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Abstract
For an array of rowwise pairwise negative quadrant dependent, mean 0 random
variables, Chandra, Li, and Rosalsky provided conditions under which weighted
averages converge in L1 to 0. The Chandra, Li, and Rosalsky result is extended to Lr

convergence (1≤ r < 2) and is shown to hold under weaker conditions by applying a
mean convergence result of Sung and an inequality of Adler, Rosalsky, and Taylor.
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1 Introduction
For an array of mean 0 random variables {Xn,j, 1 ≤ j ≤ kn, n ≥ 1} and an array of constants
{an,j, 1 ≤ j ≤ kn, n ≥ 1}, Chandra, Li, and Rosalsky [2, Theorem 3.1] recently provided con-
ditions under which the weighted averages

∑kn
j=1 an,jXn,j obey the degenerate mean con-

vergence law

kn∑

j=1

an,jXn,j
L1−→ 0.

The random variables comprising the array are assumed to be (i) rowwise pairwise neg-
ative quadrant dependent and (ii) stochastically dominated by a random variable. (Tech-
nical definitions such as these will be reviewed in Sect. 2.) In this note, Theorem 3.1 of
Chandra, Li, and Rosalsky [2] is extended to Lr convergence where 1 ≤ r < 2 and is shown
to hold under weaker conditions. This is accomplished by applying a result of Sung [3] and
an inequality of Adler, Rosalsky, and Taylor [1]. This note owes much to the work of Sung
[3].

2 Preliminaries
In this section, some definitions will be reviewed and the needed results of Sung [3] and
Adler, Rosalsky, and Taylor [1] will be stated.

Definition 2.1 The random variables comprising an array {Xn,j, 1 ≤ j ≤ kn, n ≥ 1} are said
to be rowwise pairwise negative quadrant dependent (PNQD) if for all n ≥ 1 and all i, j ∈
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{1, . . . , kn} (i �= j),

P(Xn,i ≤ x, Xn,j ≤ y) ≤ P(Xn,i ≤ x)P(Xn,j ≤ y) for all x, y ∈ R.

Definition 2.2 The random variables comprising an array {Yn,j, 1 ≤ j ≤ kn, n ≥ 1} are said
to be stochastically dominated by a random variable Y if there exists a constant D such
that

P
(|Yn,j| > y

) ≤ DP
(|DY | > y

)
, y ≥ 0, 1 ≤ j ≤ kn, n ≥ 1. (2.1)

Lemma 2.1 (Adler, Rosalsky, and Taylor [1, Lemma 2.3]) If the random variables in the
array {Yn,j, 1 ≤ j ≤ kn, n ≥ 1} are stochastically dominated by a random variable Y , then
for all n ≥ 1 and j ∈ {1, . . . , kn},

E
(|Yn,j|I

(|Yn,j| > y
)) ≤ D2

E
(|Y |I(|DY | > y

))
for all y ≥ 0,

where D is as in (2.1).

Proposition 2.1 (Sung [3, Theorem 2.1]) Let {Xn,j, 1 ≤ j ≤ kn, n ≥ 1} be an array of row-
wise PNQD random variables and let r ∈ [1, 2). Let {an,j, 1 ≤ j ≤ kn, n ≥ 1} be an array of
constants. Suppose that

sup
n≥1

kn∑

j=1

|an,j|rE|Xn,j|r < ∞ (2.2)

and

lim
n→∞

kn∑

j=1

|an,j|rE
(|Xn,j|rI

(|an,j|r|Xn,j|r > ε
))

= 0 for all ε > 0. (2.3)

Then

kn∑

j=1

an,j(Xn,j – EXn,j)
Lr−→ 0

and, a fortiori,

kn∑

j=1

an,j(Xn,j – EXn,j)
P−→ 0.

3 Improved version of the Chandra, Li, and Rosalsky [2] result
We will now use Lemma 2.1 and Proposition 2.1 to present the following improved version
of Theorem 3.1 of Chandra, Li, and Rosalsky [2].

Theorem 3.1 Let {Xn,j, 1 ≤ j ≤ kn, n ≥ 1} be an array of rowwise PNQD mean 0 random
variables which are stochastically dominated by a random variable X with E|X|r < ∞ for
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some r ∈ [1, 2). Let {an,j, 1 ≤ j ≤ kn, n ≥ 1} be an array of constants such that

sup
n≥1

kn∑

j=1

|an,j|r < ∞ (3.1)

and

lim
n→∞ sup

1≤j≤kn
|an,j| = 0. (3.2)

Then

kn∑

j=1

an,jXn,j
Lr−→ 0 (3.3)

and, a fortiori,

kn∑

j=1

an,jXn,j
P−→ 0.

Remark 3.1 Before proving Theorem 3.1, we point out that Theorem 3.1 of Chandra, Li,
and Rosalsky [2]

(i) only treated the case r = 1,
(ii) had the additional condition

for each n ≥ 1, either min
1≤j≤kn

an,j ≥ 0 or max
1≤j≤kn

an,j ≤ 0,

(iii) had the condition

sup
n≥1

kn∑

j=1

|an,j| < ∞ and lim
n→∞

kn∑

j=1

a2
n,j = 0,

the second half of which is clearly stronger than (3.2).

Proof of Theorem 3.1 Letting D be as in (2.1) with Yn,j replaced by Xn,j, 1 ≤ j ≤ kn, n ≥ 1
and Y replaced by X, it follows that

E|Xn,j|r ≤ Dr+1
E|X|r , 1 ≤ j ≤ kn, n ≥ 1.

Thus

sup
n≥1

kn∑

j=1

|an,j|rE|Xn,j|r ≤ Dr+1

(

sup
n≥1

kn∑

j=1

|an,j|r
)

E|X|r < ∞

by (3.1) and E|X|r < ∞, thereby verifying (2.2).
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Next, we show that (2.3) holds. Let

λn = D sup
1≤j≤kn

|an,j|, n ≥ 1.

Then limn→∞ λn = 0 by (3.2). Now the stochastic domination hypothesis ensures that

P
(|Xn,j|r > x

) ≤ DP
(|DX|r > x

)
= DP

(
D

(
Dr–1|X|r) > x

)
, x ≥ 0, 1 ≤ j ≤ kn, n ≥ 1

and so by Lemma 2.1 with Yn,j replaced by |Xn,j|r , 1 ≤ j ≤ kn, n ≥ 1 and Y replaced by
Dr–1|X|r ,

E
(|Xn,j|rI

(|Xn,j|r > x
))

≤ D2
E

(
Dr–1|X|rI

(
Dr|X|r > x

))

= Dr+1
E

(|X|rI
(
Dr|X|r > x

))
, x ≥ 0, 1 ≤ j ≤ kn, n ≥ 1. (3.4)

Then for arbitrary ε > 0,

kn∑

j=1

|an,j|rE
(|Xn,j|rI

(|an,j|r|Xn,j|r > ε
)) ≤ Dr+1

kn∑

j=1

|an,j|rE
(

|X|rI
(

Dr|X|r >
ε

|an,j|r
))

≤ Dr+1

( kn∑

j=1

|an,j|r
)

E

(

|X|rI
(

|X|r >
ε

λr
n

))

≤ Dr+1

(

sup
m≥1

km∑

j=1

|am,j|r
)

E

(

|X|rI
(

|X|r >
ε

λr
n

))

→ 0 as n → ∞

by (3.1), λn → 0, and E|X|r < ∞. Thus (2.3) holds, and conclusion (3.3) follows from
Proposition 2.1. �

Remark 3.2 See Chandra, Li, and Rosalsky [2] for examples
(i) showing that Theorem 3.1 can fail if the PNQD hypothesis is dispensed with,

(ii) showing that
∑kn

j=1 an,jXn,j → 0 almost surely does not necessarily hold under the
hypotheses of Theorem 3.1.

4 Conclusions
For an array of rowwise PNQD random variables {Xn,j, 1 ≤ j ≤ kn, n ≥ 1}, conditions are
provided under which the following degenerate mean convergence law holds:

kn∑

j=1

an,jXn,j
Lr−→ 0,

where 1 ≤ r < 2, EXn,j = 0, 1 ≤ j ≤ kn, n ≥ 1, and {an,j, 1 ≤ j ≤ kn, n ≥ 1} is an array of con-
stants. This result is an improved version of Theorem 3.1 of Chandra, Li, and Rosalsky [2]
in that L1 convergence is extended to Lr convergence and the hypotheses are weakened.
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The result is obtained by applying a result of Sung [3] and an inequality of Adler, Rosalsky,
and Taylor [1].
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