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Abstract
IfA is a finite-dimensional commutative associative real algebra with norm ‖ · ‖ then
we say that the rth submultiplicative constant ofA is the smallest constantmr(A) for
which ‖x1x2 · · · xr‖ ≤ mr(A)‖x1‖‖x2‖ · · · ‖xr‖. For a product algebra, we show that
there exist zero divisors where equality is attained in the inequality definingmr(A).
We also study ρA = limsupr→∞

r
√
mr(A). We explain how ρA appears in the

generalization of the Cauchy–Hadamard criterion for hypercomplex power series. We
find the submultiplicative constants and ρA for the real group algebra of the cyclic
group of order n as well as the complicated numbers
Cn = {a1 + a2k + · · · + ankn–1|ai ∈ R, kn = –1} with Euclidean norm. Submultiplicative
constants for the n-dual numbers �n with Euclidean norm are also calculated or
conjectured for n ≤ 6. We show, for n ≥ 2, ρ�n = 1 for �n given the p-norm.

Keywords: Cyclic group algebra; Complicated numbers; Hypercomplex analysis;
Submultiplicative norms

1 Introduction
Suppose V1, . . . , Vr are finite-dimensional spaces over either R or C, and X is a normed
space. It is known that any bounded multilinear map T : V1 ×V2 ×· · ·×Vr → X is contin-
uous. Furthermore, finite-dimensional V1, . . . , Vr have compact unit ball whose Cartesian
products are likewise compact. Therefore, the extreme value theorem yields that the norm
‖T‖op = sup{‖T(v1, v2, . . . , vr)‖ : ‖vi‖ ≤ 1, 1 ≤ i ≤ r} is attained by evaluation of T at some
point in the Cartesian product of the unit-balls of V1, . . . , Vr . Since r-fold multiplication
on an algebra A provides an A-valued r-linear map over A, we have the following result:

Theorem 1.1 If A is a finite-dimensional unital associative algebra (with multiplica-
tion denoted as �) over R or C with a norm ‖·‖ then there exists a smallest constant
mr(A) ∈ R for each r ∈ N, r ≤ 2 such that ‖x1 � x2 � · · · � xr‖ ≤ mr(A)‖x1‖‖x2‖ · · · ‖xr‖ for
all x1, x2, . . . , xr ∈ A. Furthermore, there exist y1, . . . , yr ∈ A for which equality is attained;
‖y1 � y2 � · · · � yr‖ = mr(A)‖y1‖‖y2‖ · · · ‖yr‖.

We call mr(A) the rth submultiplicative constant of A (with respect to the norm ‖·‖).
Usually, we denote m2(A) = mA and name it the submultiplicative constant. This improves
the less sharp use of mA in [1].
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Proposition 1.2 If mA is the submultiplicative constant for A then mr(A) ≤ mr–1
A . Also, if

there exists x ∈A for which ‖xr‖ = mr–1
A ‖x‖r for each r ∈N then mr(A) = mr–1

A .

Proof If ‖x � y‖ ≤ mA‖x‖‖y‖ for all x, y ∈A then by repeated application of the inequality
for the norm of the product of x1, x2, . . . , xr we find

‖x1 � x2 � · · · � xr‖ ≤ mr–1
A ‖x1‖‖x2‖ · · · ‖xr‖. (1)

Therefore, mr(A) ≤ mr–1
A . Suppose there exists x ∈ A for which ‖xr‖ = mr–1

A ‖x‖r . Setting
x1 = x2 = · · · = xr = x shows (1) is sharp, hence mr(A) = mr–1

A . �

From these constants, we denote another constant related to the normed algebra A

ρA = lim sup
r→∞

r
√

mr(A). (2)

Observe that ρA exists since mr(A) ≤ mr–1
A , so ρA ≤ mA. In another direction, substitute

x1 = x2 = · · · = xr = 1 to obtain ‖1r‖ ≤ mr(A)‖1‖r , which implies mr(A) ≥ ‖1‖–(r–1) and

‖1‖–1 ≤ ρA ≤ mA. (3)

For a finite-dimensional associative real algebra A, the radius of convergence for the geo-
metric series 1 + z + z2 + · · · is shown to be at least 1/mA in Theorem 4.5 of [2]. We offer
an improved radius in what follows:

Theorem 1.3 If
∑∞

n=0 cn(z – z0)n has 0 < C = lim supn→∞ n√‖cn‖ < ∞ then the power series
converges absolutely for z ∈A such that ‖z – z0‖ < (CρA)–1.

Proof For C = lim supn→∞ n√‖cn‖ and ‖z – z0‖ < (CρA)–1 observe

lim sup
n→∞

n
√∥∥cn(z – z0)n

∥∥ ≤ lim sup
n→∞

n
√

mn(A)‖cn‖‖z – z0‖n = ρAC‖z – z0‖ < 1. (4)

Thus lim supn→∞ n
√‖cn(z – z0)n‖ < 1, and we find

∑∞
n=0 cn(z – z0)n converges absolutely by

applying the Root Test for a series over an algebra (Theorem 4.2 of [2]). �

The theorem above shows that convergence of a power series
∑

cn(z – zo)n over
an algebra A is governed both by the usual Cauchy–Hadamard criterion involving
lim supn→∞ n√‖cn‖ and the constant ρA. We note ρA depends on both A and the norm
which A is given. In the remaining sections of this paper, we endeavor to calculate both
mr(A) and ρA for several interesting algebras.

2 Transfer principle
Theorem 2.1 (Transfer Principle) If A,B are finite-dimensional, unital, associative,
normed algebras over R or C for which there exists an algebra isomorphism ϕ : A → B
which is also a dilation (meaning there exists a constant ν > 0 so that ‖ϕ(x)‖ = ν‖x‖ for all
x ∈A). Then, for r ≥ 2, νr–1 · mr(B) = mr(A) and ρA = ν · ρB .



Cook and Nguyen Journal of Inequalities and Applications         (2019) 2019:25 Page 3 of 12

Proof Observe ‖ϕ(x1 · · ·xr)‖ = ‖ϕ(x1) · · ·ϕ(xr)‖ ≤ mr(B)‖ϕ(x1)‖ · · · ‖ϕ(xr)‖. Then as ϕ is
a dilation with constant ν , it follows ‖x1 · · ·xr‖ ≤ mr(B)νr–1‖x1‖ · · · ‖xr‖. Recall mr(A)
is the smallest constant for which ‖x1 · · ·xr‖ ≤ mr(A)‖x1‖ · · · ‖xr‖ for all x1, . . . , xr ∈ A.
Therefore, mr(A) ≤ mr(B)νr–1. Observe ϕ–1 : B → A is a dilation with constant 1

ν
hence

mr(B) ≤ mr(A) 1
νr–1 , from which we find mr(A) ≥ νr–1mr(B). Hence νr–1mr(B) = mr(A)

and thus ρA = lim supr→∞
r
√

νr–1mr(B) = ν lim supr→∞
r√mr(B) = νρB . �

Theorem 2.2 (Product Algebra with Weighted p-norm) Let A1, . . . ,As, be finite-
dimensional associative normed algebras with rth submultiplicative constant mi,r for r ≥ 2
and with ρi = lim supr→∞ r√mi,r for 1 ≤ i ≤ s. IfA = A1 ×A2 ×· · ·×As then define weighted
p-norm with weights a1, . . . , as > 0 by ‖(x1, x2, . . . , xs)‖ = max1≤i≤s ai‖xi‖ for p = ∞ and

∥∥(x1, x2, . . . , xs)
∥∥ =

( s∑

i=1

ap
i ‖xi‖p

) 1
p

for p < ∞. Then A with the weighted p-norm defines a normed associative algebra with
mr(A) = max1≤i≤s{mi,r/ar–1

i } and ρA = max1≤i≤s
ρi
ai

.

Proof Given xi,j ∈ Ai for 1 ≤ i ≤ s, 1 ≤ j ≤ r. Let μr = mr(A) = max1≤i≤s{mi,r/ar–1
i }. Then

μp
r

r∏

j=1

∥∥(x1,j, . . . , xs,j)
∥∥p = μp

r

r∏

j=1

s∑

i=1

ap
i ‖xi,j‖p

≥ μp
r

s∑

i=1

r∏

j=1

ap
i ‖xi,j‖p

= μp
r

s∑

i=1

(
ap

i
)r

( r∏

j=1

‖xi,j‖
)p

≥ max
1≤i≤s

{ mp
i,r

a(r–1)p
i

} s∑

i=1

(
ap

i
)r

(
1

mi,r

∥∥∥∥∥

r∏

j=1

xi,j

∥∥∥∥∥

)p

≥
s∑

i=1

mp
i,r

a(r–1)p
i

· arp
i · 1

mp
i,r

∥∥∥∥∥

r∏

j=1

xi,j

∥∥∥∥∥

p

=
s∑

i=1

ap
i

∥∥∥∥∥

r∏

j=1

xi,j

∥∥∥∥∥

p

=

∥∥∥∥∥

r∏

j=1

(x1,j, . . . , xs,j)

∥∥∥∥∥

p

. (5)

From the above we derive

μr

r∏

j=1

∥∥(x1,j, . . . , xs,j)
∥∥ ≥

∥∥∥∥∥

r∏

j=1

(x1,j, . . . , xs,j)

∥∥∥∥∥
. (6)

Let k be an index between 1 and s such that mk,r
ar–1

k
= μr and, following the last sentence in

Theorem 1.1, let yk,j ∈ Ak (1 ≤ j ≤ r) be such that mk,r
∏r

j=1‖yk,j‖ = ‖∏r
j=1 yk,j‖. Let ek ∈ A
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denote (0, . . . , 1, . . . , 0) where 1 is in the kth entry. Then calculate

μp
r

r∏

j=1

‖yk,jek‖p =

(

akmk,r

r∏

j=1

‖yk,j‖
)p

=

(

ak

∥∥∥∥∥

r∏

j=1

yk,j

∥∥∥∥∥

)p

=

∥∥∥∥∥

r∏

j=1

(yk,jek)

∥∥∥∥∥

p

, (7)

which indicates (6) is sharp, as equality is attained by setting (x1,j, . . . , xs,j) = yk,jek for j =
1, . . . , r. Thus mr(A) = max1≤i≤s{mi,r/ar–1

i }. Finally, observe

ρA = lim sup
r→∞

r

√
max
1≤i≤s

{
mi,r/ar–1

i
}

= lim sup
r→∞

max
1≤i≤s

{
r√mi,r

r
√

ar–1
i

}

= max
1≤i≤s

{
lim sup

r→∞

r√mi,r

r
√

ar–1
i

}

= max
1≤i≤s

{
ρi

ai

}
. (8)

�

Remark 2.3 If ϕ : B →A = A1 × · · · ×As is an isomorphism which is also a dilation then
the proof given suggests a calculational method for finding an element x ∈ B for which
‖x2‖ = mB‖x‖2. In particular, select the element yk,jek for r = 2 as in the proof and set x =
ϕ–1(yk,jek). In this construction we will find that x is a zero-divisor. However, if we consider
algebras which are not product algebras then the situation is different. For example, in
Theorem 5.1(1) we find that the unit x =

√
2 + ε gives ‖x‖ = mA‖x‖2.

3 Submultiplicative constants for cyclic group algebra
The n-hyperbolic numbers are the algebra Hn = R[x]/〈xn – 1〉 which is usually represented
as

Hn =
{

a0 + a1j + · · · + an–1jn–1|ai ∈ R
}

,

where we identify j with x+ 〈xn –1〉 and 1 with 1+ 〈xn –1〉. One may note that Hn is the real
group algebra of the cyclic group of order n. In this section we derive the submultiplicative
constants for hyperbolic numbers provided that Hn is given the norm

∥∥a0 + a1j + · · · + an–1jn–1∥∥ =
√

a2
0 + a2

1 + · · · + a2
n–1.
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3.1 Hn for even n
Notice that if n = 2m then we have the following factorization of xn – 1:

xn – 1 = (x – 1)(x + 1)
m–1∏

k=1

(
x – ei kπ

m
)(

x – e–i kπ
m

)
. (9)

The Chinese remainder theorem and the factorization above suggests we form the iso-
morphism ϕ : H2m → R

2 × C
m–1 we describe next. If p(j) = a0 + a1j + · · · + anjn–1 ∈ Hn

then p(c) = a0 + a1c + · · · + ancn–1 for c ∈C, thus for p(j) ∈Hn define

ϕ
(
p(j)

)
=

(
p(1), p(–1), p

(
eiπ/m)

, p
(
e2iπ/m)

, . . . , p
(
e(m–1)iπ/m))

. (10)

Observe ϕ : Hn →R×R×C
m–1 is an isomorphism of real associative algebras. Our goal

is to use Theorem 2.1 by assigning B = R × R × C
m–1 the appropriate weighted norm as

to make (10) a dilation. After some experimentation, one finds that

∥∥(a, b, z1, z2, . . . , zm–1)
∥∥ =

√
a2 + b2 + 2

(|z1|2 + · · · + |zm–1|2
)

(11)

serves our purpose. Considering p(j) =
∑2m–1

k=0 akjk ,

∥∥ϕ
(
p(j)

)∥∥2 =

(2m–1∑

k=0

ak

)2

+

(2m–1∑

k=0

(–1)kak

)2

+ 2
m–1∑

s=1

∣∣∣∣∣

2m–1∑

k=0

ake
iksπ

m

∣∣∣∣∣

2

= 2
2m–1∑

k=0

a2
k + 2

∑

p<q
apaq

(
1 + (–1)p+q)

+ 2
m–1∑

s=1

[(2m–1∑

k=0

ak cos

(
ksπ
m

))2

+

(2m–1∑

k=0

ak sin

(
ksπ
m

))2]

= 2m
2m–1∑

k=0

a2
k + 2

∑

p<q
apaq

(
1 + (–1)p+q)

+ 4
m–1∑

s=1

∑

p<q
apaq

[
cos

(
psπ
m

)
cos

(
qsπ
m

)
+ sin

(
psπ
m

)
sin

(
qsπ
m

)]

= 2m
∥∥p(j)

∥∥2 + 2
∑

p<q
apaq

[

1 + (–1)p+q + 2
m–1∑

s=1

cos

(
(p – q)sπ

m

)]

= 2m
∥∥p(j)

∥∥2 + 2
∑

p<q
apaq

2m–1∑

s=0

cos

(
(p – q)sπ

m

)
. (12)

Lemma 3.1 If p, q, m are integers and p < q then
∑2m–1

s=0 cos( (p–q)sπ
m ) = 0.

Proof If p – q is not a multiple of m then let θ = π/m and note the points 1, eiθ , . . . , ei(2m–1)θ

form a set of 2m-symmetrically arranged points on the unit circle whose centroid is the
origin. Since eiθ = cos θ + i sin θ , we identify 1

n
∑2m–1

s=0 cos( (p–q)sπ
m ) as the real coordinate of

the centroid. If p – q is a multiple of m then cos( (p–q)sπ
m ) = (–1)s and the lemma follows. �
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In view of Lemma 3.1 and (12), we find ‖ϕ(z)‖2 = 2m‖z‖2 for each z ∈Hn. Thus ϕ is a di-
lation with constant ν =

√
2m. Let B = R

2 ×C
m–1 have norm as in (11). Then Theorem 2.2

indicates the submultiplicative constant of B is mB = 1. Therefore, Theorem 2.1 provides
mHn = νmB , thus mHn =

√
2m =

√
n.

3.2 Hn for odd n
Notice that if n = 2m + 1 then we have the following factorization of xn – 1:

xn – 1 = (x – 1)
m∏

k=1

(
x – e

2πki
2m+1

)(
x – e– 2πki

2m+1
)
. (13)

As in (10) we define an isomorphism ϕ : H2m+1 →R×C
m for each p(j) ∈H2m+1 by

ϕ
(
p(j)

)
=

(
p(1), p

(
e

2π i
2m+1

)
, p

(
e

4π i
2m+1

)
, . . . , p

(
e

2mπ i
2m+1

))
. (14)

Let B = R×C
m have norm

∥∥(a, z1, . . . , zm)
∥∥ =

√
a2 + 2

(|z1|2 + · · · + |zm|2). (15)

Thus for p(j) =
∑2m

k=0 akjk ,

∥∥ϕ
(
p(j)

)∥∥2 =

( 2m∑

k=0

ak

)2

+ 2
m∑

s=1

∣∣∣∣∣

2m∑

k=0

akei i2ksπ
2m+1

∣∣∣∣∣

2

=
2m∑

k=0

a2
k + 2

∑

p<q
apaq

+ 2
m∑

s=1

[( 2m∑

k=0

ak cos

(
2ksπ

2m + 1

))2

+

( 2m∑

k=0

ak sin

(
2ksπ

2m + 1

))2]

= (2m + 1)
2m∑

k=0

a2
k + 2

∑

p<q
apaq

+ 4
m∑

s=1

∑

p<q
apaq

[
cos

(
2spπ

2m + 1

)
cos

(
2sqπ

2m + 1

)

+ sin

(
2spπ

2m + 1

)
sin

(
2sqπ

2m + 1

)]

= (2m + 1)
∥∥p(j)

∥∥2 + 2
∑

p<q
apaq

[

1 + 2
m∑

s=1

cos

(
2s(p – q)π

2m + 1

)]

= (2m + 1)
∥∥p(j)

∥∥2 + 2
∑

p<q
apaq

2m∑

s=0

cos

(
2s(p – q)π

2m + 1

)
. (16)

The proof of Lemma 3.1 is easily adapted to show the following result:

Lemma 3.2 If p, q, m are integers and p < q then
∑2m

s=0 cos( 2s(p–q)π
2m+1 ) = 0.
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In view of the Lemma 3.2 and (16), we find ‖ϕ(z)‖2 = (2m + 1)‖z‖2 for each z ∈Hn where
n = 2m + 1. Thus ϕ is a dilation with constant ν =

√
2m + 1. Let B = R × C

m have norm
as in (15). Then Theorem 2.2 indicates that the submultiplicative constant of B is mB = 1.
Therefore, Theorem 2.1 provides mHn = νmB and thus mHn =

√
2m + 1 =

√
n.

Theorem 3.3 If Hn is given norm ‖a0 + a1j + · · ·+ anjn–1‖ =
√

a2
0 + a2

2 + · · · + a2
n then mHn =√

n. Moreover, for r ≥ 2 we find mr(Hn) = n(r–1)/2 and ρHn =
√

n.

Proof We have already proved mHn =
√

n. Consider x = 1 + j + j2 + · · · + jn–1 and observe
x2 = nx, hence xr = nr–1x for r ∈ N. Moreover, ‖x‖ =

√
n, thus ‖xr‖ = mr–1

Hn
‖x‖r and Propo-

sition 1.2 provides mr(Hn) = n(r–1)/2. Finally, calculate

ρHn = lim sup
r→∞

r
√

mr(Hn) = lim sup
r→∞

r
√

n(r–1)/2 =
√

n. (17)
�

It is interesting to note that the inequality ‖xy‖ ≤ √
n‖x‖‖y‖ is sharp for x = y = 1 + j +

j2 + · · · + jn–1 since ‖x‖ =
√

n and as

x2 =
(
1 + j + j2 + · · · + jn–1)2 = n

(
1 + j + j2 + · · · + jn–1) = nx. (18)

Thus ‖xy‖ = n‖x‖ = n
√

n =
√

n‖x‖‖y‖. The same x has x(x – n) = 0, which shows x and
x – n are zero-divisors. This illustrates Remark 2.3.

4 Submultiplicative constant of the complicated numbers
We follow [3] and say Cn = {a0 + a1k + · · · + an–1kn–1|ai ∈ R, kn = –1} is the set of compli-
cated numbers. Let us assume the norm on Cn is given by

∥∥a0 + a1k + · · · + an–1kn–1∥∥ =
√

a2
0 + · · · + a2

n–1 (19)

throughout this section.

Theorem 4.1 The submultiplicative constant

mCn =

⎧
⎨

⎩

√
n/2 if n is even,

√
n ifn is odd.

Proof If n is odd then Ψ (k) = –j defines an isomorphism of Cn andHn since Ψ (k)n = (–j)n =
(–1)njn = –1. Extending Ψ to arbitrary elements,

Ψ
(
a0 + a1k + · · · + an–1kn–1) = a0 – a1j + a2j2 + · · · + an–1jn–1.

If ‖a0 + a1k + · · · + an–1kn–1‖ =
√

a2
0 + · · · + a2

n–1 then using the norm before discussed for
Hn observe ‖Ψ (z)‖ = ‖z‖. Therefore, from Theorem 2.1 we find mCn = mHn .

Consider Cn for n = 2m with m ≥ 1. Let θj = π
n (2j + 1) and xj = exp(iθj) for j = 0, 1, . . . ,

n/2 – 1. Define ϕ : Cn →C
n/2 by

ϕ
(
f (k)

)
=

(
f (x0), . . . , f (xn/2–1)

)
. (20)
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If f (k) = a0 + a1k + · · · + an–1kn–1 ∈ Cn then calculate

∣∣f (xj)
∣∣2 =

∣∣∣∣∣

n–1∑

q=1

aq exp(iqθj)

∣∣∣∣∣

2

=

∣∣∣∣∣

n–1∑

q=1

aq
[
cos(qθj) + i sin(qθj)

]
∣∣∣∣∣

2

=

[ n–1∑

q=1

aq cos(qθj)

]2

+

[ n–1∑

q=1

aq sin(qθj)

]2

=
n–1∑

q=1

a2
q +

∑

p<q
apaq

[
cos(pθj) cos(qθj) + sin(pθj) sin(qθj)

]

=
∥∥f (k)

∥∥2 +
∑

p<q
apaq cos

(
(p – q)θj

)
. (21)

Observe that, much for the same reasons as given for Lemma 3.1,

n/2–1∑

j=0

cos
(
(p – q)θj

)
=

n/2–1∑

j=0

cos

(
π (p – q)(2j + 1)

2m

)
= 0. (22)

If Cn/2 has norm ‖(z1, . . . , zn/2)‖2 = |z1|2 + · · ·+ |zn/2|2 then Theorem 2.2 indicates mCn/2 = 1.
Notice (21) and (22) yield

∥∥ϕ
(
f (k)

)∥∥2 =
n/2–1∑

j=0

∣∣f (xj)
∣∣2 =

n
2
∥∥f (k)

∥∥2. (23)

Consequently, ϕ is a dilation with ν =
√

n/2, and Theorem 2.1 provides mCn =
√

n/2. �

In the special case n = 2, we note C2 has a multiplicative norm. However, for other n >
2 the norm is not multiplicative. Furthermore, ‖xy‖ = mCn‖x‖‖y‖ only for select x, y. In
particular, if n is odd then x = 1 – k + k2 – · · · + kn–1 ∈ Cn has x2 = nx, thus ‖x2‖ =

√
n‖x‖2.

In contrast, for even n �= 2 notice x =
∑n–1

j=0 cos( jπ
n )kj is a nonzero zero-divisor with x2 = n

2 x
and ‖x‖ =

√ n
2 . Thus ‖x2‖ =

√ n
2 ‖x‖2. Once again, Remark 2.3 is illustrated.

5 Submultiplicative constant of the dual numbers
The n-dual number is defined as an element of �n = R[x]/〈xn〉, or equivalently, a0 + a1ε +
· · · + an–1ε

n–1 where εn = 0. We study the norm on �n defined by

∥∥a0 + a1ε + · · · + an–1ε
n–1∥∥ =

√
a2

0 + a2
1 + · · · + a2

n–1. (24)

Theorem 5.1 The submultiplicative constant for �n is
(1) for n = 2, m2(�2) = 2√

3 ;
(2) for n = 3, m2(�3) = 4

3 .
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Proof In all of the cases, we mainly use the AM–GM inequality. Begin with claim (1).
Suppose x = a0 + a1ε, y = b0 + b1ε and observe:

4‖x‖2 · ‖y‖2 = 4
(
a2

0 + a2
1
)(

b2
0 + b2

1
)

= 3
(
a2

0b2
0 + a2

1b2
0 + a2

0b2
1
)

+
(
a2

0b2
0 + 4a2

1b2
1
)

+
(
a2

1b2
0 + a2

0b2
1
)

≥ 3
(
a2

0b2
0 + a2

1b2
0 + a2

0b2
1
)

+ 4a0b0a1b1 + 2a1b0a0b1

= 3
[
(a0b0)2 + (a1b0 + a0b1)2] = 3

∥∥a0b0 + (a1b0 + a0b1)ε
∥∥2

= 3‖xy‖2. (25)

If we set a0 = b0 =
√

2 and a1 = b1 = 1 then equality is attained. Next, prove claim (2). We
suppose x = a0 + a1ε + a2ε

2 and y = b0 + b1ε + b2ε
2. Calculate:

16‖x‖2 · ‖y‖2 = 16
(
a2

0 + a2
1 + a2

2
)(

b2
0 + b2

1 + b2
2
)

= 9
(
a2

0b2
0 + a2

1b2
0 + a2

0b2
1 + a2

0b2
2 + a2

1b2
1 + a2

2b2
0
)

+ 16a2
1b2

2 + 4a2
0b2

1

+ 16a2
2b2

1 + 4a2
1b2

0 + 16a2
2b2

2 + a2
0b2

0 + 3
(
a2

0b2
1 + a2

1b2
0
)

+ 6
(
a2

0b2
0 + a2

1b2
1
)

+
1
2

a2
1b2

1 + 2a2
2b2

0 +
1
2

a2
1b2

1 + 2a2
0b2

2 + 5
(
a2

0b2
2 + a2

2b2
0
)

≥ 9
(
a2

0b2
0 + a2

1b2
0 + a2

0b2
1 + a2

0b2
2 + a2

1b2
1 + a2

2b2
0
)

+ 16a1b2a0b1 + 16a2b1a1b0 + 8a2b2a0b0 + 6a0b1a1b0

+ 12a0b0a1b1 + 2a1b1a2b0 + 2a1b1a0b2 + 10a0b2a2b0

= 9
[
(a0b0)2 + (a1b0 + a0b1)2 + (a0b2 + a1b1 + a2b0)2]

= 9
∥∥a0b0 + (a1b0 + a0b1)ε + (a0b2 + a1b1 + a2b0)ε2∥∥2

= 9‖xy‖2. (26)

Equality occurs if, for instance, a0 = b0 = a1 = b1 = 2, a2 = b2 = 1. �

It is interesting to note that in both cases (n = 2, 3) we find equality occurs when

a0

b0
=

a1

b1
=

a2

b2
. (27)

Assuming the above trend continues, we conjecture that:

(1) for n = 4, m2(�4) =
√

2(1103+33
√

33)
1153 ≈ 1.49736. We note equality in

‖xy‖ ≤ m2(�4)‖x‖‖y‖ is attained for x = y =√

5 +
√

11
3 + (1 +

√
11
3 )ε +

√

3 +
√

11
3 ε2 + ε3 ≈ 2.62961 + 2.91485ε + 2.21695ε2 + ε3.

(2) for n = 5, the closed form expression is too lengthy for us to display here, however,
an approximation of the constant is m2(�5) ≈ 1.64748. Equality in
‖xy‖ ≤ m2(�5)‖x‖‖y‖ is attained when
x = y ≈ 1 – 1.14862ε + 1.03046ε2 – 0.700308ε3 + 0.304849ε4.

(3) for n = 6, the submultiplicative constant is m2(�6) ≈ 1.78611 and equality in
‖xy‖ ≤ m2(�6)‖x‖‖y‖ is attained at
x = y ≈ 1 – 1.16152ε + 1.12963ε2 – 0.915093ε3 + 0.589126ε4 – 0.253601ε5.
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Theorem 5.2 For r ∈N, r ≥ 2, we have mr(�2) =
√

r+1
(1+ 1

r )r .

Proof Considering ai, bi ∈R for 1 ≤ i ≤ r, since ε2 = 0, we find

r∏

i=1

(ai + biε) =
r∏

i=1

ai + ε

r∑

i=1

(∏

j �=i

aj

)
bi. (28)

Let g2 be the smallest constant such that the inequality below holds for arbitrary ai, bi,

g2
r∏

i=1

(
a2

i + b2
i
) ≥

r∏

i=1

a2
i +

[ r∑

i=1

(∏

j �=i

aj

)
bi

]2

. (29)

Substituting ai = 1 and bi = 0, we have g2 ≥ 1. If there is at least one ai = 0 then, without
loss of generality, we may suppose ar = 0, and thus for all ai, bi ∈ R

g2
r–1∏

i=1

(
a2

i + b2
i
)
b2

r ≥
r–1∏

i=1

(
a2

i + b2
i
)
b2

r ≥ a2
1a2

2 · · ·a2
r–1b2

r . (30)

Thus (29) holds trivially. Therefore, let us suppose all ai are non-zero. Then we can nor-
malize the above inequality to (setting xi = bi/ai)

g2
r∏

i=1

(
1 + x2

i
) ≥ 1 +

( r∑

i=1

xi

)2

. (31)

Define f (x1, . . . , xr) = 1+(x1+···+xr)2

(1+x2
1)···(1+x2

r ) and note by construction g2 ≥ f (x1, . . . , xr) for all x1, . . . , xr .
We seek solutions to ∇f = 0 in the interest of finding the global maximum of f . Set
S = x1 + x2 + · · · + xn and calculate

∂f
∂xi

= –2
(S – xi)(xiS – 1)

(1 + x2
i )

∏r
k=1(1 + x2

k)
. (32)

Hence, ∇f = 0 if and only if (S – xi)(xiS – 1) = 0 for all 1 ≤ i ≤ r.
(1) If S = 0 then (S – xi)(xiS – 1) = 0 implies x1 = 0, x2 = 0, . . . , xr = 0.
(2) Suppose x1, x2, . . . , xr �= 0. Then (S – xi)(xiS – 1) = 0 yields

S +
1
S

= x1 +
1
x1

= x2 +
1
x2

= · · · = xr +
1
xr

,

and we find solution x1 = x2 = · · · = xr = ± 1√
r .

Observe f (0, . . . , 0) = 1 whereas f ( 1√
r , . . . , 1√

r ) = f (– 1√
r , . . . , – 1√

r ) = r+1
(1+ 1

r )r ≥ 1 for all r ≥ 2.

Therefore we conclude mr(�2) = √g =
√

r+1
(1+ 1

r )r . �

Let �n have p-norm defined for p < ∞ by

∥∥a1 + a2ε + · · · + anε
n–1∥∥ = p

√
ap

1 + ap
2 + · · · + ap

n. (33)

Theorem 5.3 Suppose p ∈ (1,∞). If �n is endowed with p-norm then ρ�n = 1.
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Proof Let it be understood that mr(�n) is defined with respect to the p-norm throughout
this proof. Suppose ai,j > 0. We will attempt to bound mr(�n) by an appropriate constant.
We have

r∏

i=1

n–1∑

j=0

ai,jε
j =

n–1∑

k=0

(
∑

d1+···+dr=k

r∏

i=1

ai,di

)

εk . (34)

Therefore,

mr(�n)p
r∏

i=1

n–1∑

j=0

ap
i,j ≥

n–1∑

k=0

(
∑

d1+···+dr=k

r∏

i=1

ai,di

)p

. (35)

A few observations about (35) are as follows:
(1) There are

(k+r–1
k

)
distinct terms

∏r
i=1 ai,di in the sum

∑

d1+···+dr=k

r∏

i=1

ai,di .

(2) Each term
∏r

i=1 ai,di to the power p occurs in the product

r∏

i=1

n–1∑

j=0

ap
i,j.

(3)
((k+1)+r–1

k+1
)

=
(k+r–1

k
)

+
(k+r–1

k+1
) ≥ (k+r–1

k
)
, so the sequence

(k+r–1
k

)
is increasing in

variable k and thus max0≤k<n
{(k+r–1

k
)}

=
(n+r–2

n–1
)

= O(rn–1).
(4) By Hölder’s inequality with q = p

p–1 ,

x1 · 1 + x2 · 1 + · · · + xs · 1 ≤ (
xp

1 + xp
2 + · · · + xp

s
) 1

p
(
1q + 1q + · · · + 1q) 1

q .

Consequently, (x1 + x2 + · · · + xs)p ≤ sp–1(xp
1 + xp

2 + · · · + xp
s ).

Combining the observations above, we find:

n–1∑

k=0

(
∑

d1+···+dr=k

r∏

i=1

ai,di

)p

≤
n–1∑

k=0

(
k + r – 1

k

)p–1
(

∑

d1+···+dr=k

r∏

i=1

ap
i,di

)

≤
(

n + r – 2
n – 1

)p–1 n–1∑

k=0

(
∑

d1+···+dr=k

r∏

i=1

ap
i,di

)

≤
(

n + r – 2
n – 1

)p r∏

i=1

n–1∑

j=0

ap
i,j. (36)

Thus,

mr(�n) ≤
(

n + r – 2
n – 1

)
= O

(
rn–1). (37)

Since n is fixed, ρ�n ≤ lim supr→∞
r√rn–1 = 1. However, we found in (3) that ρ�n ≥

‖1‖–1 = 1. Thus, ρ�n = ‖1‖–1 = 1. �
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6 Submultiplicative constants for the dualplex numbers
An n-dualplex number is defined as an element of A = R[x]/〈(x2 + 1)n〉, or equivalently,
a0 + a1q + · · · + a2n–1q2n–1 where ai ∈R and (q2 + 1)n = 0. If we use norm

∥∥a0 + a1q + · · · + a2n–1q2n–1∥∥ =
√

a2
0 + a2

1 + · · · + a2
2n–1

then for n = 1 we have complex numbers with the usual multiplicative norm and multi-
plicative constant 1. However, for n = 2 we conjecture that the submultiplicative constant

is given by mA =
√

71+17
√

17
6 where ‖xy‖ = mA‖x‖‖y‖ if we set x = y = (3 –

√
17)q + 2q3.

7 Convergence of geometric series over some algebras
In this section we use Theorem 1.3 in conjunction with the results of the previous sections
to study the geometric series over an algebra.

Example 7.1 Consider the geometric series
∑∞

n=0 zn in the N-hyperbolic numbers HN .
Observe cn = 1 and C = lim supn→∞ n√‖cn‖ = 1. We found ρHN =

√
N in Theorem 3.3.

Theorem 1.3 gives that the geometric series converges for ‖z‖ < 1√
N . Suppose R > 1√

N , pick
z = R√

N (1 + j + j2 + · · · + jN–1), and notice ‖z‖ = R and that the geometric series diverges at
z by the Root Test as

lim sup
n→∞

n
√∥∥zn

∥∥ = lim sup
n→∞

n

√
Rn

√
Nn

∥∥Nn–1
(
1 + j + j2 + · · · + jN–1

)∥∥

= lim sup
n→∞

n
√

Rn
√

N
n–1

= R
√

N > 1. (38)

We see the radius of convergence 1/
√

N is maximal.

Example 7.2 Consider the Dual Numbers �N for some N ≥ 2. Apply Theorems 5.3 and
1.3 to see why the geometric series

∑∞
n=0 zn converges for ‖z‖ < 1. Also, if R > 1 then setting

z = R gives a point with ‖z‖ > 1 where the geometric series diverges.
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