

x(z0)
y–1

0
(
x
(
tq– 1

2
))

f
(
x(t)

)
dqx(t). (94)

However, from (90) follows c(x(z0)) = y(x(z0)), given that y0(x(z0)) = 1. This gives

c
(
x(z)

) ≤ y
(
x(z0)

)
+

∫ x(z)

x(z0)
y–1

0
(
x
(
tq– 1

2
))

f
(
x(t)

)
dqx(t). (95)

Then we obtain

y
(
x(z)

)
= c

(
x(z)

)
y0

(
x(z)

)

≤ y0
(
x(z)

)[
y
(
x(z0)

)
+

∫ x(z)

x(z0)
y–1

0
(
x
(
tq– 1

2
))

f
(
x(t)

)
dqx(t)

]
, (96)
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which gives the desired result

y
(
x(z)

) ≤ y0
(
x(z)

)
y
(
x(z0)

)
+ y0

(
x(z)

)∫ x(z)

x(z0)
y–1

0
(
x
(
tq– 1

2
))

f
(
x(t)

)
dqx(t). (97)

�

As well as for Corollary 3.2, we deduce the following.

Corollary 3.3 If y, f , and a satisfy the conditions of Lemma 3.2, then

y
(
x(z)

) ≤ E
a;q

1
2

(
x(z0), x(z)

)
y
(
x(z0)

)

+ E
a;q

1
2

(
x(z0), x(z)

)

×
∫ x(z)

x(z0)
E

–a;q– 1
2

(
x(z0), x

(
tq– 1

2
))

f
(
x(t)

)
dqx(t). (98)

Theorem 3.3 (q-non uniform Grönwall inequality) Let y, f be real-valued and q-non uni-
form integrable functions on [c, d], ∀c, d ∈ [1,∞[∩T, and a ≥ 0. If

y
(
x(z)

) ≤ f
(
x(z)

)
+

∫ x(z)

x(z0)
y
(
x
(
tq– 1

2
))

a
(
x(t)

)
dqx(t), (99)

then

y
(
x(z)

) ≤ f
(
x(z)

)

+ E
a,q– 1

2

(
x(z0), x(z)

)

×
∫ x(z)

x(z0)
a
(
x(t)

)
f
(
x
(
tq– 1

2
))

E
–a,q

1
2

(
x(z0); x

(
tq

1
2
))

dqx(t). (100)

Proof Let us define

ν
(
x(z)

)
=

∫ x(z)

x(z0)
y
(
x
(
tq– 1

2
))

a
(
x(t)

)
dqx(t). (101)

Then ν(x(z0)) = 0 and Dν = y(x(zq– 1
2 ))a(x(z)).

Hence hypothesis (99) gives

y
(
x(z)

) ≤ f
(
x(z)

)
+ ν

(
x(z)

)
(102)

and

Dν
(
x(z)

)
= y

(
x
(
zq– 1

2
))

a
(
x(z)

) ≤ [
f
(
x
(
zq– 1

2
))

+ ν
(
x
(
zq– 1

2
))]

a
(
x(z)

)
, (103)

or

Dν
(
x(z)

) ≤ f
(
x
(
zq– 1

2
))

a
(
x(z)

)
+ ν

(
x
(
zq– 1

2
))

a
(
x(z)

)
. (104)
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From Lemma 3.1, inequality (104) gives

ν
(
x(z)

) ≤ ν
(
x(z0)

)
E

a,q– 1
2

(
x(z0); x(z)

)

+ E
a,q– 1

2

(
x(z0); x(z)

)

×
∫ x(z)

x(z0)
a
(
x(t)

)
f
(
x
(
tq– 1

2
))

E
–a,q

1
2

(
x(z0); x

(
tq

1
2
))

dqx(t), (105)

and inequality (102) implies that (with ν(x(z0)) = 0)

y
(
x(z)

) ≤ f
(
x(z)

)

+ E
a,q– 1

2

(
x(z0); x(z)

)

×
∫ x(z)

x(z0)
a
(
x(z)

)
f
(
x
(
tq– 1

2
))

E
–a,q

1
2

(
x(z0); x

(
tq

1
2
))

dqx(t), (106)

which is the q-non uniform Grönwall inequality. �

As a direct consequence, we get the following results.

Corollary 3.4 Let y, f be real-valued functions defined and q-non uniform integrable on
[c, d], ∀c, d ∈ [1,∞[∩T and a(x(z)) such that 1 + (q 1

2 – q– 1
2 )(z – z–1)a(x(z)) > 0. That means

a(x(z)) ≥ 0. Then

y
(
x(z)

) ≤
∫ x(z)

x(z0)
y
(
x
(
tq– 1

2
))

a
(
x(t)

)
dqx(t) (107)

for all x(z) implies that y(x(z)) ≤ 0.

Proof This is due to Theorem 3.3 with f (x(z)) ≡ 0 �

Corollary 3.5 Let a ≥ 0 and α ∈R. If

y
(
x(z)

) ≤ α +
∫ x(z)

x0

y
(
x
(
tq– 1

2
))

a
(
x(t)

)
dqx(t) (108)

for all x0 = x(z0) > 0, then y(x(z)) ≤ αE
a,q– 1

2
(x0, x(z)).

Proof By the q-non uniform Grönwall integral inequality (100), if we take f (x(z)) = α, then

y
(
x(z)

) ≤ α + E
a,q– 1

2

(
x0, x(z)

)∫ x(z)

x0

αa
(
x(t)

)
E

–a,q
1
2

(
x0, x

(
tq

1
2
))

dqx(t)

= α

(
1 – E

a,q– 1
2

(
x0, x(z)

)∫ x(z)

x0

DE
–a,q

1
2

(
x0, x(z)

)
dqx(t)

)

= α
(
1 – E

a,q– 1
2

(
x0, x(z)

)(
E

–a,q
1
2

(
x0, x(z)

)
– E

–a,q
1
2

(x0, x0)
))

= α – αE
a,q– 1

2

(
x0, x(z)

)
E

–a;q
1
2

(
x0; x(z)

)
+ αE

a,q– 1
2

(
x0, x(z)

)

= αE
a,q– 1

2

(
x0, x(z)

)
. �
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3.4 q-Non uniform Bernoulli inequality
Theorem 3.4 (q-non uniform Bernoulli inequality) Let α ∈ R. Then ∀x(z), x0 = x(z0) ∈
[1,∞[ with x(zq– 1

2 ) > x0, we have

E
a,q– 1

2

(
x0, x(z)

) ≥ 1 + α
(
x(z) – x0

)
. (109)

Proof Let us take y(x(z)) = α(x(z) – x0), x(zq– 1
2 ) > x0, ∀z. Then Dy(x(z)) = α and we have

αy
(
x
(
zq– 1

2
))

+ α = α2(x
(
zq– 1

2
)

– x0
)

+ α ≥ α = Dy
(
x(z)

)
,

which implies that Dy(x(z)) ≤ αy(x(zq– 1
2 )) + α.

On the other hand, by Lemma 3.1, we get (with y(x0) = 0)

y
(
x(z)

) ≤ y(x0)E
a,q– 1

2

(
x0, x(z)

)
+ E

a,q– 1
2

(
x0, x(z)

)∫ x(z)

x0

aE
–a,q

1
2

(
x0, x

(
tq

1
2
))

dqx(t)

= E
a,q– 1

2

(
x0, x(z)

)∫ x(z)

x0

(–)DE
–a,q

1
2

(
x0, x(t)

)
dqx(t)

= –E
a,q– 1

2

(
x0, x(z)

)(
E

–a,q
1
2

(
x0, x(z)

)
– 1

)

= –1 + E
a,q– 1

2

(
x0, x(z)

)
.

That is why E
a,q– 1

2
(x0, x(z)) ≥ 1 + y(x(z)) = 1 + α(x(z) – x0). �

3.5 q-Non uniform Lyapunov inequality
Let us now turn to q-non uniform Lyapunov inequality regarding the derivative and inte-
gral introduced. For that, consider the following q-non uniform Sturm–Liouville equation:

DD+u
(
x(z)

)
+ f

(
x(z)

)
u
(
x
(
zq

1
2
))

= 0, (110)

where D+ is defined by D+f (x(z)) = f (x(zq))–f (x(z))
x(zq)–x(z) .

Let us define the function F by

F(y) =
∫ b

a

[(
Dy

(
x(z)

))2 – f
(
x(z)

)(
y
(
x
(
zq

1
2
)))2]dqx(z). (111)

Lemma 3.3 Let u be a non-trivial solution of the q-non uniform Sturm–Liouville equation
(110). Then, for all y belonging to the domain of F , the following equality remains verified:

F(y) – F(u) – F(y – u) = 2(y – u)(b)D+u(b) – 2(y – u)(a)D+u(a). (112)

Proof We have

F(y) – F(u) – F(y – u)

=
∫ b

a

{(
Dy

(
x(z)

))2 – f
(
x(z)

)(
y
(
x
(
q

1
2 z

)))2



Bangerezako et al. Journal of Inequalities and Applications         (2019) 2019:28 Page 20 of 22

–
(
Du

(
x(z)

))2 – f
(
x(z)

)(
y
(
x
(
q

1
2 z

)))
–

(
D(y – u)

(
x(z)

))2

– f
(
x(z)

)(
(y – u)

(
x
(
q

1
2 z

)))2}dqx(z)

= 2
∫ b

a

{
–
(
Du

(
x(z)

))2 + f
(
x(z)

)(
u
(
x
(
zq

1
2
)))2 + Dy

(
x(z)

)
Du

(
x(z)

)

– f
(
x(z)

)
y
(
x
(
zq

1
2
))

u
(
x
(
zq

1
2
))}

dqx(z)

= 2
∫ b

a

{
–
(
Du

(
x(z)

))2 – u
(
x
(
zq

1
2
))
DD+u

(
x(z)

)
+ Dy

(
x(z)

)
Du

(
x(z)

)

+ y
(
x
(
zq

1
2
))
DD+u

(
x(z)

)}
dqx(z)

= 2
∫ b

a

{
Dy

(
x(z)

)
Du

(
x(z)

)
+ y

(
x
(
zq

1
2
))
DD+u

(
x(z)

)

–
[(
Du

(
x(z)

))2 + u
(
x
(
zq

1
2
))
DD+u

(
x(z)

)]}
dqx(z),

(using f (x(z))u(x(zq 1
2 )) = –DD+u(x(z))), or

F(y) – F(u) – F(y – u)

= 2
∫ b

a

{
D

[
y
(
x(z)

)
D+u

(
x(z)

)]
– D

[
u
(
x(z)

)
D+u

(
x(z)

)]}
dqx(z)

= 2
∫ b

a
D

{(
y
(
x(z)

)
– u

(
x(z)

))
D+u

(
x(z)

)}
dqx(z)

= 2
(
y(b) – u(b)

)
D+u(b) – 2

(
y(a) – u(a)

)
D+u(a). �

Lemma 3.4 Let y be in the domain of F , then ∀a, b ∈ [1,∞[∩T and c, d ∈ [a, b] ∩ T such
that a ≤ c ≤ d ≤ b, we have

∫ d

c

(
Dy

(
x(z)

))2 dqx(z) ≥ (y(d) – y(c))2

d – c
. (113)

Proof Let us take

u
(
x(z)

)
=

y(d) – y(c)
d – c

x(z) +
dy(c) – cy(d)

d – c
.

Then D+u(x(z)) = y(d)–y(c)
d–c and DD+u(x(z)) = 0, which proves that u(x(z)) is a solution of

(110) with f (x(z)) = 0, ∀x(z) ∈ [1,∞[∩T and

F(y) =
∫ b

a

(
Dy

(
x(z)

))2 dqx(z),

∀y(x(z)) from the domain of F . From Lemma 3.3, we get

F(y) – F(u) – F(y – u) = 2(y – u)(b)D+u(b) – 2(y – u)(a)D+u(a) = 0.

Consequently,

F(y) = F(u) + F(y – u) ≥ F(u).
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This leads us to the following result:

∫ d

c

(
Dy

(
x(z)

))2 dqx(z) ≥
∫ d

c

(
Du

(
x(z)

))2 dqx(z)

=
∫ d

c

(
y(d) – y(c)

d – c

)2

dqx(z)

=
(y(d) – y(c))2

d – c
. �

Theorem 3.5 (q-non uniform Lyapunov inequality) Let f be a real-valued function de-
fined and q-non uniform differentiable on [a, b], ∀a, b ∈ [1,∞[∩T, a < b, and let u(x(z)) be
a non-trivial solution of equation (110) with u(a) = u(b) = 0, then

∫ b

a
f
(
x(z)

)
dqx(z) = –

∫ b

a

DD+u(x(z))
u(x(zq 1

2 ))
dqx(z) ≥ 4

b – a
. (114)

Proof From Lemma 3.3 with y = 0 and u(a) = u(b) = 0, we have

F(u) =
∫ b

a

[(
Du

(
x(z)

))2 – f
(
x(z)

)(
u
(
x
(
zq

1
2
)))2]dqx(z) = 0. (115)

Let M = max{u2(x(zq 1
2 )); x(q 1

2 z) ∈ [a, b] ∩T} and c ∈ [a, b] ∩T such that u2(c) = M. Then

M = u2(c) ≥ u2(x
(
zq

1
2
))

> 0,

and

M
∫ b

a
f
(
x(z)

)
dqx(z) ≥

∫ b

a
f
(
x(z)

)
u2(x

(
zq

1
2
))

dqx(z)

=
∫ b

a

(
Du

(
x(z)

))2 dqx(z)

=
∫ c

a

(
Du

(
x(z)

))2 dqx(z) +
∫ b

c

(
Du

(
x(z)

))2 dqx(z)

≥ (u(c) – u(a))2

c – a
+

(u(b) – u(c))2

b – c

= M
[

1
c – a

+
1

b – c

](
u(a) = u(b) = 0 and u2(c) = M

)

= M
[

(a + b – 2c)2

(c – a)(b – c)(b – a)
+

4
b – a

]

≥ M
4

b – a
,

which implies that
∫ b

a f (x(z)) dqx(z) ≥ M 4
b–a .

The q-non uniform Lyapunov inequality is thus proved. �

4 Conclusion
In this paper, q-non uniform difference versions of the integral inequalities of Hölder,
Cauchy–Schwarz, and Minkowski, and also the integral inequalities of Grönwall and
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Bernoulli based on the Lagrange method of linear q-non uniform difference equations
of first order were established. Finally, the Lyapunov inequality for the solutions of the
q-non uniform Sturm–Liouville equation was proved.
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